(完整版)实变函数证明题大全(期末复习)
实变函数期末考试重点

实变函数考试重点题目第一章:求极限 Eg :求1(,)n A n n=的上下极限下极限1111lim inf (,)(,)(0,)n nm n m m A n m n m ∞∞∞======+∞上极限1111lim sup (,)(,)(0,)n nm n mm A n m n m ∞∞∞======+∞P24页 第5题5、设F 是]1,0[上全体实函数所构成的集合,c F 2=.证明:(1)设)(x E χ为E 的示性函数,]}1,0[|{⊂=E E A ,F E x B E ⊂⊂=]}1,0[|)({χ,显然B A ~,于是F B A c ≤==2;(2)设]}1,0[|))(,{(∈=x x f x G f ,}|{F f G C f ∈=,}]1,0[|{R ⨯⊂=P P D ,显然D C F ⊂~,于是cD C F 2=≤=,总之,c F 2=.P30页 定理1 定理2 P35页 第2 12题2.设一元实函数)()(R C x f ∈⇒R ∈∀a ,})(|{a x f x G >=是开集,})(|{a x f x F ≥=是闭集.证明:(1)G x ∈∀0,取0)(0>-=a x f ε,因)()(0x C x f ∈,那么对于0>ε,0>∃δ,..t s δ<-||0x x 时, ε<-|)()(|0x f x f ,即a x f x f =->ε)()(0,从而G x N ⊂),(0δ,所以G 是开集.(2)F x '∈∀0,∃互异点列F x k ⊂}{..t s 0x x k →,显然a x f k ≤)(,因)()(0x C x f ∈,有a x f x f k k ≤=∞→)(lim )(0,即F x ∈0,于是F F ⊂',所以所以F 是闭集.12、设实函数)()(nC x f R ∈⇔O ∈∀G ,O ∈-)(1G f.证明:“⇒”O ∈∀G ,)(10G fx -∈∀,因O ∈∈G x f )(0,0>∃ε..t s G x f N x f ⊂∈)),(()(00ε,那么对于0>ε,0>∃δ,..t s ),(0δx N x ∈∀,均有G x f N x f ⊂∈)),(()(0ε, 从而)(1G fx -∈,于是)(),(10G fx N -⊂δ,所以O ∈-)(1G f.“⇐”n x R ∈∀0,0>∀ε,由于O ∈=)),((0εx f N G , 那么O ∈∈-)(10G fx ,这样0>∃δ..t s )(),(10G fx N -⊂δ,从而)(),(10G f x N x -⊂∈∀δ,均有)),(()(0εx f N x f ∈,即)()(nC x f R ∈.P42页 定理4P44页 定理2 定理3定理2:∀非空n E R ⊂,0>∀d ,}),(|{d E x x U <=ρ ⇒ O ∈⊂U E . 证明:显然U E ⊂.U x ∈∀,取0),(>-=E x d ρδ,),(δx U y ∈∀,有d E x E x x y E y =+<+≤),(),(),(),(ρδρρρ可见U y ∈,这样U x U x ⊂∈),(δ, ∴O ∈⊂U E .P45页 第5.6题5、设非空n E R ⊂,则),(E P ρ在n R 上一致连续.证明:0>∀ε,取εδ=,n Q P R ∈∀,,只要δρ<),(Q P ,由于),(),(),(E Q Q P E P ρρρ+≤,),(),(),(E P P Q E Q ρρρ+≤,有ερρρ<≤-),(|),(),(|Q P E Q E P ,所以, ),(E P ρ在n R 上一致连续.6、∀非空⊕C ∈21,F F ⇒)()(nC P f R ∈∃..t s 1)(0≤≤P f ,且0)(≡P f ,1F P ∈;1)(≡P f ,2F P ∈.证明:显然)(),(),(),()(211nC F P F P F P P f R ∈+=ρρρ,1)(0≤≤P f ,且0)(≡P f ,1F P ∈;1)(≡P f ,2F P ∈.P54页 定理(3)(4) P57页 第5 7题5、设实函数)(x f 在],[b a 上连续,}),(|),{(b x a x f y y x E ≤≤==,证明0*=E m . 证明:因为],[)(b a C x f ∈,于是)(x f 在],[b a 上一致连续,那么0>∀ε, 0>∃δ, ..t s 当δ<-||t s ,时,ε<-|)()(|s f t f .取δ<-na b ,将],[b a 进行n 等分,其分点为b x x x a n =<<<= 10,记],[1i i i x x I -=,])(,)([εε+-=i i i x f x f J ,显然,)(}),(|),{(11ni i ini i J II x x f y y x E ==⨯⊂∈==,∑∑==⨯=⨯≤≤ni i ini i iJ m Im J Im E m 11*)]()([)(0εε)(2)2(1a b na b ni -=⋅-=∑=,于是,由ε的任意性,知0*=E m .7、0*>E m ,证明必E x ∈∃,..t s 0>∀δ,都有0)),((*>δx N E m .证明:反证.假设E x ∈∀,0>∃x δ,使得0)),((*=x x N E m δ ,当然存在以有理数为端点的区间x I ..t s ),(x x x N I x δ⊂∈,由于}{x I 至多有可数个,记作}{k J ,有)(1∞=⊂k kJE E 那么0)(01**=≤≤∑∞=k k J E mE m ,这与条件0*>E m 不符,说明必E x ∈∃,..t s 0>∀δ,都有0)),((*>δx N E m .P65页 定理5 定理6 P68页 第4 5 9 11题4、设M ⊂}{m E ,证明m mm mmE E m inf lim )inf lim (≤.