能量方程(伯努利方程)实验

合集下载

不可压缩流体恒定流能量方程(伯努利)实验

不可压缩流体恒定流能量方程(伯努利)实验

不可压缩流体恒定流能量方程(伯努利)实验
伯努利方程是描述不可压缩流体恒定流动过程中能量守恒的方程。

伯努利方程的数学表达式为:
P + 1/2ρv^2 + ρgh = constant
其中,P为流体的静压力,ρ为流体的密度,v为流体的流速,g为重力加速度,h为流体的高度。

这个方程说明了,如果不
可压缩流体在一段管道中沿一定方向流动,其沿途的总能量相同,即静压力、动压力和位能之和不变。

为了验证伯努利方程的可靠性,可以进行以下实验:
实验材料:
- 一条直径较小的降压管
- 一个水箱
- 测压计
- 尺子
- 水
实验步骤:
1. 将降压管的一个端口插入水箱底部,另外一个端口向上,调整好降压管的位置使其与水箱水平。

2. 在降压管的高度处放置测压计,测量降压管水柱的压力。

3. 打开水箱的水龙头,让水自由流入降压管。

观察水流的流速和降压管压力的变化。

4. 重复实验3,但这次在降压管进口处用尺子测量水的流速。

并且将降压管移至不同高度,重复实验3。

实验结果:
实验结果应该证实伯努利方程的成立性,即随着流速增加,静压力降低。

除非有能量损失,沿途的总能量相同。

通过实验结果可以验证伯努利方程。

流体力学实验-伯努利方程

流体力学实验-伯努利方程

(一)不可压缩流体定常流能量方程(伯努利方程)实验一、实验目的要求:1、掌握流速、流量、压强等动水力学水力要素的实验量测技术;2、验证流体定常流的能量方程;3、通过对动水力学诸多水力现象的实验分析研究,进一步掌握有压管流中动水力学的能量转换特性。

自循环伯努利方程实验装置图本实验的装置如图所示,图中:1.自循环供水器;2.实验台;3.可控硅无级调速器;4.溢流板;5.稳水孔板;6.恒压水箱;7.测压计;8.滑动测量尺;9.测压管; 10.实验管道; 11.测压点; 12.毕托管 13.实验流量调节阀。

56三、实验原理:在实验管路中沿水流方向取n 个过水截面。

可以列出进口截面(1)至截面(i)的能量方程式(i=2,3,.....,,n)W i hg g p Z g g p Z i i i -+++=++12222111νρνρ选好基准面,从已设置的各截面的测压管中读出g p Z ρ+值,测出通过管路的流量,即可计算出截面平均流速ν及动压g 22ν,从而可得到各截面测管水头和总水头。

四、实验方法与步骤:1、熟悉实验设备,分清各测压管与各测压点,毕托管测点的对应关系。

2、打开开关供水,使水箱充水,待水箱溢流后,检查泄水阀关闭时所有测压管水面是否齐平,若不平则进行排气调平(开关几次)。

3、打开阀13,观察测压管水头线和总水头线的变化趋势及位置水头、压强水头之间的相互关系,观察当流量增加或减少时测压管水头的变化情况。

4、调节阀13开度,待流量稳定后,测记各测压管液面读数,同时测记实验流量(与毕托管相连通的是演示用,不必测记读数)。

5、再调节阀13开度1~2次,其中一次阀门开度大到使液面降到标尺最低点为限,按第4步重复测量。

五、实验结果及要求:1、把有关常数记入表2.1。

2、量测(g pZ ρ+)并记入表2.2。

3、计算流速水头和总水头。

4、绘制上述结果中最大流量下的总水头线和测压管水头线(轴向尺寸参见图2.2,总水头线和测压管水头线可以绘在图2.2上)。

伯努利方程实验报告

伯努利方程实验报告

不可压缩流体定常流能量方程(伯努利方程)实验一、实验目的要求:1、掌握流速、流量、压强等动水力学水力要素的实验量测技术;2、验证流体定常流的能量方程;3、通过对动水力学诸多水力现象的实验分析研究,进一步掌握有压管流中动水力学的能量转换特性。

