板式塔设计资料重点
板式塔基础知识

物质在相间的转移过程称为传质(分离)过程。
常见的有蒸馏、吸收、萃取和干燥等单元操作。
蒸馏是分离液体混合物的典型单元操作。
它是通过加热造成气液两相物系,利用物系中各组分的挥发度不同的特性以实现分离的目的。
塔设备是能够实现蒸馏和吸收两种分离操作的气液传质设备,按结构形式可以分为板式塔和填料塔两大类。
在工业生产上,一般当处理量大时多采用板式塔,处理量小时采用填料塔。
选用原则(典型的)1、腐蚀性介质,易起泡物系,热敏性物料,高粘性物料通常选用填料塔。
2、对于中、小规模的塔器,和塔径小于600mm时,宜选用填料塔,可节省费用并方便施工。
3、对于处理易聚合或含颗粒的物料,宜采用板式塔。
不易堵塞也便于清洗。
4、对于在分离过程中有明显吸热或放热效应的介质,宜采用板式塔。
5、对于有多个进料及侧线出料的塔器,且各侧线之间板数较少,宜采用板式塔。
采用填料塔时内件结构较复杂。
6、对于处理量或负荷波动较大的场合,宜采用板式塔。
因液体量过小会造成填料层中液体分布不均匀,填料表面未充分润湿,影响塔的效率;当液体量过大时易产生液流影响传质,采用条阀等板式塔具有较大的操作弹性。
7、对于塔顶、塔底产品均有质量要求的塔系,宜采用板式塔。
8、根据各种工艺流程和特点,在同一塔内,可以采用板式及填料共存的塔型,即混合塔型。
适用于沿塔高气、液负荷变化较大的塔系。
板式塔为逐板接触式气液传质设备。
●评价塔设备性能的主要指标:生产能力、塔板效率、操作弹性、塔板压强降●浮阀塔的工艺计算:包括塔径、塔高及塔板上主要部件工艺尺寸的计算。
一、工艺模拟计算后能够确定的参数(模拟计算可求得理论板层数、回流比、馏出液量、釜残液量、塔径、每层塔板的气液相负荷、冷凝器和再沸器负荷)1、估算塔径最常用的标准塔径(mm)为600,700,800,1000,1200,1400, (4200)原料通常从与原料组成相近处(加料板)进入塔内。
加料板以上的塔段称为精馏段,以下(包括加料板)成为提馏段。
板式塔的设计

泡罩实物
泡罩塔板 a.操作示意图;b.塔板平面图;c.圆形泡罩
一、塔板的类型
泡罩塔板的优缺点 优点
操作弹性大 塔板不易堵塞
缺点
生产能力及板效率较低 结构复杂、造价高
一、塔板的类型
(2)筛孔塔板
筛孔塔板简称筛板,1830年问世,其结构特 点是在塔板上开有许多均匀小孔,孔径一般为3~ 8mm。筛孔在塔板上为正三角形排列。塔板上设 置溢流堰,使板上能保持一定厚度的液层。
浮阀实物
浮阀塔板 a.F1 型浮阀;b. V-4 型浮阀;c. T 型浮阀
V-V塔板
梯形导向浮阀塔板
新型浮阀塔板
一、塔板的类型
浮阀塔板的优缺点 优点
结构简单、造价低 操作弹性大 生产能力大 塔板效率较高
缺点
处理易结焦、高黏度物料阀片易与塔板粘结 操作时阀片易脱落或卡死
喷射接触状态
五、板式塔的流体力学性能
2. 塔板压降 气体通过塔板需克服一定的阻力塔板压降。 干板阻力 板上各部件所造成的局部阻力。 塔板 充气液层阻力 阻力 板上充气液层的静压力形成的阻力。 表面张力阻力 液体表面张力形成的阻力。 塔板压降=干板压降+充气液层压降+表面张力压降
五、板式塔的流体力学性能
塔板的负荷性能 用负荷性能图表 示
操 作 点
操作线
2
5
雾沫夹 带线
液泛线
液 相 负 荷 下 限 线
qV ,V1 qV ,V
3
4
1
qV ,L1 qV , L
液 相 负 荷 上 限 线 漏液线
塔板的负荷性能图
六、板式塔的操作特性
