三年级奥数逻辑推理
三年级奥数简单的推理问题

三年级奥数简单推理问题1、 有甲乙丙三人,这三人之中,一位是经理,一位是老师,一位是战士。
已知:丙的年龄比教师大,甲和战士的年龄不一样,战士的年龄比乙的年龄小. 问:这三人各是做什么的?2、小林、小国、小方三个人中,一个是工人,一位是农民,一位是战士。
现在知道:3、 一天唐僧师徒四人来到一个小旅店,自己动手做饭,他们一个在挑水,一个在烧火,一个在洗菜,一个在淘米。
已知:唐僧不挑水也不淘米;孙悟空不洗菜也不挑水;如果唐僧不洗菜那么沙僧就不挑水;八戒也不挑水也不淘米。
那么他们四个人分别在做什么?4、 明明、强强和刚刚三个好朋友的爸爸,一位是工人,一位是医生,一位是战士,猜猜他们的爸爸各是谁?⑴ 明明的爸爸不是工人;⑵ 强强的爸爸不是医生;⑶ 明明的爸爸和强强的爸爸正在听一位当战士的爸爸讲战斗故事。
5、甲乙丙三人中有一个人做了一件好事,他们各自都说了一句话:甲说:“是丙做的"; 乙说:“不是我做的”; 丙说:“也不是我做的”。
最后发现这三人中只有一个人说了真话,请问谁做了好事?谁说了真话?6、ABC三人中,有一个国际象棋好手,看看他们的对话:A说:“国际象棋好手是C”; B说:“我不是国际象棋好手"; C说:“我也不是国际象棋好手”现在知道这三句话中只有一句是真话,你能猜猜谁是国际象棋好手吗?7、甲乙丙丁四个代表队参加数学竞赛的得分情况如下:甲比乙多30分;丙比甲队少50分;乙比丁队少10分。
则各队的排名顺序如何?8、甲乙丙丁四个人比身高,已知乙不是最高,但他比甲,丁都高。
甲不比丁高.怎使他们的高矮顺序如何?9、王勇、小华、小海三人中,有人打破了玻璃鱼缸,保安问是谁打破的。
王勇说:“是小华打破的。
”小华说:“我没有打破鱼缸.”小海说:“我也没有打破鱼缸。
”已知他们中有两人说了假话。
请问谁打破了鱼缸?10、一天,皇宫里面丢失了一件稀世珍宝,皇帝非常生气,责令包公三天内破案。
包公领旨后对皇宫作案现场进行了仔细的勘察,发现地上有两个人的脚印,经过周密调查,发现时内部太监所为.而且只有四个太监有可能接近珍宝.包公最后得到四条可靠的线索:(1)太监甲和太监乙两人中只有一个人去过皇宫(2)太监乙和太监丁不会同时去。
小学三年级奥数之难点逻辑推理问题

小学三年级奥数之难点:逻辑推理问题逻辑推理问题犹如侦探破案一样,掌握一定的方法就可以“线索”层层拨开进行破解。
【铺垫】三只小猴子聪聪、淘淘、皮皮见到一个水果,他们分别判断这是什么水果:聪聪判断:不是苹果,也不是梨淘淘判断:不是苹果,而是桃子皮皮判断:不是桃子,而是苹果老猴子判断他们:有一只小猴子的判断完全正确,有一只小猴子说对了一半,而另外一只猴子完全说错了,你知道三只小猴子中谁是对的,谁是错的,谁是只对了一半吗?【分析】拿到这道题目关键是找线索,不妨看淘淘和皮皮的话,淘淘判断:不是苹果,而是桃子皮皮判断:不是桃子,而是苹果两个人说得话完全对立,那么可以判断当中必然有一个是完全正确,有一个是完全错误,必然可以判断聪聪是说对了一半的人。
接下来利用聪聪的话作为标准进行假设判断淘淘和皮皮的话,1)首先我们假设淘淘全说真话,那么淘淘判断:不是苹果,而是桃子,每一句话都和聪聪判断:不是苹果,也不是梨都符合,那么说明在这个假设下聪聪淘淘都说得完全正确,那么就出现矛盾了(聪聪是说对了一半的人),说明淘淘就应该说得全部不正确最后结果:聪聪是说对一半的人,淘淘是全部不正确的人,皮皮是全部正确的人【点拨】在解答这类题型的时候,找对立面进行判断,然后利用假设法进行破解。
