排列组合复习课(1)上课讲义

合集下载

排列组合讲义

排列组合讲义

排列组合方法篇一、两个原理及区别二、排列数公式三、组合数公式四、排列数与组合数的关系五、二项式定理公式:六、排列组合应用排列组合解法特殊元素优先排; 合理分类与分步; 先选后排解混合; 正难则反用转化; 相邻问题来捆绑; 间隔插空处理法; 定序需要用除法; 分排问题直接法; 集团问题先整体; 有的问题选模型。

○1排列数公式 m n A=)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=. ○2排列恒等式 (1)11m m n n A nA--=;(2)11m m m n n nAA mA-+=+.○3会推以下恒等式 (1)1(1)mm nnA n m A -=-+; (2)1m mnn n A A n m-=-; (3)11nn n nn n nA A A ++=-; (4)1!22!33!!(1)!1n n n +⋅+⋅++⋅=+-.○1组合数公式 mn C =m n mmA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤). ○2组合数的两个性质 (1)m n C =m n n C - ; (2)m n C +1-m n C =m n C 1+. 注:规定10=n C . 1.分类计数原理(加法原理) 12n N m m m =+++ 2.分步计数原理(乘法原理) 12n N m m m =⨯⨯⨯m mn n A m C =⋅!. (1)0111()......n n n k n k k n n n n n n a b C a C a b C a b C b --+=+++ *()n N ∈ (2)1k n k k k n T C a b -+= (3)∑=nr rnC=n2(4)13502412n n n n n n n C C C C C C -+++=+++=.解决排列组合一般思路: 1.审题要清2.分步还是分类3.排列还是组合4.牢记右侧方法常见题型归类及决策:一.特殊元素和特殊位置优先策略1、由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 位置分析法和元素分析法2、有7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略1. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.乙甲丁丙2.某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 。

排列与组合讲义-高三数学一轮复习

排列与组合讲义-高三数学一轮复习

排列与组合一、学习目标理解排列、组合的概念,能利用计数原理推导排列数公式、组合数公式.二、知识梳理1.排列与组合的概念(1)排列:从n 个不同元素中取出m (m ≤n ) 个元素,按照 排成一列.(2)组合:从n 个不同元素中取出m (m ≤n ) 个元素作为一组.2.排列数、组合数的定义、公式、性质(1)排列数(i ) 从n 个不同元素中取出m (m ≤n ) 个元素的所有 的个数.(ii)A n m =n (n −1)(n −2)…(n −m +1)= .(iii)A n n =n ! ,0!=1 .(2)组合数(i ) 从n 个不同元素中取出m (m ≤n ) 个元素的所有 的个数.(ii)C n m =A nm A m m =n (n−1)(n−2)…(n−m+1)m != .(iii)C n m =C n n−m ,C n m +C n m−1=C n+1m ,C n n =1 ,C n 0=1 .三、典例探究例1 已知7位同学站成一排.(1) 甲站在中间的位置,共有多少种不同的排法?(2) 甲、乙只能站在两端的排法共有多少种?(3)甲、乙两同学必须相邻的排法共有多少种?(4)甲、乙两同学不能相邻的排法共有多少种?变式:3男3女共6位同学站成一排,则3位女生中有且只有2位女生相邻的不同排法种数是( )A. 576B. 432C. 388D. 216例2小明在学校里学习了二十四节气歌后,打算在网上搜集一些与二十四节气有关的古诗,他准备在冬季的6个节气:立冬、小雪、大雪、冬至、小寒、大寒与春季的6个节气:立春、雨水、惊蛰、春分、清明、谷雨中一共选出4个节气,搜集与之相关的古诗,如果冬季节气和春季节气各至少被选出1个,那么小明选取节气的不同情况的种数是( ) A. 345 B. 465 C. 1 620 D. 1 860变式:共有10级台阶,某人一步可跨一级台阶,也可跨两级台阶或三级台阶,则他恰好6步上完全部台阶的方法种数是( )A. 30B. 90C. 75D. 60方法感悟1.解排列、组合问题要遵循的两个原则(1)按元素(位置)的性质进行分类.(2)按事情发生的过程进行分步.2.两类含有附加条件的组合问题的解题方法(1)“含”或“不含”某些元素的组合题型:若“含”,则先将这些元素取出,再由另外元素补足;若“不含”,则先将这些元素剔除,再从剩下的元素中选取.(2)“至少”或“至多”含有几个元素的组合题型:“至少”与“至多”问题用直接法或间接法都可以求解,用直接法分类复杂时,可用间接法求解.四、课堂练习1.从4本不同的课外读物中,买3本送给3名同学,每人各1本,则不同的送法种数是()A.12B.24C.64D.812.6名学生排成两排,每排3人,则不同的排法种数为()A.36B.120C.720D.2403.现有3名学生报名参加校园文化活动的3个项目,每人须报1项且只报1项,则恰有2名学生报同一项目的报名方法有( )A. 36种B. 18种C. 9种D. 6种4.某市从6名优秀教师中选派3名同时去3个灾区支教(每地1人),其中甲和乙不同去,则不同的选派方案的种数为()A.48B.60C.96D.1685. 从4本不同的课外读物中,选3本送给3位同学,每人1本,则不同的送法种数是( )A. 12B. 24C. 64D. 816. 6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A. 120种B. 90种C. 60种D. 30种。