(1)漏液线
漏液线气相负荷下限线
板式塔的设计要点

板式塔的设计要点1、对于理想混合物,其相对挥发度可以取其纯组分蒸汽压的比值。
2、塔的操作压力主要取决于冷凝器中冷剂的冷凝温度,以及再沸器中为避免工艺物流热降解而允许的最高温度。
3、对于顺序分离精馏塔系列:首先进行最容易的分离(采用最小塔板数及最小回流比)如果相对挥发度及进料组成变化不是很大,可一次将需要的产品精馏出塔顶。
如果相对挥发度及进料组成变化很明显,按照其挥发度的降序排列,依次精馏出所需产品。
如果进料浓度变化很明显,但是相对挥发度相差不多,按照其浓度的降序排列,依次精馏出所需产品。
4、最经济的回流比通常在最小回流比的1.2 ~ 1.5倍之间。
5、最经济的塔板数通常取最小理论板数的两倍,而最小理论板数是由Fenske-Underwood关联式决定的6、通常塔盘设计中实际塔盘数目要比计算值富余出10 % 。
7、板间距应该取450 ~ 610 mm。
8、塔盘效率最高值通常在中等压力下蒸气线速度为0.6 m/s;真空条件下蒸气线速度为1.8 m/s。
9、每块塔盘的典型压降为0.007 bar。
10、水溶液物系精馏的塔盘效率通常在60 ~ 90 % ,而气体吸收和汽提塔的塔盘效率接近于10 ~ 20 %。
12、最常见的三类塔盘为浮阀、筛板和泡罩。
泡罩适用于要求低漏液率的工况,其压降比浮阀和筛板塔盘还要低。
13、筛板塔盘筛孔直径约为6 ~ 13mm,开孔面积约占塔盘总鼓泡面积的10 %。
14、浮阀塔盘阀孔直径为38mm,每平方米鼓泡面积中约设置130 ~ 150个浮阀。
15、最普通的堰高为50 ~ 76 mm,典型的堰长取塔径值的75 %。
16、回流泵的输送能力应该有至少10 %的设计余量。
17、适宜的Kremser吸收因子通常在1.25 ~ 2.00之间。
18、回流罐通常是卧式安装,设计停留时间为5分钟时充满罐容积的一半。
19、对大多数的塔,直径至少为0.9 m,其顶部应该留1.2 m高度的蒸气排放空间,底部应该留1.8 m高度的釜液累积排放和再沸器返回接口空间。
板式塔的结构

15
四、塔板负荷性能图
V
正常操作区
操作弹性=气量上限/气量下限 操作弹性要求大于 2~3
过量液沫夹带线
16
1)负荷性能图中各线的意义 • 雾沫夹带线(气体流量上限线)线1 • 液泛线(线2) • 液相负荷上限线(线3) • 漏液线(气体流量下限线,线4) • 液相负荷下限线(线5 • 1,2,3,4,5五条线所包围的区域,既是一定物系在一定的结构尺
39
漏液状态
40
3)液沫夹带 现象及处理
现象: 液滴随气体进入上层塔板。 后果: 过量液沫夹带,造成液相在板间的返混,板效率下降 控制: 液沫夹带量eV<0.1kg(液)/kg(气)。 影响因素 •空塔气速:空塔气速减小,液沫夹带量减小 •塔板间距:板间距增大,液沫夹带量减小
气速上限为泛点气 速,用uF 表示,由经 验式计算或图查取。
HT与塔径之间的关系如表1所示:
表1 板间距参考数值 塔径D(m) 0.3~0.6 0.6~1.0 1.0~2.0 2.0~4.0 4.0~6.0
板间距HT(mm) 200~350 250~400 250~600 300~600 400~800
12
不 良 后 果 : 降 低 板 效 , 严 重 时 使 板 上 不 能 积 液 , 是 塔
1. 严 重 漏 液
不 良 的 操 作 现 象 之 一 。
产 生 的 原 因 : 气 速 过 小 , 或 气 体 分 布 严 重 不 均 、 液 体