又+∞<∞=)(1m m E m ,证明m mm m mE E m sup lim )sup lim (≥.证明:因m m k k E E ↑⊂∞= ,有m mmk km m mk km mmE EEm E m inf lim lim)()inf lim (1≤==∞=∞→∞=∞=.又因m mk k E E ↓⊃∞= ,+∞<∞=)(1 m m E m ,有m mmk km m mk km mmE EEm E m sup lim lim)()sup lim (1≥==∞=∞→∞=∞=.5、设M ⊂}{m E ,+∞<∑∞=1)(m m E m ,证明0sup lim =m mmE .证明:因m mk k E E ↓⊃∞= ,+∞<≤∑∞=∞=11)()(m mm m Em E m ,有0)(lim)(lim )()sup lim (01=≤==≤∑∞=∞→∞=∞→∞=∞=mk km mk k m m mk km mEm E m E m E m,所以0sup lim =m mmE .P103页 第2题2、证明当)(x f 既是1E 上又是2E 上的非负可测函数时,)(x f 也是21E E 上的非负可测函数. 证明:由条件知 R ∈∀a ,n E x a x f x E M ∈∈>],)(;[1,n E x a x f x E M ∈∈>],)(;[2,于是],)(;[21E E x a x f x E ∈>n E x a x f x E E x a x f x E M ∈∈>∈>=],)(;[],)(;[11 所以)(x f 也是21E E 上的非负可测函数.P104页 第6 11题6、设实函数)()(n C x f R ∈,证明:M ∈∀E ,均有)()(E x f M ∈. 证明:M ∈∀E ,R ∈∀a ,显然O ∈+∞=),(a G ,下面证明M ∈-)(1G f.},)(|{)(10nx a x f x G fx R ∈>=∈∀-,因O ∈∈G x f )(0,0>∃ε..t s G x f N x f ⊂∈)),(()(00ε,这样对于0>ε,0>∃δ,..t s ),(0δx N x ∈∀,均有G x f N x f ⊂∈)),(()(0ε,从而)(1G f x -∈,于是)(),(10G f x N -⊂δ,那么M O ⊂∈-)(1G f.由于M ∈=∈>=--)(},)(|{)(11G f E E x a x f x G f,所以)()(E x f M ∈.11、设)(x f 是E 上的可测函数,)(y g 是R 上的连续函数,证明)]([x f g 是E 上的可测函数.证明:R ∈∀a ,因)()(R C y g ∈,若O ∈-∞=),(a G ,有O ∈<=-})(|{)(1a y g y G g由于})]([|{a x f g x x <∈⇔a x f g <)]([⇔)()(1G g x f -∈⇔)]([11G gfx --∈,于是M ∈=<--)]([})]([|{11G gf a x fg x ,所以)()]([E x f g M ∈.P117页 第2题2、设K x f k ≤|)(|..e a E ,)()(x f x f mk →E x ∈, 证明K x f ≤|)(|..e a E . 证明:+∈∀N m ,当mx f x f k 1|)()(|<-,K x f k ≤|)(|时,mK x f x f x f x f k k 1|)(||)()(||)(|+<+-≤,于是]1|)(|;[m K x f x m mE m +≥= ]|)(|;[]1|)()(|;[K x f x m m x f x f x m k k >+≥-≤0]1|)()(|;[→≥-≤mx f x f x m k ,∞→k ,有0=m mE ,因↑}{m E ,有0lim ]|)(|;[==≥∞→m m E K x f x m 所以K x f ≤|)(|..e a E .课件 第四章第四节 倒数第2~5题3、定理:设)()(x f x f mk →,)()(x g x f mk →E x ∈, 则)(~)(x g x f E. 证明: +∈∀N k m ,, 若mx f x f k 21|)()(|<-,mx g x f k 21|)()(|<-,有mx g x f x f x f x g x f k k 1|)()(||)()(||)()(|<-+-≤-,于是 ]1|)()(|;[m x g x f x E ≥-]21|)()(|;[]21|)()(|;[m x g x f x E m x f x f x E k k ≥-≥-⊂ ,从而]1|)()(|;[m x g x f x mE ≥-]21|)()(|;[]21|)()(|;[mx g x f x mE m x f x f x mE k k ≥-+≥-≤000=+→, 又因∞=≥-=≠1]1|)()(|;[)]()(;[m mx g x f x E x g x f x E ,有 0)]()(;[=≠x g x f x mE ,所以)(~)(x g x f E.1、设)()(x f x f mk →,)()(x g x g mk →,E x ∈, 证明)()()()(x g x f x g x f mk k ++→. 