【拓展】数学竞赛后,小明、小华和小强各获得一枚奖牌,其中一人得金牌,一人得银牌,一人得铜牌。
老师猜测:“小明得金牌,小华不得金牌,小强不得铜牌”,结果老师只猜对了一个,那么谁得金牌,谁得银牌,谁的铜牌?【分析】同样的道理利用老师只猜对了一个进行假设,那么(1)假设小明得金牌是对的,在这个假设下那么“小华不得金牌”这句话是错误的,也就是小华应该得金牌,就和假设发生矛盾,所以假设不成立。
(2)假设小华不得金牌是对的,说明小华得银牌和铜牌,而在这个假设下那么“小明得金牌”是错误的,即小明也不得金牌,只能够是铜牌和银牌,接下来一句话“小强不得铜牌”也是错误的,那么小强就应该得铜牌,这样就可以知道这三个人都没有人得金牌,假设又错误。
三年级奥数培优逻辑推理教学案精编

三年级奥数培优逻辑推理教学案精编第一讲简单推理(一)【专题导引】小朋友们一定都知道“曹冲称象”的故事吧。
“曹冲称象”不是瞎称的,而是运用了“等量代换”的思考方法:两个完全相等的量,可以互相代换。
解数学题,经常会用到这种思考方法。
进行等量代换时,要选择简单的容易求出结果的两个等式比较,使用一个等式中的未知量或符号越来越少,最后只剩下一个。
【典型例题】【例1】在算式□=◎+◎+◎中,如果◎ = 8,那么□ = ?【试一试】1.在算式※ = # + #中,如果# = 5 ,那么※ = ?2.在算式□ = ○×○中,如果○ = 7 ,那么□ = ?【例2】一个飞机模型16元,一个布娃娃8元,一个布娃娃的钱可以买两个超人玩具,问一个飞机模型的钱能买几个超人玩具?【试一试】1、一本《小学奥数教材》30元,一本《趣味数学》15元,买一本《趣味数学》的钱能买3本《迷宫》,那么买一本《小学奥数教材》的钱能买多少本《迷宫》书?2、笨笨看一页书要20分钟,小芳看同一页书要10分钟,小芳看这页书的时间机器猫能看5页,笨笨看一页书的时间机器猫能看多少页?【试一试】想一想,左边的砝码保持不变,怎样使天平平衡?【例4】1只猪的重量=2只羊的重量1只羊的重量=5只兔的重量问:1只猪的重量=()只兔的重量【试一试】1、1壶水的重量=2瓶水的重量1瓶水的重量=4杯水的重量那么,1壶水的重量=( )杯水的重量2、1个苹果换2个橘子,1个橘子换6块糖,想一想,1个苹果可以换多少块糖【试一试】1、1头猪换2只羊,1只羊换2只兔子,4头猪换几只兔子?2、1头象的重量等于4头牛的重量,1头牛的重量等于3匹小马的重量,1匹小马的重量等于3头小猪的重量。
1头象的重量等于几头小猪的重量?【例6】有一架天平和一个50克的砝码,如果要得到150克的糖果,只许称两次,应该如何称?【试一试】1、有一架天平和一个50克的砝码,如果要得到300克糖果,只许称三次,应该如何称?2、有6个形状相同的零件,其中有一个次品的重量轻一些,你能不能用一架天平称两次就把次品找出来?【※例7】有一架天平和两个砝码,一个5克,一个3克,怎样才能称出2克的白糖?(每次只能用一个砝码)2、有两个砝码,一个重5克,一个重7克,你能用这两个砝码称出19克沙子吗?课外作业家长签名:_____________1、在算式★=▲+▲+▲+▲中,如果▲=7,那么★=?2、人步行1千米要12分钟,自行车行1千米要6分钟,自行车行1千米的时间汽车能走3千米,人步行1千米的时间汽车能行驶多少千米?3、一元能换10角,一角能换10分,那么1元能换多少分?4、一个小桶能装油5千克,一个大桶能装油7千克,你能用这两只桶量出8千克油吗?5、有一架天平只备有一个20克的砝码,要称出140克的物件,只许称三次,应该怎样称?※7、1头牛换4头猪,1头猪换3只羊,1只羊换10只兔,想一想,1头牛能换多少只兔子?第二讲简单推理(二)【专题导引】一道算式题都是用运算符号和数组成的,如:3+6=9、2×5=10、17-8=9、12÷3=4,可是,还有一种图形算式呢!就是在算式中用图形来代表不同的数,要我们通过计算把图形所代表的数求出来。