分 布 严 重 不 均 。
2. 过 量 的 液 沫 夹 带
溢 流 装 置降 溢液 流管 堰
平 顶 堰 齿 形 堰
3
§1.1 板式塔
单流型
液
流
板式塔基本知识

板式塔的焊接技术
01
02
03
04
焊接设备
选择合适的焊接设备和焊接工 艺,确保焊接质量和效率。
焊接材料
选择符合要求的焊接材料,包 括焊条、焊丝、焊剂等。
焊接顺序
制定合理的焊接顺序,确保焊 接变形和应力控制在允许范围
内。
焊接检验
对焊接过程和焊接结果进行检 验,确保焊接质量和安全性。
板式塔的检测与试验
安装内部构件
在塔体内安装内部构件,如填 料、支撑板、分布器等,确保 流体力学性能良好。
准备基础
根据塔体尺寸和重量,设计并 准备基础,要求基础承载能力 足够且稳定。
安装支撑和固定件
在塔体上安装支撑和固定件, 确保塔体的稳定性和承重能力 。
安装附件
如楼梯、平台、栏杆等,确保 人员和设备安全。
板式塔的调试与运行
的抗堵塞性能。可以通过优化塔板结构、选择合适的材料等方式来提高
抗堵塞性能。
板式塔的工艺设计
流程方案
设计板式塔的工艺流程方案需要考虑物料的性质、处理量、分离要求等因素。 根据这些因素选择合适的流程方案,包括流程的复杂程度度、气液流量比、操作压力等。这些参数需 要根据工艺要求和实际情况进行选择和调整。在设计时需要考虑到这些参数对 塔性能的影响。
板式塔的基本结构
塔体
通常由碳钢或不锈钢制成,用来支撑塔板和 内部件。
塔板
是板式塔的核心部件,由平整的金属板构成, 板上开有许多孔,以便液体通过。
降液管
位于塔板的下方,将液体从塔板上引到下一层塔 板。
溢流堰
位于降液管的上方,用于保持液面高度和防止液体 从塔板上的孔溢出。
支承板
用于支撑上一层塔板的重量,并防止塔板变形。
板式塔知识点总结

板式塔知识点总结一、板式塔的定义板式塔是一种结构设计较为简单、造型独特的建筑物,通常用于提供通讯、电视信号传输或风力发电等用途。
它由一系列横向和纵向的钢板构成,通过捆绑或焊接在一起形成一个整体。
二、板式塔的结构1. 基础结构:板式塔的基础结构通常是混凝土浇筑的抗震支撑基座,用于支撑塔体,使其稳定立于地面。
2. 主体结构:板式塔的主体结构通常是由角钢、横向钢板和纵向钢板构成的,通过螺栓、焊接或捆绑在一起形成一个稳定的整体。
3. 附件结构:板式塔的附件结构包括横梁、支撑杆、拉索等,用于增强塔体的稳定性和承载能力。
三、板式塔的分类1. 通讯塔:通讯塔通常用于支撑通讯天线、微波天线等设备,为无线通讯提供信号传输服务。
2. 电视塔:电视塔用于支撑电视信号发射天线,为广播电视信号的传输提供服务。
3. 风力发电塔:风力发电塔用于支撑风力发电机组,将风能转化为电能。
4. 观光塔:观光塔通常建造在风景名胜区,供游客观光娱乐之用。
四、板式塔的优点1. 结构简单:板式塔采用钢板构成,结构简单,安装方便快捷。
2. 空间利用率高:板式塔的结构设计紧凑,能够在较小的基地面积上提供较大的通讯或发电服务范围。
3. 耐风抗震性能优异:板式塔能够在恶劣天气条件下保持稳定,具有良好的抗风抗震性能。
4. 维护成本低:板式塔不需要经常性的维护,使用寿命长,维护成本低。
5. 美学性好:板式塔的造型独特,可以成为城市的地标建筑,具有一定的美学价值。
五、板式塔的应用领域1. 通讯行业:板式塔被广泛应用于通讯行业,用于支撑通讯天线、微波天线等设备,提供信号传输服务。