证明:已知,0>∀σ,当2|)()(|σ<-x f x f k ,2|)()(|σ<-x g x g k ,时,σ<-+-≤+-+|)()(||)()(||)]()([)]()([|x g x g x f x f x g x f x g x f k k k k ,由于)()(x f x f m k →,)()(x g x g mk →,E x ∈,有]|)]()([)]()([|;[0σ≥+-+≤x g x f x g x f x m k k0]2|)()(|;[]2|)()(|;[→≥-+≥-≤σσx g x g x m x f x f x m k k ,所以)()()()(x g x f x g x f mk k ++→.2、设)()(x f x f mk →,)()(E x g M ∈且几乎处处有限, 证明)()()()(x g x f x g x f mk →. 证明:已知,)()(x f x f mk →,)(x g 在E 上几乎处处有限,那么0>∀σ,0>∀ε,0>∃K ..t s2]|)()(|;[εσ<≥-Kx f x f x m k , 2]|)(|;[ε<≥K x g x m ]|)()()()(|;[σ≥-x g x f x g x f x m k ]]|)(||)()(|;[σ≥-≤x g x f x f x m k]|)(|;[]|)()(|;[K x g x m K x f x f x m k ≥+≥-≤σεσ<≥+≥-≤]|)(|;[]|)()(|;[K x g x m Kx f x f x m k ,所以)()()()(x g x f x g x f mk →.3、设0)(→mk x f ,证明0)(2→mk x f .证明:已知,0)(→mk x f ,那么0>∀σ,0>∀ε,..t s εσ<≥-]|)()(|;[x f x f x m k ,有εσσ<≥=≥-]|)(|;[]|0)(|;[2x f x m x f x m k k ,所以0)(2→mk x f .。
实变函数期末考试题库

《实变函数》期末考试试题汇编目录《实变函数》期末考试模拟试题(一) (2)《实变函数》期末考试模拟试题(二) (7)《实变函数》期末考试模拟试题(三) (13)《实变函数》期末考试模拟试题(四) (18)《实变函数》期末考试模拟试题(五) (27)《实变函数》期末考试模拟试题(六) (30)《实变函数》期末考试模拟试题(七) (32)《实变函数》期末考试模拟试题(八) (36)《实变函数》期末考试模拟试题(九) (41)《实变函数》期末考试模拟试题(十) (47)《实变函数》期末考试题(一) (57)《实变函数》期末考试题(二) (63)《实变函数》期末考试模拟试题(一)(含解答)一、选择题(单选题)1、下列集合关系成立的是( A )(A )(\)A B B A B ⋃=⋃ (B )(\)A B B A ⋃= (C )(\)B A A A ⋃⊆ (D )(\)B A A ⊆ 2、若n E R ⊂是开集,则( B )(A )E E '⊂ (B )E 的内部E = (C )E E = (D )E E '= 3、设P 是康托集,则( C )(A )P 是可数集 (B )P 是开集 (C )0mP = (D )1mP = 4、设E 是1R 中的可测集,()x ϕ是E 上的简单函数,则( D ) (A )()x ϕ是E 上的连续函数 (B )()x ϕ是E 上的单调函数 (C )()x ϕ在E 上一定不L 可积 (D )()x ϕ是E 上的可测函数5、设E 是n R 中的可测集,()f x 为E 上的可测函数,若()d 0Ef x x =⎰,则( A )(A )在E 上,()f z 不一定恒为零 (B )在E 上,()0f z ≥ (C )在E 上,()0f z ≡ (D )在E 上,()0f z ≠ 二、多项选择题(每题至少有两个或两个以上的正确答案) 1、设E 是[0,1]中的无理点全体,则(C 、D )(A )E 是可数集 (B )E 是闭集 (C )E 中的每一点都是聚点 (D )0mE > 2、若1E R ⊂至少有一个内点,则( B 、D )(A )*m E 可以等于零 (B )*0m E > (C )E 可能是可数集 (D )E 是不可数集3、设[,]E a b ⊂是可测集,则E 的特征函数()E X x 是 (A 、B 、C ) (A )[,]a b 上的简单函数 (B )[,]a b 上的可测函数 (C )E 上的连续函数 (D )[,]a b 上的连续函数4、设()f x 在可测集E 上L 可积,则( B 、D )(A )()f z +和()f z -有且仅有一个在E 上L 可积 (B )()f z +和()f z -都在E 上L 可积 (C )()f z 在E 上不一定L 可积 (D )()f z 在E 上一定L 可积5、设()f z 是[,]a b 的单调函数,则( A 、C 、D )(A )()f z 是[,]a b 的有界变差函数 (B )()f z 是[,]a b 的绝对连续函数 (C )()f z 在[,]a b 上几乎处处连续 (D )()f z 在[,]a b 上几乎处处可导 三、填空题(将正确的答案填在横线上)1、设X 为全集,A ,B 为X 的两个子集,则\A B=C A B ⋂ 。
(完整版)实变函数期末复习