自循环伯努利方程实验装置图本实验的装置如图所示,图中:1.自循环供水器;2.实验台;3.可控硅无级调速器;4.溢流板;5.稳水孔板;6.恒压水箱;7.测压计;8.滑动测量尺;9.测压管;10.实验管道;11.测压点;12.毕托管13.实验流量调节阀。

12 三、实验原理:在实验管路中沿水流方向取n 个过水截面。

可以列出进口截面(1)至截面(i)的能量方程式(i=2,3,.....,,n)W i hg g p Z g g p Z i i i -+++=++12222111νρνρ 选好基准面,从已设置的各截面的测压管中读出g p Z ρ+值,测出通过管路的流量,即可计算出截面平均流速ν及动压g 22ν,从而可得到各截面测管水头和总水头。

四、实验方法与步骤:1、熟悉实验设备,分清各测压管与各测压点,毕托管测点的对应关系。

2、打开开关供水,使水箱充水,待水箱溢流后,检查泄水阀关闭时所有测压管水面是否齐平,若不平则进行排气调平(开关几次)。

3、打开阀13,观察测压管水头线和总水头线的变化趋势及位置水头、压强水头之间的相互关系,观察当流量增加或减少时测压管水头的变化情况。

4、调节阀13开度,待流量稳定后,测记各测压管液面读数,同时测记实验流量(与毕托管相连通的是演示用,不必测记读数)。

5、再调节阀13开度1~2次,其中一次阀门开度大到使液面降到标尺最低点为限,按第4步重复测量。

五、实验结果及要求:1、把有关常数记入表2.1。

2、量测(g pZ ρ+)并记入表2.2。

3、计算流速水头和总水头。

4、绘制上述结果中最大流量下的总水头线和测压管水头线(轴向尺寸参见图2.2,总水头线和测压管水头线可以绘在图2.2上)。

能量方程(伯努利方程)实验

能量方程(伯努利方程)实验

不可压缩流体恒定流能量方程(伯努利方程)实验一、实验背景1726年,伯努利通过无数次实验,发现了“边界层表面效应”:流体速度加快时,物体与流体接触的界面上的压力会减小,反之压力会增加。

为纪念他的贡献,这一发现被称为“伯努利效应”。

伯努利效应适用于包括气体在内的一切流体,是流体作稳定流动时的基本现象之一,反映出流体的压强与流速的关系,即在水流或气流里,如果速度大,压强就小,如果速度小,压强就大。

1738年,在他的最重要的著作《流体动力学》中,伯努利将这一理论公式化,提出了流体动力学的基本方程,后人称之为“伯努利方程”。

书中还介绍了著名的伯努利实验、伯努利原理,用能量守恒定律解决了流体的流动问题,这对流体力学的发展,起到了至关重要的推动作用。

伯努利简介丹尼尔伯努利(Daniel Bernouli,1700~1782),瑞士物理学家、数学家、医学家,被称为“流体力学之父”。

1700年2月8日生于荷兰格罗宁根,1782年3月17日逝世于巴塞尔。

他是伯努利这个数学家族(4代10人)中最杰出的代表,16岁时就在巴塞尔大学攻读哲学与逻辑,后获得哲学硕士学位。

17~20岁时,违背家长要他经商的愿望,坚持学医,并于1721年获医学硕士学位,成为外科名医并担任过解剖学教授。

他在父兄熏陶下最后仍转到数理科学。

伯努利在25岁时应聘为圣彼得堡科学院的数学院士,8年后回到瑞士的巴塞尔,先任解剖学教授,后任动力学教授,1750年成为物理学成教授。

他还于1747年当选为柏林科学院院士,1748年当选为巴黎科学院院士,1750年当选英国皇家学会会员。

在1725~1749年间,伯努利曾十次荣获法国科学院的年度奖。

除流体动力学这一主要领域外,丹尼尔·伯努利的研究领域极为广泛,他的工作几乎对当时的数学和物理学的研究前沿的问题都有所涉及。

他最出色的工作是将微积分、微分方程应用到物理学,研究流体问题、物体振动和摆动问题,因此他被推崇为数学物理方法的奠基人.二、实验目的要求1.验证流体恒定总流的能量方程;2.通过对动水力学诸多水力现象的实验分析,进一步掌握有压管流中动水力学的能量转换特性;3.掌握流速、流量、压强等动水力学水力要素的实验量测技能。