2. 电力行业:板式塔作为高压输电线路的一种支撑结构,被广泛应用于电力行业,用于支撑输电线路。
3. 新能源领域:板式塔被用于支撑风力发电机组,将风能转化为电能。
4. 观光旅游业:板式塔可以建造在风景名胜区,成为一种观光旅游设施。
六、板式塔的设计与施工1. 设计:板式塔的设计首先要考虑塔体的高度、承载能力、抗风抗震性能等因素,然后进行结构设计和材料选型。
板式塔(荟萃知识)

板式塔主要类型的结构和特点工业上常用的板式塔有:泡罩塔、浮阀塔、筛板塔、穿流栅孔板塔浮阀塔具有的优点:生产能力大,塔板效率高,操作弹性大,结构简单,安装方便。
二、板式塔的流体力学特性1、塔内气、液两相的流动A 使气液两相在塔板上进行充分接触以增强传质效果B 使气液两相在塔内保持逆流,并在塔板上使气液量相保持均匀的错流接触,以获得较大的传质推动力。
2、气泡夹带:液体在下降过程中,有一部分该层板上面的气体被带到下层板上去,这种现象称为气泡夹带。
3、液(雾)沫夹带:气体离开液层时带上一些小液滴,其中一部分可能随气流进入上一层塔板,这种现象称为液(雾)沫夹带。
4、液面落差液体从降液管流出的横跨塔板流动时,必须克服阻力,故进口一侧的液面将比出口这一侧的高。
此高度差称为液面落差。
液面落差过大,可使气体向上流动不均,板效率下降。
5、气体通过塔板的压力降压力降的影响:A 气体通过塔板的压力降直接影响到塔低的操作压力,故此压力降数据是决定蒸馏塔塔底温度的主要依据。
B 压力降过大,会使塔的操作压力改变很大。
C 压力降过大,对塔内气液两相的正常流动有影响。
压力降:ΔPP =ΔPC+ΔPL+ΔPδ塔板本身的干板阻力ΔPC板上充气液层的静压力ΔPL液体的表面张力ΔPδ折合成塔内液体的液柱高度M,则ΔPP /ρLg=ΔPC/ρLg +ΔPL/ρLg +ΔPδ/ρLg即hp =hc+hL+hδ浮阀塔的压力降一般比泡罩塔板的小,比筛板塔的大。
在正常操作情况,塔板的压力降以290—490 N/m2 .在减压塔中为了减少塔的真空度损失,一般约为98—245Pa 通常应在保证较高塔板效率的前提下,力求减少塔板压力降,以降低能耗及改善塔的操作性能。
6、液泛(淹塔)汽液量相中之一的流量增大到某一数值,上、下两层板间的压力降便会增大到使降液管内的液体不能畅顺地下流。
当降液管内的液体满到上一层塔板溢流堰顶之后,便漫但上层塔板上去,这种现象,称为液泛(淹塔)如气速过大,便有大量液滴从泡沫层中喷出,被气体带到上一层塔板,或有大量泡沫生成。
化工原理设计板式塔

泡罩型 筛孔型 浮阀型 其它型:
旋流塔板
压延孔板
第十章 气液传质设备
斜孔塔板
9/17
§10.1 板式塔
鼓泡接触状态 气液接触方式有三种: 泡沫接触状态 喷雾接触状态
气液两相在设备中要有良好的接触: 接触充分,接触面要大,相界面不断更新
第十章 气液传质设备
第十章 气液传质设备
14/17
§10.1 板式塔 三、 塔径和塔高的估算
D
4VG u
u (0.6 ~ 0.8)uF
气速上限为泛点气 速,用 uF 表示,由经 验式计算 与塔径之间的关系如表 1 所示:
表1 塔径 D(m) 板 间 距 HT(mm) 0.3~0.6 200~350 板间距参考数值 0.6~1.0 250~400 1.0~2.0 250~600 2.0~4.0 300~600 4.0~6.0 400~800
§10.1 板式塔 有溢流塔板又分为:
泡 罩 型 缺点:结构复杂,制造成本高,压降大,液泛气速 低,故生产能力较小。 筛 孔 型 浮 阀 型 其 它 型 :