(完整版)实变函数期末复习实变函数期末复习选择题1.设,...,],)(,[21121=-+=n nA nn 则()A.],[lim 10=∞→n n A B.],(lim 10=∞→n n A C.],(lim 30=∞→n n A D.),(lim 30=∞→n n A2.设N i i x i x A i ∈+≤≤=},:{23,则=∞=I 1i i A () A.(-1,1) B.[0,1] C.? D.{0}3.集合E 的全体聚点所组成的集合称为E 的()A.开集B.边界C.导集D.闭包4.若}{n A 是一闭集列,则Y ∞=1n n A是()A.开集B.闭集C.既非开集又非闭集D.无法判断5若)(x f 可测,则它必是()A.连续函数B.单调函数C.简单函数D.简单函数列的极限6关于简单函数与可测函数下述结论不正确的是()A.简单函数一定是可测函数B.简单函数列的极限是可测函数C.简单函数与可测函数是同一概念D.简单函数列的极限与可测函数是同一概念7设)(x f 是可测集E 上的非负可测函数,则)(x f ()A.必可积B.必几乎处处有限C.必积分确定D.不一定积分确定8设E 是可测集,则下列结论中正确的是()A.若)}({x f n 在E 上a.e 收敛于一个a.e 有限的可测函数)(x f ,则)(x f n 一致收敛于)(x fB.若)}({x f n 在E 上基本上一致收敛于)(x f ,则)(x f n a.e 收敛于)(x fC.若)}({x f n 在E 上a.e 收敛于一个a.e 有限的可测函数)(x f ,则)(x f n 基本上一致收敛于)(x fD.若)}({x f n 在E 上a.e 收敛于一个a.e 有限的可测函数)(x f ,则)(x f n ?)(x f9设)(x f 是可测集E 上可积,则在E 上()A.)(x f +与)(x f - 只有一个可积B.)(x f +与)(x f - 皆可积C.)(x f +与)(x f - 一定不可积D.)(x f +与)(x f - 至少有一个可积 10.)(x f 在可测集E 上)(L 可积的必要条件是,)(x f 为()A 、连续函数B 、几乎处处连续函数C 、单调函数D 、几乎处处有限的可测函数11设)(x D 为狄立克雷函数,则?=10)()(dx x D L ()A 、 0B 、 1C 、1/2D 、不存在 12设}{nE 是一列可测集,ΛΛn E E E 21,且+∞<1mE ,则有()(A )n n n n mE E m ∞→∞==??? ???lim 1 (B) n n n n mE E m ∞→∞=≤??? ???lim 1 (C )n n n n mE E m ∞→∞=∞→n n A lim( ) A 、Φ B 、[0, n] C 、R D 、(0, ∞)14设)1,0(n A n =, N n ∈, 则=∞→n n A lim ( )A 、(0, 1)B 、(0, n1) C 、{0} D 、Φ、填空题1、设A 为一集合,B 是A 的所有子集构成的集合;若A =n, 则B =2、设A 为一集合,B 是A 的所有子集构成的集合;若A 是一可数集, 则B =3、若c A =, c B =, 则=?B A4、若c A =, B 是一可数集, 则=?B A5、若c A =, n B =, 则=?B A6、若}{n A 是一集合列, 且c A n =, =?∞=n n A 1 7、设}{i S 是一列递增的可测集合,则=∞→)lim (n n S m _______。
实变函数(复习资料,带答案)

---《实变函数》试卷一一、单项选择题( 3 分×5=15 分)1、下列各式正确的是()( A) lim A n A k ;(B) lim A nn 1 k n A k ;n n 1 k n n( C) lim A n A k ;( D) lim A nn 1 k A k ;n n 1 k n n n2、设 P 为 Cantor 集,则下列各式不成立的是()(A)P c (B)mP 0(C)P'P(D)P P3、下列说法不正确的是()(A)凡外侧度为零的集合都可测( B)可测集的任何子集都可测(C) 开集和闭集都是波雷耳集(D)波雷耳集都可测4、设f n ( x) 是 E 上的a.e.有限的可测函数列 , 则下面不成立的是()(A)若f n(x) f ( x) ,则f n( x) f ( x)(B)sup f n ( x) 是可测函数(C)inf f n (x) 是可测函数 ; ( D)若n nf n (x) f (x) ,则 f (x) 可测5、设 f(x) 是[ a,b]上有界变差函数,则下面不成立的是()(A) f (x) 在 [ a, b] 上有界(B)f ( x) 在 [ a,b] 上几乎处处存在导数(C)f'( x)在[ a, b]上 L 可积 (D)bf '(x)dx f (b) f (a)a二.填空题 (3 分× 5=15 分 )1、(C s A C s B) ( A ( A B))_________2、设 E 是 0,1 上有理点全体,则oE' =______, E =______, E =______.3、设 E 是 R n中点集,如果对任一点集T 都,则称 E是L可测的4、f ( x)可测的 ________条件是它可以表成一列简单函数的极限函数 . (填“充分”,“必要”,“充要”)5、设f (x)为 a, b 上的有限函数,如果对于a, b 的一切分划,使_____________________________________则,称f ( x)为a, b 上的有界变差函数。
实变函数(复习资料_带答案)资料

集。
0, 开集 G E,使 m* (G E)
,则 E 是可测
(第 7 页,共 19 页)
3. (6 分)在 a, b 上的任一有界变差函数 f ( x) 都可以表示为 两个增函数之差。
5. (8 分)设 f ( x) 在 E a,b 上可积,则对任何 0 ,必存
b
在 E 上的连续函数 ( x) ,使 | f ( x) (x) | dx . a
E
四、解答题 (8 分× 2=16 分) .