流体力学实验-伯努利方程

流体力学实验-伯努利方程

(一)不可压缩流体定常流能量方程(伯努利方程)实验一、实验目的要求:1、掌握流速、流量、压强等动水力学水力要素的实验量测技术;2、验证流体定常流的能量方程;3、通过对动水力学诸多水力现象的实验分析研究,进一步掌握有压管流中动水力学的能量转换特性。

实用文档实用文档自循环伯努利方程实验装置图本实验的装置如图所示,图中:1.自循环供水器;2.实验台;3.可控硅无级调速器;4.溢流板;5.稳水孔板; 6.恒压水箱; 7.测压计; 8.滑动测量尺; 9.测压管; 10.实验管道; 11.测压点; 12.毕托管 13.实验流量调节阀。

三、实验原理:在实验管路中沿水流方向取n 个过水截面。

可以列出进口截面(1)至截面(i)的能量方程式(i=2,3,.....,,n)W i hg g p Z g g p Z i i i -+++=++12222111νρνρ选好基准面,从已设置的各截面的测压管中读出g p Z ρ+值,测出通过管路的流量,即可计算出截面平均流速ν及动压g22,从而可得到各截面测管水头和总水头。

四、实验方法与步骤:1、熟悉实验设备,分清各测压管与各测压点,毕托管测点的对应关系。

2、打开开关供水,使水箱充水,待水箱溢流后,检查泄水阀关闭时所有测压管水面是否齐平,若不平则进行排气调平(开关几次)。

3、打开阀13,观察测压管水头线和总水头线的变化趋势及位置水头、压强水头之间的相互关系,观察当流量增加或减少时测压管水头的变化情况。

4、调节阀13开度,待流量稳定后,测记各测压管液面读数,同时测记实验流量(与毕托管相连通的是演示用,不必测记读数)。

5、再调节阀13开度1~2次,其中一次阀门开度大到使液面降到标尺最低点为限,按第4步重复测量。

五、实验结果及要求:实用文档实用文档1、把有关常数记入表2.1。

2、量测(g pZ ρ+)并记入表2.2。

3、计算流速水头和总水头。

4、绘制上述结果中最大流量下的总水头线和测压管水头线(轴向尺寸参见图2.2,总水头线和测压管水头线可以绘在图2.2上)。

伯努利方程实验

伯努利方程实验

伯努利原理(又称伯努利定律或柏努利定律)是流体力学中的一个定律,由瑞士流体物理学家丹尼尔·伯努利于1738年出版他的理论《Hydrodynamica》,描述流体沿着一条稳定、非黏性、不可压缩的流线移动行为。

伯努利原理往往被表述为p+1/2ρv2+ρgh=C,这个式子被称为伯努利方程。

式中p为流体中某点的压强,v为流体该点的流速,ρ为流体密度,g为重力加速度,h为该点所在高度,C是一个常量。

它也可以被表述为p1+1/2ρv12+ρgh1=p2+1/2ρv22+ρgh2。

需要注意的是,由于伯努利方程是由机械能守恒推导出的,所以它仅适用于粘度可以忽略、不可被压缩的理想流体。

原表达形式适于理想流体(不存在摩擦阻力)。

式中各项分别表示单位流体的动能、位能、静压能之差。

假设条件使用伯努利定律必须符合以下假设,方可使用;如没完全符合以下假设,所求的解也是近似值。

•定常流:在流动系统中,流体在任何一点之性质不随时间改变。

•不可压缩流:密度为常数,在流体为气体适用于马赫数(Ma)<0.3。

•无摩擦流:摩擦效应可忽略,忽略黏滞性效应。

•流体沿着流线流动:流体元素沿着流线而流动,流线间彼此是不相交的。

推导过程考虑一符合上述假设的流体,如图所示:流体因受力所得的能量:流体因引力做功所损失的能量:流体所得的动能可以改写为:根据能量守恒定律,流体因受力所得的能量+流体因引力做功所损失的能量=流体所得的动能。