三年级逻辑推理问题

小学三年级奥数之难点:逻辑推理问题逻辑推理问题犹如侦探破案一样,掌握一定的方法就可以“线索”层层拨开进行破解。
【铺垫】三只小猴子聪聪、淘淘、皮皮见到一个水果,他们分别判断这是什么水果:聪聪判断:不是苹果,也不是梨淘淘判断:不是苹果,而是桃子皮皮判断:不是桃子,而是苹果老猴子判断他们:有一只小猴子的判断完全正确,有一只小猴子说对了一半,而另外一只猴子完全说错了,你知道三只小猴子中谁是对的,谁是错的,谁是只对了一半吗?【分析】拿到这道题目关键是找线索,不妨看淘淘和皮皮的话,淘淘判断:不是苹果,而是桃子皮皮判断:不是桃子,而是苹果两个人说得话完全对立,那么可以判断当中必然有一个是完全正确,有一个是完全错误,必然可以判断聪聪是说对了一半的人。
接下来利用聪聪的话作为标准进行假设判断淘淘和皮皮的话,(1)首先我们假设淘淘全说真话,那么淘淘判断:不是苹果,而是桃子,每一句话都和聪聪判断:不是苹果,也不是梨都符合,那么说明在这个假设下聪聪淘淘都说得完全正确,那么就出现矛盾了(聪聪是说对了一半的人),说明淘淘就应该说得全部不正确最后结果:聪聪是说对一半的人,淘淘是全部不正确的人,皮皮是全部正确的人【点拨】在解答这类题型的时候,找对立面进行判断,然后利用假设法进行破解。
【拓展】数学竞赛后,小明、小华和小强各获得一枚奖牌,其中一人得金牌,一人得银牌,一人得铜牌。
老师猜测:“小明得金牌,小华不得金牌,小强不得铜牌”,结果老师只猜对了一个,那么谁得金牌,谁得银牌,谁的铜牌?【分析】同样的道理利用老师只猜对了一个进行假设,那么(1)假设小明得金牌是对的,在这个假设下那么“小华不得金牌”这句话是错误的,也就是小华应该得金牌,就和假设发生矛盾,所以假设不成立。
(2)假设小华不得金牌是对的,说明小华得银牌和铜牌,而在这个假设下那么“小明得金牌”是错误的,即小明也不得金牌,只能够是铜牌和银牌,接下来一句话“小强不得铜牌”也是错误的,那么小强就应该得铜牌,这样就可以知道这三个人都没有人得金牌,假设又错误。
小学奥数之逻辑推理专题训练(附详解)

三年级奥数之逻辑推理专题训练:1、在三只盒子里,一只装有两个黑球,一只装有两个白球,还有一只装有黑球和白球各一个.现在三只盒子上的标签全贴错了.你能否仅从一只盒子里拿出一个球来,就确定这三只盒子里各装的是什么球?从标签为(黑+白)箱子里抽出一个球来,如果是黑球(白球),那么这个箱子里应该是两个黑球(白球),贴了(2黑)标签的箱子里应该是2白球(白+黑),贴了(2白)的箱子里应该是黑+白(2黑)2.甲、乙、丙、丁4位同学的运动衫上印有不同的号码.赵说:“甲是2号,乙是3号.”钱说:“丙是4号,乙是2号.”孙说:“丁是2号,丙是3号.”李说:“丁是l号,乙是3号.”又知道赵、钱、孙、李每人都只说对了一半.那么丙的号码是几号?应该是4号,假设甲是2号,则丁是1号,丙是3号,乙是2号,与甲重复,假设不成立。
假设乙是3号,则丙是4号,丁是2号,甲是1号。
符合要求。
3.某校数学竞赛,A,B,C,D,E,F,G,H这8位同学获得前8名.老师让他们猜一下谁是第一名.A说:“或者F是第一名,或者H是第一名.”B说:“我是第一名.”C说:“G 是第一名.”D说:“B不是第一名.”E说:“A说得不对.”F说:“我不是第一名,H也不是第一名.”G说:“C不是第一名.”H说:“我同意A的意见.”老师指出:8个人中有3人猜对了.那么第一名是谁?B和D两个人中一个对一个错,假设A对则H对E和F错,并且C、G错。