1、(8分)设 f (x)
x2, x为无理数 ,则 f ( x) 在 0,1 上是否 R
1, x为有理数
可积,是否 L 可积,若可积,求出积分值。
五、证明题 (6 分× 4+10=34 分) . 1、(6 分)证明 0,1 上的全体无理数作成的集其势为 c
可测集;
二. 填空题 (3 分× 5=15 分)
1、设 An
11 [ , 2 ], n 1,2,
,则 lim An
_________。
nn
n
2、设 P 为 Cantor 集,则 P
o
,mP _____,P =________。
3、设 Si 是一列可测集,则 m i 1 Si ______ mSi i1 4、鲁津定理:
4.(8 分)设函数列 fn (x) ( n 1,2, ) 在有界集 E 上“基本上” 一致收敛于 f ( x) ,证明: fn (x) a.e.收敛于 f ( x) 。
2. x
E , 则存在 E中的互异点列
{
xn },
使 lim n
xn
x ……… .2
分
xn E, f ( xn ) a ………………… .3 分
实变函数复习题

《实变函数》一、单项或多项选择题1、下列正确的是( 2 3 4 )(1)\(\)(\)\A B C A B C = (2)()()()A B C A B A C =(3)()()cc \AB C AB C = (4)()(\)\\A B C A B C =2、下列正确的是( 2 4 ) (1)无理数集是可数集;(2)超越数构成的集合是不可数集;(3)若R 中两个Lebesgue 可测集A 和B 的基数相等,则它们的测度也相等; (4)Q 表示全体有理数集,则2014Q 是可数集.3、在R 中令111{1,,,,},23A n=则( 3 4 ) (1)A 为闭集 (2)A 为开集 (3){}'0A = (4)A 为疏集 4、设A R ⊂满足0mA =,则( 1 3 )(1)A 为Lebesgue 可测集 (2)A 为可数集 (3)任意可测函数f 在A 上可积 (4)A 为疏集5、在R 上定义()f x ,当x 为有理数时,()1f x =,当x 为无理数时,()0f x =,则( 3 4 )(1) f 几乎处处连续 (2)f不是可测函数(3) f 在R 上处处不连续 (4)f 在R 上为可测函数 6、设,(X),n f f M ∈则(1 2 3 4 )(1)()f M X +∈ (2)()f M X ∈(3)()2f M X ∈ (4)()lim n nf M X ∈7、若f 在[]0,1上L 可积,则下列成立的是( 1 2 )(1)f <+∞在[]0,1上几乎处处成立 (2)f 在[]0,1上L 可积 (3)f 在[]0,1上几乎处处连续 (4)2f 在[]0,1上非L 可积8、设(),1,2,3,n f f n =是X 上几乎处处有限的可测函数,则下列结论正确的是( 13 )(1)若,..,n f f a u →则,.e.;n f f a →(2)若,.e.,n f f a →则,..;n f f a u → (3)若,..,n f f a u →则;n f f μ→ (4)若,n f f μ→则,...n f f a u →9、若{}n A 为降列,且12A μ=,则lim n n A μ→∞( 4 )(1)0 (2)∅ (3)1n n A μ∞=⎛⎫ ⎪⎝⎭ (4)1n n A μ∞=⎛⎫⎪⎝⎭10、有界实函数f 在区间[]a b ,上Riemann 可积的充要条件是f 的不连续点集为( 4 ) (1)空集 (2)有限集 (3)可数集 (4)零测度集 11、设[],f BV a b ∈,则下列成立的是( 1 4 ) (1)f 在[],a b 上有界; (2)f 在[],a b 上连续; (3)f 在[],a b 上可微; (4)f 是两个增函数之差.12、整数集的内部和闭包分别为( 1 )(1)∅, (2), (3)∅, (4),13、设()[](],0,12,1,2x x f x x x ⎧∈⎪=⎨-∈⎪⎩,令()12A x f x ⎧⎫=>⎨⎬⎩⎭,则mA =( 2 )(1)0 (2)1 (3)2 (4)314、下列哪些集合是测度为零的不可数集( 3 )(1) (2) (3)Cantor 集 (4)15、设()[]1013,10,0,1\x n f x x n ⎧⎧⎫∈⎨⎬⎪⎪⎩⎭=⎨⎧⎫⎪∈⎨⎬⎪⎩⎭⎩,则()[]0,1f c dm =⎰( 1 )(1)0 (2)1 (3)2 (4)103 16、超越数的个数为( 3 )(1)2 (2)a (3)c (4)2c17、[0,1],(0)2,f AC f ∈=且0,.f a e '=,则()f x = 3 (1)0 (2)1 (3) 2 (4)318、设12,A A 是R 的可测集,且12A A ,则下列正确的是( 2 4 )(1)12mA mA < (2)12mA mA ≤(3)()1212\mA mA m A A -= (4)()1122\mA m A A mA =+ 19、当f 在[)1,+∞上连续且Lebesgue 可积时,则lim ()x f x →+∞= 1(1) 0 (2)1 (3)-1 (4)+∞ 20、21[0,1]n A -=,2[0,2]n A =,()1,2,n =,则lim n nA 和lim n nA 分别为( 3 ) (1) [][]0,1,0,2 (2)[][]0,1,0,2 (3)[][]0,2,0,1 (4)[][]0,2,0,2 21、下列正确的是(1 4 ) (1)()()()\\C \AB C A B C = (2)()()A B C A B C =(3)\(\)(\)\A B C A B C = (4)()(\)\\A B C A BC =22、设:f X X →是一个映射,,A B X ⊂,下列正确的是( 2 4 ) (1)()1A ff A -= (2)()()()111f AB f A f B ---= (3)()1B f f B -= (4)()()()111f A B f A f B ---=23、下列与有相同基数的集合是( 2 3 )(1) []0,1 (2) (3)(4)24、设A 是[]0,1上所有有理数构成的集合,则'A =(3 ) (1) A (2)[]0,1\A (3)[]0,1 (4)以上都不对 25、下列说法正确的是( 1 2 3 ) (1)是上的闭集(2)上的开集都可以表示成互不相交的开区间的并(3)是上的疏集(4)的子集不是开集就是闭集 26、下列正确的是( 1 ) (1)有理数集是可数集;(2)代数数构成的集合是不可数集;(3)若R 中两个Lebesgue 可测集A 和B 的测度相等,则它们的基数也相等; (4)[]0,2内包含的点比[]0,1内包含的点多。
实变函数证明题大全

1、设',()..E R f x E a e ⊂是上有限的可测函数,证明:存在定义在'R 上的一列连续函数{}n g ,使得lim ()()..n n g x f x a e →∞=于E 。
证明:因为()f x 在E 上可测,由鲁津定理就是,对任何正整数n ,存在E 的可测子集n E ,使得1()n m E E n-<, 同时存在定义在1R 上的连续函数()n g x ,使得当n x E ∈时,有()()n g x f x =所以对任意的0η>,成立[||]n n E f g E E η-≥⊂-由此可得1[||]()n n mE f g n m E E n-≥≤-<,因此lim [||]0n n mE f g n →∞-≥=即()()n g x f x ⇒,由黎斯定理存在{}n g 的子列{}k n g ,使得lim ()()k n k g x f x →∞=,..a e 于E2、设()(,)f x -∞∞是上的连续函数,()g x 为[,]a b 上的可测函数,则(())f g x 就是可测函数。
证明:记12(,),[,]E E a b =-∞+∞=,由于()f x 在1E 上连续,故对任意实数1,[]c E f c >就是直线上的开集,设11[](,)nn n E f c αβ∞=>=U ,其中(,)n n αβ就是其构成区间(可能就是有限个,nα可能为-∞nβ可有为+∞)因此222211[()][]([][])n n n n n n E f g c E g E g E g αβαβ∞∞==>=<<=><I U U 因为g 在2E 上可测,因此22[],[]n n E g E g αβ><都可测。
故[()]E f g c >可测。
3、设()f x 就是(,)-∞+∞上的实值连续函数,则对于任意常数a ,{|()}E x f x a =>就是一开集,而{|()}E x f x a =≥总就是一闭集。
实变函数期末考试题

上单调函数的不连续点所成之集的测度等于n上的广11 ()k E f ak∞=≥+=_________.7.设f是[a上的单调函数,则8.设f是可测集E上的非负可测函数,则_________.9.区间[上的有界是10.设F (x)是定义在的充要条件是:1jk j k A∞∞==; B.1jk j kA∞∞==C.1lim k j k k j kA A ∞∞→∞===; D. 1lim k j k k j kA A ∞∞→∞===。
2.设f (x )是E 上的可测函数,则对任意实数a ,有 ( )A. E [x ; f (x ) >a ]是开集;B. E [x ; f (x ) ≥ a ]是闭集;C. E [x ; f (x ) >a ]是可测集;D. E [x ; f (x ) = a ]是零测集。
3.下列断言中错误的是 ( )A. 有理点集为零测集;B. Cantor 集为零测集;C. 零测集的子集是零测集;D. 无穷个零测集的并是零测集。
4.设f (x )为可测集E 上的可测函数,若()Ef x dx <+∞⎰,则下列断言错误的是 ( )A. f (x )在E 上L-积分存在;B. f (x )在E 上L-可积;C. f (x )在E 上未必L-可积;D. f (x )在E 上a.e.有限。
5.设{}k f 是nE ⊂上的可测函数列,lim ()k k f x →∞存在,则lim ()k k f x →∞是 ( )A.简单函数;B.连续函数;C.可测函数;D.单调函数。