第十章 气液传质设备
优点:弹性大、操作稳定可靠。
5/17
§10.1 板式塔
泡罩型 筛孔型 特点:结构简单、造价低、压降小、生产能 力大、操作弹性可达2~3、 浮阀型 其它型:
10/17
§10.1 板式塔
二、塔板的流体力学性能
1.严重漏液 2.过量的液沫夹带 3.液泛 4.塔板上的液面落差 5.塔板上液体的返混 6.气体通过塔板的压降 7.液体停留时间
第十章 气液传质设备
11/17
§10.1 板式塔
1. 严重漏液
不良后果:降低板效,严重时使板上不能积液,是塔 不良的操作现象之一。 产生的原因:气速过小,或气体分布严重不均、液体 分布严重不均。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0.03
0.02
L 1.85103 820 0.04
V
0.8 2.7
HT=0.6 0.45
0.3
0.15
0.01 0.01
0.02 0.03 0.04 0.07 0.1
FLV
qVLs qVVs
l v
0.2 0.3 0.4 0.7 1.0
初选塔板间距HT=0.4m,由图查得C20=0.075 气体负荷因子
0.5m,加上法兰约0.8m。 精馏塔有效高度Z= Z精+Z提+0.8n,n为人孔个数。
(4)塔板布置和其余结构尺寸的选取
取进、出口安定区宽度b’s=bs=0.07m(50~100mm),
边缘宽度bc=0.05m。根据
,由图10.2.23可查得
故降液管宽度bd=0.125D=0.125m bc
bs
ye xe
xW
xF
xD
③ 求取精馏塔的气液相负荷 qnL=RqnD,qnV=(R+1)qnD qnL’=qnL+qqnF,qnV’=qnV+(q-1)qnF
④ 求操作线方程
精馏段操作线方程:
yn 1
R R
1
xn
xD R 1
或
yn1
qnL qnV
xn
qnD qnV
xD
提馏段操作线方程:
yn1
q'nL q'nV
xW
mW
mW / 78 / 78 (1 mW ) / 92
3. 物料衡算 原料处理量 qnF=mF/MF kmol/h 总物料衡算 qnF=qnD+qnW 苯物料衡算 qnFxF=qnDxD+qnWxW 联立解得 qnD kmol/h、qnW kmol/h
二、塔板数的确定
1. 理论塔板数NT的求取 苯-甲苯混合物属理想物系,采用图解法求理论板数。
分离。已知该塔精馏段的气相流率为100kmol/h,液相流 流率为70kmol/h,试根据塔顶条件(物性近似按纯苯计算) 设计一筛孔塔板,并绘出其负荷性能图。
解:(1) 物性数据 常压下纯苯的饱和温度为80℃,查得此时有关物性数
据:气相密度ρV=2.7kg/m3,液相密度ρL=820kg/m3, 液相表面张力σ=21mN/m。
一、精馏塔的物料衡算
1. 原料液及塔顶、塔底产品的摩尔分数
苯的摩尔质量MA=78kg/kmol, 甲苯的摩尔质量MB=92kg/kmol, 原料液的平均摩尔质量MF=xFMA+(1-xF)MB
xF
mF
mF / 78 / 78 (1 mF ) / 92
xD
mD
mD / 78 / 78 (1 mD ) / 92
《化工原理》课程设计 —板式塔及其工艺设计计算
设计题目:分离苯-甲苯混合液的筛板精馏塔。 在一常压操作的连续精馏塔内分离苯-甲苯混合
物。已知原料液的处理量为qmFkg/h,组成为mF(苯 的质量分数,下同),要求塔顶馏出液的组成为mD, 塔底釜液的组成为mW。