那么C是第一名,这样就和A说的矛盾,所以假设不成立。
所以A错且H错,则E 对F对,C、G也错,同样推出C是第一名。
4.某参观团根据下列条件从A,B,C,D,E这5个地方中选定参观地点:①若去A地,则也必须去B地;②B,C两地中至多去一地;③D,E两地中至少去一地;④C,D两地都去或者都不去;⑤若去E地,一定要去A,D两地.那么参观团所去的地点是哪些?假设C、D两地都去,则没去B地,再假设去了E地,则一定去了A地,也必须去B地,矛盾,所以没去E地,同样也没有去A地;假设C、D两地都不去,则去了E地,去了E地,一定要去A、D地,矛盾。
三年级奥数逻辑推理

逻辑推理考试要求1.掌握逻辑推理的解题思路与基本方法:列表、假设、对比分析、数论分析法等2.培养学生的逻辑推理能力,掌握解不同题型的突破口3.能够利用所学的数论等知识解复杂的逻辑推理题知识结构逻辑推理作为数学思维中重要的一部分,经常出现在各种数学竞赛中,除此以外,逻辑推理还经常作为专项的内容出现在各类选拔考试,甚至是面向成年人的考试当中。
对于学生学习数学来说,逻辑推理既有趣又可以开发智力,学生自主学习研究性比较高。
本讲我们主要从各个角度总结逻辑推理的解题方法。
一、列表推理法逻辑推理问题的显著特点是层次多,条件纵横交错.如何从较繁杂的信息中选准突破口,层层剖析,一步步向结论靠近,是解决问题的关键.因此在推理过程中,我们也常常采用列表的方式,把错综复杂的约束条件用符号和图形表示出来,这样可以借助几何直观,把令人眼花缭乱的条件变得一目了然,答案也就容易找到了.二、假设推理用假设法解逻辑推理问题,就是根据题目的几种可能情况,逐一假设.如果推出矛盾,那么假设不成立;如果推不出矛盾,而是符合题意,那么假设成立.解题突破口:找题目所给的矛盾点进行假设三、计算中的逻辑推理能够利用数论等知识通过计算解决逻辑推理题.例题精讲一、列表推理法【例 1】刘刚、马辉、李强三个男孩各有一个妹妹,六个人进行乒乓球混合双打比赛.事先规定:兄妹小明、小芳、小花各爱好游泳、羽毛球、乒乓球中的一项,并分别在一小、二小、三小中的一所小学上学。
现知道:(1)小明不在一小;(2)小芳不在二小(3)爱好乒乓球的不在三小;(4)爱好游泳的在一小;(5)爱好游泳的不是小芳。
问:三人上各爱好什么运动?各上哪所小学?【考点】逻辑推理【难度】☆☆【题型】解答【解析】这道题比上例复杂,因为要判断人、学校和爱好三个内容。
先将题目条件中给出的关系用下面的表1、表2、表3表示:因为各表中,每行每列只能有一个“√”,所以表3可补全为表4。
由表4、表2知道,爱好游泳的在一小,小芳不爱游泳,所以小芳不在一小。
小学奥数-逻辑推理

小学奥数-逻辑推理逻辑推理(一)解题思路:以重要的条件为突破口,用排除、假设、反证、筛选等方法有条理地进行推理例1公路上按一路纵队排列着五辆大客车.每辆车的后面都贴上了该车的目的地的标志.每个司机都知道这五辆车有两辆开往A市,有三辆开往B市;并且他们都只能看见在自己前面的车的标志.调度员听说这几位司机都很聪明,没有直接告诉他们的车是开往何处的,而让他们根据已知的情况进行判断.他先让第三个司机猜猜自己的车是开往哪里的.这个司机看看前两辆车的标志,想了想说“不知道”.第二辆车的司机看了看第一辆车的标志,又根据第三个司机的“不知道”,想了想,也说不知道.第一个司机也很聪明,他根据第二、三个司机的“不知道”,作出了正确的判断,说出了自己的目的地。