6.设f 是[,]a b 上有界变差函数,则有 ( )A. ()f x 连续;B. ()f x '存在;C .()f x ' a.e.存在;D. ()f x ''存在。
7.设E 是可测集,A 是不可测集,0mE =,则E A 是 ( ).A 可测集且测度为零; .B 可测集但测度未必为零; .C 不可测集; .D 以上都不对。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、设',()..E R f x E a e ⊂是上有限的可测函数,证明:存在定义在'R 上的一列连续函数{}n g ,使得lim ()()..n n g x f x a e →∞=于E 。
证明:因为()f x 在E 上可测,由鲁津定理是,对任何正整数n ,存在E 的可测子集n E ,使得1()n m E E n-<, 同时存在定义在1R 上的连续函数()n g x ,使得当n x E ∈时,有()()n g x f x =所以对任意的0η>,成立[||]n n E f g E E η-≥⊂-由此可得1[||]()n n mE f g n m E E n-≥≤-<,因此lim [||]0n n mE f g n →∞-≥=即()()n g x f x ⇒,由黎斯定理存在{}n g 的子列{}k n g ,使得lim ()()k n k g x f x →∞=,..a e 于E2、设()(,)f x -∞∞是上的连续函数,()g x 为[,]a b 上的可测函数,则(())f g x 是可测函数。
证明:记12(,),[,]E E a b =-∞+∞=,由于()f x 在1E 上连续,故对任意实数1,[]c E f c >是直线上的开集,设11[](,)n n n E f c αβ∞=>=,其中(,)n n αβ是其构成区间(可能是有限个,nα可能为-∞nβ可有为+∞)因此222211[()][]([][])n n n n n n E f g c E g E g E g αβαβ∞∞==>=<<=><因为g 在2E 上可测,因此22[],[]n n E g E g αβ><都可测。
故[()]E f g c >可测。
3、设()f x 是(,)-∞+∞上的实值连续函数,则对于任意常数a ,{|()}E x f x a =>是一开集,而{|()}E x f x a =≥总是一闭集。
证明:若00,()x E f x a ∈>则,因为()f x 是连续的,所以存在0δ>,使任意(,)x ∈-∞∞,0||()x x f x a δ-<>就有, 即任意00U(,),,U(,),x x x E x E E δδ∈∈⊂就有所以是开集若,n x E ∈且0(),()n n x x n f x a →→∞≥则,由于()f x 连续,0()lim ()n n f x f x a →∞=≥,即0x E ∈,因此E 是闭集。
4、(1)设2121(0,),(0,),1,2,,n n A A n n n-==求出集列{}n A 的上限集和下限集证明:lim (0,)n n A →∞=∞设(0,)x ∈∞,则存在N ,使x N <,因此n N >时,0x n <<,即2n x A ∈,所以x 属于下标比N 大的一切偶指标集,从而x 属于无限多n A ,得lim n n x A →∞∈,又显然lim (0,),lim (0,)n n n n A A →∞→∞⊂∞=∞所以lim n n A φ→∞=若有lim n n x A →∞∈,则存在N ,使任意n N >,有n x A ∈,因此若21n N ->时,211,0,00n x A x n x n -∈<<→∞<≤即令得,此不可能,所以lim n n A φ→∞=(2)可数点集的外测度为零。
证明:证明:设{|1,2,}i E x i ==对任意0ε>,存在开区间i I ,使i i x I ∈,且||2i iI ε=所以1i i I E ∞=⊃,且1||i i I ε∞==∑,由ε的任意性得*0m E =5、设}{n f 是E 上的可测函数列,则其收敛点集与发散点集都是可测的。
证: 显然,{}n f 的收敛点集可表示为0[lim ()lim ()]n n x x E E x f x f x →∞→∞===11[lim lim ]n nx x k E f f k ∞→∞→∞=-<∏. 由n f 可测lim n x f →∞及lim n x f →∞都可测,所以lim lim n n x x f f →∞→∞-在E 上可测。
从而,对任一自然数k ,1[lim lim ]n n x x E f f k→∞→∞-<可测。
故 011[lim lim ]n nx x k E E f f k ∞→∞→∞==-<∏ 可测。
既然收敛点集0E 可测,那么发散点集0E E -也可测。