对后可得丹尼尔·伯努利在1726年首先提出时的内容就是:在水流或气流里,如果速度小,压强就大,如果速度大,压强就小。

这个原理当然有一定的限制,但是在这里我们不谈它。

下面是一些通俗些的解释:向AB管吹进空气。

如果管的切面小(像a处),空气的速度就大;而在切面大的地方(像b处),空气的速度就小。

在速度大的地方压力小,速度小的地方压力大。

因为a处的空气压力小,所以C 管里的液体就上升;同时b处的比较大的空气压力使D管里的液体下降。

伯努利方程实验实验报告

伯努利方程实验实验报告

伯努利方程实验一、实验目的:1.通过实验,加深对伯努利方程式及能量之间转换的了解。

2.观察水流沿程的能量变化,并了解其几何意义。

3.了解压头损失大小的影响因素。

二、实验原理:在流体流动过程中,用带小孔的测压管测量管路中流体流动过程中各点的能量变化。

当测压管的小孔正对着流体的流动方向时,此时测得的是管路中各点的动压头和静压头的总和,即以单位质量流体为衡算基来研究流体流动的能量守恒与转化规律。

对于不可压缩流体,在导管内作稳态流动时,则对确定的系统即可列出机械能衡算方程:∑+++=+++f e h pgZ p u Z ρωρ222212112u 2g当测压管的小孔垂直于流体的流动方向时,此时测得的是管路中各点的静压头的值,即 。

将在同一流量下测得的hA 、hB 值描在坐标上,可以直观看出流速与管径的关系。

比较不同流量下的hA 值,可以直观看出沿程的能量损失,以及总能量损失与流量、流速的关系。

通过hB 的关系曲线,可以得出在突然扩大、突然缩小处动能与静压能的转换。

三.实验装置四.实验步骤1.将低位槽灌有一定数量的蒸馏水,关闭离心泵出口上水阀及实验测试导管出口流量调节阀和排气阀、排水阀,打开回水阀和循环水阀而后启动离心泵。

2.逐步开大离心泵出口上水阀当高位槽溢流管有液体溢流后,利用流量调节阀出水的流量。

3.流体稳定后读取并记录各点数据。

4.关小流量调节阀重复步骤。

5.分析讨论流体流过不同位置处的能量转换关系并得出结果。

6.关闭离心泵,实验结束。

五.实验注意事项:1.测记压头读数时,必须保持水位恒定。

2.注意测压管内无气泡时,方可开始读数。

3.测压管液面有波动时,读数取平均值为宜。

4.阀门开关要缓慢,否则影响实验结果。

六.数据处理d A=14mm , d B=28mm, d C=d D=14mm,Z D=125mm七.误差分析(1)不同流量时的动能比较。

同一管径下,流量大时,动能较大。

(2)同一流量时不同管径上动能比较。

伯努利方程实验报告

伯努利方程实验报告

实验一 伯努利方程一、 实验目的1.理解液体的静压原理 2.验证伯努利方程3.验证液体在流动状态下压力损失与速度的关系二、 实验仪器伯努利方程实验装置三、 实验原理伯努利方程是流体动力学中一个重要的基本规律,是能量守恒定律在流体力学中的具体应用。

主要反映液体在恒定流动时压力能、位能和动能三者之间的关系,即在任一截面上这三种能量形式之间可以互相转换,但三者之和为一定值,即能量守恒。

理想液体的伯努利方程为: g u z g p g u z g p 2222222111++=++ρρ 实际液体的伯努利方程为:2211221222w p u p u z z h g g g gααρρ'++=+++ 当液体处于静止状态时,液体内任一点处的压力为:gh p p ρ+=0这是液体静力学基本方程式。