请同学们想一想,第一个司机的车是开往哪儿去的;他又是怎样分析出来的?例2XXX、XXX、XXX三个男同学都各有一个妹妹,六个人在一起打羽毛球,举行混合双打比赛.事先规定.兄妹二人不许搭伴。
第一盘,XXX和XXX对XXX和XXX;第二盘,XXX和XXX对XXX和XXX的妹妹。
请你判断,XXX、XXX和XXX各是谁的妹妹。
例3“迎春杯”数学竞赛后,甲、乙、丙、XXX四名同砚推测他们之中谁能获奖.甲说:“假如我能获奖,那么乙也能获奖.”乙说:“假如我能获奖,那么丙也能获奖.”丙说:“假如丁没获奖,那么我也不能获奖.”实践上,他们之中只有一小我没有获奖.并且甲、乙、丙说的话都是正确的.那么没能获奖的同砚是___。
例4数学竞赛后,XXX、XXX、XXX各获得一枚奖牌,其中一人得金牌,一人得银牌,一人得铜牌.XXX猜测:“XXX得金牌;XXX不得金牌;XXX不得铜牌.”结果XXX只猜对了一个.那么XXX得___牌,XXX得___牌,XXX得___牌。
例5有三只盒子,甲盒装了两个1克的砝码;乙盒装了两个2克的砝码;丙盒装了一个1克、一个2克的砝码.每只盒子外面所贴的标明砝码重量的标签都是错的.聪明的XXX只从一只盒子里掏出一个砝码,放到天平上称了一下,就把所有标签都矫正过来了.你晓得这是为何吗?例6四人打桥牌,某人手中有13张牌,四种花色样样有;四种花色的张数互不相同.红桃和方块共5张;红桃与黑桃共6张;有两张将牌(主牌).试问这副牌以什么花色的牌为主?1例7S、B、J、R四人分别获数学、英语、语文和逻辑学四个学科的奖学金,但他们都不知道自己获得的是哪一门获学金.他们相互猜测:S:“R得逻辑学奖”;B:“J得英语奖”;J:“S得不到数学奖”;R:“B得语文奖”。
小学奥数题目-三年级-简单逻辑推理类-真假逻辑

真假逻辑在日常生活中,我们有可能会遇到一些人总是不跟你说真话,他们总是说一些假话来骗人,那么我们要如何做才能够辨别谁说的是真话,谁说的是假话呢?本讲我们就会学习如何辨别一个人说的话是真话还是假话,学会辨别谁说的是真话,谁说的是假话。
首先,我们会通过本视频告诉学生三点结论,这三点结论在我们解决辨别真假的问题中会很常用。
三点结论1、所有人都不会承认自己说的话是假话2、判断真假,必定要问已知答案的问题3、说真话的人转述假话,转述的话不是事实;说假话的人转述真话,转述的话也不是事实掌握这三点结论,在解决一些问题时会变得十分简单。
有一个外地人路过一个小镇,此时天色已晚,于是他便去投宿。
当他来到一个十字路口时,他知道肯定有一条路是通向宾馆的,可是路口却没有任何标记,只有三个小木牌。
第一个木牌上写着:这条路上有宾馆。
第二个木牌上写着:这条路上没有宾馆。
第三个木牌上写着:那两个木牌有一个写的是事实,另一个是假的。
相信我,我的话不会有错。
假设你是这个投宿的人,按照第三个木牌的话为依据,你觉得你会找到宾馆吗?如果可以,那条路上有宾馆哪条路上有宾馆?1.1.有一个人在一个森林里迷路了,他想看一下时间,可是又发现自己没带表。
恰好他看到前面有两个小女孩在玩耍,于是他决定过去打听一下。
更不幸的是这两个小女孩有一个毛病,姐姐上午说真话,下午就说假话,而妹妹与姐姐恰好相反。
但他还是走近去他问她们:"你们谁是姐姐?"胖的说:"我是。
"瘦的也说:"我是。
"他又问:现在是什么时候?胖的说:"上午。
""不对",瘦的说:"应该是下午。
"这下他迷糊了,到底他们说的话是真是假?_______说的是真的。