6、设qR E ⊂,存在两侧两列可测集{n A },{n B },使得n A ⊂ E ⊂n B 且m (n A -n B )→0,(n→∝)则E 可测.证明:对于任意i ,i n n B B ⊂∞=1,所以 E B E B i n n -⊂∞=-1又因为 E A i ⊂ ,i i i A B E B -⊂-所以对于任意i ,)(**1E B m E B m i n n -≤-∞=)( )(*i i A B m -≤)(i i A B m -=令i →∝ ,由)(i i A B m -→0 得0*1=-∞=)(E B m n n 所以E B n n -∞=1是可测的又由于n B 可测,有n n B ∞=1也是可测的所以)(11E B B E n n n n --=∞=∞= 是可测的。
7、设在E 上()()n f x f x ⇒,而()()n n f x g x =..a e 成立,1,2n =,则有()()n g x f x ⇒设[]n n n E E f g =≠,则110n n n n m E mE ∞∞==⎛⎫≤= ⎪⎝⎭∑。
σ∀>1n n n n E f g E E f f σσ∞=⎛⎫⎡-≥⎤⊂⎡-≥⎤ ⎪⎣⎦⎣⎦⎝⎭所以1n n n n n mE f g m E mE f f mE f f σσσ∞=⎛⎫⎡-≥⎤≤+⎡-≥⎤=⎡-≥⎤ ⎪⎣⎦⎣⎦⎣⎦⎝⎭因为()()n f x f x ⇒,所以0lim lim 0n n nnmE f g mE f f σσ≤⎡-≥⎤≤⎡-≥⎤=⎣⎦⎣⎦即 ()()n g x f x ⇒8、证明:()A B A B '''⋃=⋃。
证明:因为A A B ⊂⋃,B A B ⊂⋃,所以,()A A B ''⊂⋃,()B A B ''⊂⋃,从而()A B A B '''⋃⊂⋃反之,对任意()x A B '∈⋃,即对任意(,)B x δ,有(,)()((,))((,))B x A B B x A B x B δδδ⋂⋃=⋂⋃⋂为无限集,从而(,)B x A δ⋂为无限集或(,)B x B δ⋂为无限集至少有一个成立,即x A '∈或x B '∈,所以,x A B ''∈⋃,()A B A B '''⋃⊂⋃。
综上所述,()A B A B '''⋃=⋃。
9、证明:若()()n f x f x ⇒,()()n f x g x ⇒(x E ∈),则()()f x g x =..a e 于E 。
证明:由于11[()()][]n E x f x g x E x f g n∞=≠=-≥,而 111[][][]22n n E x f g E x f f E x f g k k k-≥⊂-≥⋃-≥,所以,111[][][]22n n mE x f g mE x f f mE x f g k k k-≥≤-≥+-≥,由()()n f x f x ⇒,()()n f x g x ⇒(x E ∈)得1lim []02n n mE x f f k→∞-≥=,1lim []02n n mE x f g k →∞-≥=。
所以,1[]0mE x f g k-≥=,从而[()()]0mE x f x g x ≠=,即()()f x g x =..a e 于E 。
10、、证明:若()()n f x f x ⇒,()()n g x g x ⇒(x E ∈),则()()()()n n f x g x f x g x ±⇒±(x E ∈)。
证明:对任意0σ>,由于()()[()()]()()()()n n n n f x g x f x g x f x f x g x g x ±-±≤-+-,所以,由()()[()()]n n f x g x f x g x σ±-±≥可得,1()()2n f x f x σ-≥和1()()2n g x g x σ-≥至少有一个成立。
从而11[[]][][]22n n n n E x f g f g E x f f E x g g σσσ±-±≥⊂-≥⋃-≥,所以,11[[]][][]22n n n n mE x f g f g mE x f f mE x g g σσσ±-±≥≤-≥+-≥。
又由()()n f x f x ⇒,()()n g x g x ⇒(x E ∈)得,1lim []02n n mE x f f σ→∞-≥=,1lim []02n n mE x g g σ→∞-≥=。
所以,lim [[]]0n n n mE x f g f g σ→∞±-±≥=,即()()()()n n f x g x f x g x ±⇒±(x E ∈)。
11、若()()n f x f x ⇒(x E ∈),则()()n f x f x ⇒(x E ∈)。
证明:因为()()()()n n f x f x f x f x -≥-,所以,对任意0σ>,有[][]n n E x f f E x f f σσ-≥⊂-≥,[][]n n mE x f f mE x f f σσ-≥≤-≥。
又由()()n f x f x ⇒(x E ∈)得,lim []0n n mE x f f σ→∞-≥=。
所以,lim []0n n mE x f f σ→∞-≥=,即()()n f x f x ⇒(x E ∈)。
12、证明:1R 上的连续函数必为可测函数。
证明:设()f x 是1R 上的连续函数,由连续函数的局部保号性,对任意实数a ,11[]{(),}R x f a x f x a x R >=>∈是开集,从而是可测集。
所以,()f x 是1R 上的可测函数。