设计中采用泡点进料,塔顶设置全凝器,泡点回 流,塔釜采用间接蒸汽加热。
(气2相)流初量估=塔10径q0nkVmol/h或7800kg/h或28q8V9Vmh,3/h或0q.V8Vms 3/s
液气流量=70kmol/h或5460kg/h或6.66m3/h或1.85×10-3m3/s
两相流动参数
0.2
FLV
qVLs qVVs
C20 uf
0.1 0.09 0.07 0.06 V 0.05 L V 0.04
(40~80mm)由
,查图10.2.23得
故堰长lw=0.65D=0.65m。
bc
bs
r
lW
x
有效传质区
bd
由式
how
2.84103 E
qVLh lW
2/3
近 0似.0取06E=1,堰上方液头高度
考虑到物料比较清洁, 且液相流率不大, 取底隙hb=0.03m(30~40mm)。
(5)塔板校核
(0.05~0.08)
A
D
Ad
塔板截面积 降液管截面积 气体流道截面积 可求得实际操作气速 泛点率=
u qVVs 0.8 1.1m / s A 0.73
A
D
Ad
(3) 精馏塔有效高度的计算 精馏段有效高度为 Z精=(N精-1)HT 提馏段有效高度为 Z提=(N提-1)HT 为便于检修和安装,常设有人孔,人孔净尺寸约
液泛气速 取泛点率0.8 (一般液体 0.6 ~0.8,易起泡0.5 ~ 0.6), 操作气速u和所需的气体流道截面积A为:
A qVV s u
选取单流型、弓形降液管挡板,并取 则
塔板截面积
塔径 按塔设备系列标准圆整, 取实际塔径为D=1m。 系列化标准: 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0m 等
ET=0.49(αηL)-0.245 ② 实际板层数计算
1.0
精馏段实际板数 0. 8
总板效率 ET
=N精/ET
0. 6
提馏段实际板数
0. 4
=N提/ET
0. 2
0.1 0. 1
0.2
0.4 0.6 1.0
2
4 6 10
精馏塔效率关联曲线 L / mPa s
三、精馏塔的塔体工艺尺寸计算 例: 苯-甲苯混合物在常压下用一连续精馏塔进行
xn
qnW q'nV
xW
或
yn1
qnL qqnF qnL qqnF qnW
xn qnL
qnW qqnF
qnW
xW
⑤ 图解法求理论板数NT 根据梯级数可
得NT和进料板NF。
2
3
QFBiblioteka C45WxW
xF
1
D
xD
2. 实际板数的计算
① 总板效率ET的确定 平均相对挥发度α=2.47,塔平均温度tm=95.4℃, 上册附录I查液体黏度,进料液体黏度ηL=∑ηiFLxiF,
r
lW
x
bd
对单流型弓形降液管, 故有效传质区面积
bc
bs
r
lW
x
有效传质区
bd
3.5-2.5
取筛孔直径d0=4mm(3~8mm),筛孔中心距t=3d0=12mm。 开孔率
故筛孔总截面积
筛孔气速 筛孔个数
u0
qVVs A0
0.8 16.2m / s 0.0502
bc
bs
r
lW
x
有效传质区
bd
选取塔板厚度δ=4mm(3~4mm),取堰高hw=0.05m
① 绘制相平衡图
苯对甲苯的相对挥发度平均值α=2.6,根据
y
x
绘出相平衡图x-y图。
1 ( 1)x
② 求取最小回流比Rmin及R 泡点进料,q=1,取R=nRmin。
ye
xe 1 ( 1)xe
q 1, xe xF
0<q<1
q=0 q<0
q=1 q>1
(xe, ye)→ Rmin
xD ye
①液沫夹带量eV
由