(回答“姐姐”或者“妹妹”)2.2.(多项选择题)一个骗子和一个老实人一路同行,骗子总是讲假话,老实人总是讲真话.请提一个尽量简单的问题,使两人的回答相同.这个问题可以是_________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 掌握逻辑推理的解题思路与基本方法:列表、假设、对比分析法等2. 培养学生的逻辑推理能力,掌握解不同题型的突破口.3. 能够利用所学的数论等知识解复杂的逻辑推理题逻辑推理作为数学思维中重要的一部分,经常出现在各种数学竞赛中,除此以外,逻辑推理还经常作为专项的内容出现在各类选拔考试,甚至是面向成年人的考试当中。
对于学生学习数学来说,逻辑推理既有趣又可以开发智力,学生自主学习研究性比较高。
本讲我们主要从各个角度总结逻辑推理的解题方法。
一列表推理法逻辑推理问题的显著特点是层次多,条件纵横交错.如何从较繁杂的信息中选准突破口,层层剖析,一步步向结论靠近,是解决问题的关键.因此在推理过程中,我们也常常采用列表的方式,把错综复杂的约束条件用符号和图形表示出来,这样可以借助几何直观,把令人眼花缭乱的条件变得一目了然,答案也就容易找到了.二、假设推理用假设法解逻辑推理问题,就是根据题目的几种可能情况,逐一假设.如果推出矛盾,那么假设不成立;如果推不出矛盾,而是符合题意,那么假设成立.解题突破口:找题目所给的矛盾点进行假设模块一、列表推理法【例 1】 刘刚、马辉、李强三个男孩各有一个妹妹,六个人进行乒乓球混合双打比赛.事先规定:兄妹二人不许搭伴.第一盘:刘刚和小丽对李强和小英;第二盘:李强和小红对刘刚和马辉的妹妹.问:三个男孩的妹妹分别是谁?【解析】 因为兄妹二人不许搭伴,所以题目条件表明:刘刚与小丽、李强与小英、李强与小红都不是兄妹.由第二盘看出,小红不是马辉的妹妹.将这些关系画在左下表中,由左下表可得右下表.刘刚与小红、马辉与小英、李强与小丽分别是兄妹.【巩固】 王文、张贝、李丽分别是跳伞、田径、游泳运动员,现在知道:⑴张贝从未上过天;⑵跳伞运动员已得过两块金牌;⑶李丽还未得过第一名,她与田径运动员同年出生.请根据上述情况判断王文、张贝、李丽各是什么运动员?【解析】 为了能清楚地找到所给条件之间的关系,我们不妨运用列表法,列出下表,在表中“√”表示是,知识精讲 教学目标 第十一讲:逻辑推理丽也不是田径运动员,可填出第三列,即李丽是游泳运动员,则张贝是田径运动员.【巩固】李波、顾锋、刘英三位老师共同担负六年级某班的语文、数学、政治、体育、音乐和图画六门课的教学,每人教两门.现知道:⑴顾锋最年轻;⑵⑵李波喜欢与体育老师、数学老师交谈;⑶⑶体育老师和图画老师都比政治老师年龄大;⑷⑷顾锋、音乐老师、语文老师经常一起去游泳;⑸刘英与语文老师是邻居.问:各人分别教哪两门课程?【解析】李波教语文、图画,顾锋教数学、政治,刘英教音乐、体育.由⑴⑶⑷推知顾锋教数学和政治;由⑵推知刘英教体育;由⑶⑸推知李波教图画、语文.【巩固】王平、宋丹、韩涛三个小学生都是少先队的干部,一个是大队长,一个是中队长,一个是小队长.一次数学测验,这三个人的成绩是:⑴韩涛比大队长的成绩好.⑵王平和中队长的成绩不相同.⑶中队长比宋丹的成绩差.请你根据这三个人的成绩,判断一下,谁是大队长呢?【解析】根据条件⑵和⑶,王平和中队长的成绩不相同,中队长比宋丹的成绩差.,可以断定,王平不是王平和宋丹两人谁是大队长呢?由⑴和⑶,韩涛比大队长的成绩好,中队长比宋丹的成绩差,可以推断出按成绩高低排列的话,宋丹的成绩比中队长(韩涛)的成绩好,韩涛的成绩比大队长的成绩好.这样,宋丹、韩涛就都不是大队长,那么,大队长肯定是王平.