四、 实验装置伯努利试验仪主要由实验导管、稳压溢流槽和四对测压管所组成。

实验导管为一水平装置的变径圆管,沿程分四处设置测压管。

每处测压管由一对并列的测压管组成,分别测量该截面处的静压头(压力能)和冲压头(压力能、位能和动能三者之和)。

实验装置的流程如图1所示。

液体由稳压槽流入实验导管,途径A 点、B 点、C 点、D 点直径分别为15mm 、34mm 、15mm 、15mm 的管子,最后排出设备。

液体流量由出口调节阀调节。

流量由流量计读出。

五、实验步骤实验前,先缓慢开启进水阀,将水充满稳压溢流水槽,并保持有适量溢流水流出,使槽内液面平稳不变。

最后,设法排尽设备内的空气泡,否则会干扰实验现象和测量的准确性。

1.关闭实验导管出口调节阀,观察和测量液体处于静止状态下各测试点(A、B、C和D四点)的压力,验证液体的静压原理。

并设定此处的水位高度为基准面。

2.开启实验导管出口调节阀,保持稳压溢流水槽有适量溢流水流出,观察比较液体在流动情况下的各测试点的压头变化。

3.缓慢调节实验导管的出口调节阀,测量液体在不同流量下的各测试点的静压头、动压头和损失压头,并记录下各项数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

能量方程(伯努利方程)实验
能量方程(伯努利方程)实验姓名:史亮
班级:9131011403
学号:913101140327
处的7根皮托管测压管测量总水头或12根普通测压管测量测压管水头,其中测点1、6、8、12、14、16和18均为皮托管测压管(示意图见图3.2),用于测
量皮托管探头对准点的总水头H ’(=2g
u
2
+
+r p Z ),其余为普通测压管(示意图见图3.3),用于测量测压管水头。

图3.2 安装在管道中的皮托管测压管示意图 图3.3安装在管道中的普通测压管示意图
3.3 实验原理
当流量调节阀旋到一定位置后,实验管道内的水流以恒定流速流动,在实验管道中沿管内水流方向取n 个过水断面,从进口断面(1)至另一个断面(i )的能量方程式为:
2g v
2
1
1
1
++r p Z =f
i
i
h r p Z +++2g
v 2
i
=常数 (3.1) 式中:i=2,3,······ ,n ;
Z ──位置水头;
r
p
──压强水头; 2g
v 2──速度水头;
f
h ──进口断面(1)至另一个断面(i )的损失水头。

从测压计中读出各断面的测压管水头(r p
Z +),通过体积时间法或重量时间法测出管道流量,计算不
v2,从同管道内径时过水断面平均速度v及速度水头
2g
而得到各断面的测压管水头和总水头。