【例2】张明、席辉和李刚在北京、上海和天津工作,他们的职业是工人、农民和教师,已知:⑴张明不在北京工作,席辉不在上海工作;⑵在北京工作的不是教师;⑶在上海工作的是工人;⑷席辉不是农民.问:这三人各住哪里?各是什么职业?【解析】这道题的关系要复杂一些,要求我们通过推理,弄清人物、工作地点、职业三者之间的关系.三者的关系需要两两构造三个表,即人物与地点,人物与职业,地点与职业三个表.我们先将题目条件中所给出的关系用下面的表来表示,由条件⑴得到表1,由条件⑵、⑶得到表2,由条件⑷得到表3.因为各表中,每行每列只能有一个“√”,所以表2可填全为表5.由表5知农民在北京工作,又知席辉不是农民,所以席辉不在北京工作,可以将表1可填全完为表4由表4和表5知得到:张明住在上海,是工人;席辉住在天津,是教师;李刚住在北京,是农民.方法二:由题目条件可知:席辉不在上海工作,而在上海工作的是工人,所以席辉不是工人,又不是农民,那么席辉只能是教师,不在北京工作,就只能是在天津工作,那么张明在上海工作,是工人。
李刚在北京,是农民。
【巩固】甲、乙、丙三人,他们的籍贯分别是辽宁、广西、山东,他们的职业分别是教师、工人、演员.已知:⑴甲不是辽宁人,乙不是广西人;⑵辽宁人不是演员,广西人是教师;⑶乙不是工人.求这三人各自的籍贯和职业.【解析】由题意可画出下面三个表:将表3补全为表4.由表4知,工人是辽宁人,而乙不是工人,所以乙不是辽宁人,由此可将表1补全为表5.所以,甲是广西人,职业是教师;乙是山东人,职业是演员;丙是辽宁人,职业是工人.方法二:将能判断的条件先列入图表中,广西人是教师,但是乙不是广西人,所以乙不是教师,乙又不是工人,所以乙为演员。
在对应的地方打上“√”,对应的行列均打“×”。
但是辽宁人不是演员,所以乙不是辽宁人,乙就是山东人,所以甲是广西人,职业是教师;乙是山东人,职业是演员;丙是辽宁人,职业是工人。
【巩固】小明、小芳、小花各爱好游泳、羽毛球、乒乓球中的一项,并分别在一小、二小、三小中的一所小学上学。
现知道:(1)小明不在一小;(2)小芳不在二小(3)爱好乒乓球的不在三小;(4)爱好游泳的在一小;(5)爱好游泳的不是小芳。
问:三人上各爱好什么运动?各上哪所小学?【解析】这道题比上例复杂,因为要判断人、学校和爱好三个内容。
先将题目条件中给出的关系用下面的表1、表2、表3表示:因为各表中,每行每列只能有一个“√”,所以表3可补全为表4。
由表4、表2知道,爱好游泳的在一小,小芳不爱游泳,所以小芳不在一小。
于是可将表1补全为表5。
对照表5和表4,得到:小明在二小上学,爱好打乒乓球;小芳在三小上学,爱好打羽毛球;小花在一小上学,爱好游泳。
【巩固】小王、小张和小李一位是工人,一位是农民,一位是教师,现在只知道:小李比教师年龄大;小王与农民不同岁;农民比小张年龄小。
问:谁是工人?谁是农民?谁是教师?【解析】这道题目并不难,聪明的小朋友思考一下就能得到答案,但是今天我们通过这道题目一起来学习一个十分有用的方法:列表分析法。
由题目条件可以知道:小李不是教师,小王不是农民,小张不是农民。
由此得到左下表。
表格中打“√”表示肯定,打“×”表示否定。
因为左上表中,任一行、任一列只能有一个“√”,其余是“×”,所以小李是农民,于是得到右上表。
因为农民小李比小张年龄小,又小李比教师年龄大,所以小张比教师年龄大,即小张不是教师。
因此得到左下表,从而得到右下表,即小张是工人,小李是农民,小王是教师。
例题中采用列表法,使得各种关系更明确。
为了讲解清楚,例题中画了几个表,实际解题时,不用画这么多表,只在一个表中先后画出各种关系即可。
需要注意的是:①第一步应将题目条件给出的关系画在表上,然后再依次将分析推理出的关系画在表上;②每行每列只能有一个“√”,如果出现了一个“√”,它所在的行和列的其余格中都应画“×”。
【例3】甲、乙、丙、丁四个人的职业分别是教师、医生、律师、警察.已知:⑴教师不知道甲的职业;⑵医生曾给乙治过病;⑶律师是丙的法律顾问(经常见面);⑷丁不是律师;⑸乙和丙从未见过面.那么甲、乙、丙、丁的职业依次是:.【解析】律师、教师、警察.由⑶可以知道丙不是律师,但是他见过律师,再由⑸知乙不是律师,又由⑷可知甲是律师.于是由⑴和⑶知丙不是教师,由⑵和⑸知丙不是医生,从而丙是警察.再由⑵知乙是教师,丁是医生.甲说:“我和乙都住在北京,丙住在天津.”乙说:“我和丁都住在上海,丙住在天津.”丙说:“我和甲都不住在北京,何伟住在南京.”丁说:“甲和乙都住在北京,我住在广州.”假定他们每个人都说了两句真话,一句假话.问:不在场的何伟住在哪儿?【解析】因为甲、乙都说“丙住在天津,”我们可以假设这句话是假话,那么甲、乙的前两句应当都是真话,推出乙既住在北京又住在上海,矛盾.所以假设不成立,即“丙住在天津”是真话.因为甲的前两句话中有一句假话,而甲、丁两人的前两句话相同,所以丁的第三句话“我住在广州”是真的.由此知乙的第二句话“丁住在上海”是假话,第一句“我住在上海”是真话;进而推知甲的第二句是假话,第一句“我住在北京”是真话;最后推知丙的第二句话是假话,第三句“何伟住在南京”是真话.所以,何伟住在南京.【例4】甲、乙、丙、丁每人只会中、英、法、日四种语言中的两种,其中有一种语言只有一人会说.他们在一起交谈可有趣啦:⑴乙不会说英语,当甲与丙交谈时,却请他当翻译;⑵甲会日语,丁不会日语,但他们却能相互交谈;⑶乙、丙、丁找不到三人都会的语言;⑷没有人同时会日、法两种语言.请问:甲、乙、丙、丁各会哪两种语言?【解析】由⑴⑵⑷可得下表,其中丙不会日语是因为甲会日语,且甲与丙交谈需要翻译.由下表看出,甲会的另一种语言不是中文就是英语.先假设甲会说中文.由⑵知,丁也会中文;由⑴知丙不会中文,再由每人会两种语言,知丙会英、法语(见左下表:由⑴⑷推知乙会中文和法语;再由⑶及每人会两种语言,推知丁会英语(见右下表).结果符合题意.再假设甲会说英语.由⑵知,丁也会英语;由⑴知丙不会英语,再由每人会两种语言,知丙会中文和法语(见左下表);由⑴⑷推知,乙会中文和日语;再由⑶及每人会两种语言,推知丁会法语(见右下表).右下表与“有一种语言只有一人会说”矛盾.假设不成立.所以甲会中、日语,乙会中、法语,丙会英、法语,丁会中、英语.【巩固】宝宝、贝贝、聪聪每人有两个外号,人们有时以“数学博士”、“短跑健将”、“跳高冠军”、“小画家”、“大作家”和“歌唱家”称呼他们,此外:⑴数学博士夸跳高冠军跳的高⑵跳高冠军和大作家常与宝宝一起看电影⑶短跑健将请小画家画贺年卡⑷数学博士和小画家关系很好⑸贝贝向大作家借过书⑹聪聪下象棋常赢贝贝和小画家问:宝宝、贝贝、聪聪各有哪两个外号吗?【解析】由⑵知,宝宝不是跳高冠军和大作家;由⑸知,贝贝不是大作家;由⑹知,贝贝、聪聪都不是是大作家,所以由⑵知聪聪不是跳高冠军,推知贝贝是跳高冠军,因为贝贝是跳高冠军,所以由【例5】(2007年湖北省“创新杯”初赛)六年级四个班进行数学竞赛,小明猜想比赛的结果是:3班第一名,2班第二名,1班第三名,4班第四名.小华猜想比赛的结果是:2班第一名,4班第二名,3班第三名,1班第四名.结果只有小华猜到的4班为第二名是正确的.那么这次竞赛的名次是班第一名,班第二名,班第三名,班第四名。