3.4 实验方法与步骤
1)观察实验管道上分布的19根测压管,哪些是普通测压管,哪些是皮托管测压管。

观察管道内径的大小,并记录各测点管径至表3.1。

2)打开供水水箱开关,当实验管道充满水时反复开或关流量调节阀,排除管内气体或测压管内的气泡,并观察流量调节阀全部关闭时所有测压管水面是否平齐(水箱溢流时)。

如不平,则用吸气球将测压管中气泡排出或检查连通管内是否有异物堵塞。

确保所有测压管水面平齐后才能进行实验,否则实验数据不准确。

3)打开流量调节阀并观察测压管液面变化,当最后一根测压管液面下降幅度超过50%时停止调节阀门。

待测压管液面保持不变后,观察皮托管测点1、6、8、12、14、16和18的读数(即总水头,取标尺零点为基准面,下同)变化趋势:沿管道流动方向,总水头只降不升。

而普通测压管2、3、4、5、7、9、10、11、13、15、17、19的读数(即测压管水头)沿程可升可降。

观察直管均匀流同一断面上两个测点2、3测压管水头是否相同?验证均匀流断面上静水压强按动水压强规律分布。

弯管急变流断面上两个测点10、11测压管水头是否相同?分析急变流断面是否满足能力方程应用条件?记录测压管液面读数,并测记实验流量至表3.2、表3.3。

4) 继续增大流量,待流量稳定后测记第二组数据(普通测压管液面读数和测记实验流量)。

5) 重复第4步骤,测记第三组数据,要求19号测压管液面接近标尺零点。

6) 实验结束。

关闭水箱开关,使实验管道水流逐渐排出。

7) 根据表3.1和表3.2数据计算各管道断面速度水头2g v 2
和总水头(2g
v 2
+
+r p Z )(分别记录于表3.4和表3.5)。

★操作要领与注意事项:①、实验前必须排除管道内及连通管中气体。

②、流量调节阀不能完全打开,要保证第7根和第8根测压管液面在标尺刻度范围内。

3.5 实验成果与分析
1) 记录有关常数
2) 测记测压管静压水头(r Z +)和流量Q ,测计
皮托管测点读数。

表3.2 各测点静压水头(p
Z
+
)(单位:cm)和流量Q (单位:cm 3/s )
表3.3 皮托管测点总水头(u +
+p Z )(单位:cm)
第二组 47.5 47.4 45.3 44.5 43.3 42.7 42.7 第三组
3) 计算速度水头和总水头。

表3.4 各断面速度水头2g
v 2
(单位:cm )(g=980 cm/s 2)
管 径
(cm)
第一组流量Q = 152.89(cm 3/s ) 第二组流量Q = 69.55(cm 3/s ) 第三组流量Q = (cm 3/s )
A (cm 2) V (cm/s) 2g
v 2
(cm) A (cm 2) V
(cm/s) 2g
v 2
(cm) A (cm 2)
V (cm/s) 2g
v 2
(cm) 1D =1.39 1.52 100.58 5.16 1.52 45.76 1.07 2D =1.02 0.82 186.45 17.74 0.82 84.82 3.67 3D =2.00
3.14
48.69
1.21
3.14
22.15
0.25
表3.5 各断面总水头(2g
v +
+r p Z )(单位:cm ) 测点 编号 2 3 4 5 7 9 13 15 17 19 流量Q (cm 3/s ) 第一组 45.66 45.66 45.16 44.66 39.74 33.66 30.86 26.66 24.71 23.16 152.89 第二组 47.37 47.37 47.36 47.37 46.67 44.77 44.17 43.07 42.75 42.37 69.55 第三组
图3.4 总水头线E-E 线和测压管水头线P-P 线
注:图中横向表示测点在管道中的位置,纵向表示某测点的总水头或测压管水头(单位均为cm )。

测压管水头线P-P 线依表3.2数据绘制,总水头线E-E 线依表3.5数据绘制,将所有测点数据用线段连接,在连线时要考虑同一管径的线段应平行(沿程水头损失大小随管道长度线性变化)。

P-P 线 第一组
4)根据最大流量时的数据绘制总水头和测压管水头沿管道变化趋势线(总水头线E-E线和测压管水头线P-P线绘制于图3.4中)。

并分析总水头和测压管水头沿管道变化趋势线有何不同?为什么?
答:测压管水头线是沿水流方向各个测点的测压管液面的连线,它反应的是流体的势能,测压
管水头线可能沿线可能下降,也可能上升(当管径沿流向增大时),因为管径增大时流速减小,动能减小而压能增大,如果压能的增大大于水头损失时,水流的势能就增大,测压管水头就上升。

总水头线是在测压管水头线的基线上再加上流速水头,它反应的是流体的总能量,由于沿流向总是有水头损失,所以总水头线沿程只能的下降,不能上升。

5)流量增加,测压管水头线如何变化?为什么?答:测压管水头线降低从流量公式知,管道的流量随着测压管水头线坡度的平方根成正比,测压管水头线坡度越大流量越大,坡度为起端的测压管水头减去末端的测压管水头,而起端测压管水头不变,所以
末端测压管水头线越低,所以流量越大,测压管水头线越低。

6)分析同一断面测点2、3是否读数一致?同一断面测点10、11是否读数一致?为什么?
答:2、3读数一致表明流过同一断面上,其动水压强按静水压强规律分布10、11读数不一致表明在急变流断面上离心惯性力对测压管水头影响很大。

7)皮托管所显示的总水头与实测总水头是否一致,为什么?
第一部分基础性实验
答:与皮托管相连的测压管为总压管,显示的为总水头线。

而实际绘测的总水头线为z+p/r值加断面平均流速v^2/2g绘制的。

本实验皮托管的探头布置在管轴附近,其点流速水头大于断面平均流速水头,所以由皮托管测量显示的总水头线,一般比实际绘测的总水头偏高。

- 11 -。

相关文档
最新文档