《排列组合复习》课件

《排列组合复习》课件

排列与组合的区别
排列和组合的区别在于是否考虑对象的顺序。在排列中,对象的顺序是重要的,而在组合中,对象的顺序不是 关键因素。
排列的定义及计算公式
排列是指从一组对象中选取一部分进行排序的方式。排列的计算公式为P(n, k) = n! / (n - k)!,其中n表示对象的总数,k表示选取的对象个数。
常用排列组合公式总结
让我们总结一下常用的排列组合公式,以便在解题时更加便捷地使用它们。
阶乘的含义与计算
阶乘是指从1乘到一个正整数的连乘运算,表示为n!。它在排列组合中起着重要的作用,我们来学习一下如何 计算阶乘。
阶乘的用途
除了在排列组合中使用,阶乘还有其他实际的用途。它在数学、统计学和计 算机科学等领域都有广泛的应用。
概率与排列组合的关系
概率与排列组合密切相关。排列组合提供了计算概率的数学基础,帮助我们确定事件发生的可能性。
概率计算实例
让我们通过一个实际的例子来理解概率计算。假设我们有一副扑克牌,从中 抽取5张牌,计算获得顺子的概率是多少?
公式记忆技巧
记忆排列组合的公式可能会让人头疼。现在,我将与您分享一些简单的记忆 技巧,帮助您轻松记住这些重要的公式。
简单排列问题练习
现在让我们来尝试一些简单的排列问题。假设有4个不同的球,将它们排成一 行,共有多少种不同的排列方式?
组合的定义及计算公式
组合是指从一组对象中选取一部分进行组合的方式。组合的计算公式为C(n, k) = n! / (k!(n - k)!),其中n表示对象的总数,k表示选取的对象个数。
《排列组合复习》PPT课 件
欢迎来到《排列组合复习》PPT课件!在这个课件中,我们将一起探索排列和 组合的基础知识,学习它们的定义、计算公式以及应用场景,让我们一起开 始吧!

高二数学《排列组合》复习课件

高二数学《排列组合》复习课件

4、(徐州二模)从6人中选4人组成4×100m接 力赛,其中甲跑第一棒,乙不跑最后一棒,有多 少种选法?
分析:(一)直接法
(二)间接法
A A A 2 A A4
3 4 3 5 1 2
2 4
=48
5、(南通一模)一个三位数,其十位上的数字 既小于百位上的数字也小于个位上的数字(如 735,414等),那么这样的三位数有 285 个. 2 2 2 2
排列组合复习课
*
一、复习回顾: (一)、知识结构 排列 基 本 原 理 排列数公式 应 用 问 题
组合数公式
组合
组合数性质
(二)、重点难点 1. 两个基本原理
2. 排列、组合的意义
3. 排列数、组合数计算公式
4. 组合数的两个性质 5. 排列组合应用题
1. 两个基本原理
①分类记数原理(加法原理):完成一件事,有 n类办法,在第1类办法中有m1种不同的方法, 在第2类办法中有m2种不同的方法……在第n类 办法中有mn种不同的方法,那么完成这件事共有 N= m1+ m2 +…..+ mn种不同的方法. ②分步记数原理(乘法原理):完成一件事需要 n个步骤,做第1步有m1种不同的方法,做第2 步有m2种不同的方法, ……做第n步有mn种不 同的方法,那么完成这件事共有N= m1× m2 ×.…..× mn种不同的方法.
C C .
5. 排列组合应用题
(1) 正确判断是排列问题,还是组合 问题,还是排列与组合的综合问题。 (2) 解决比较复杂的排列组合问题时, 往往需要既分类又分步。正确分类,不 重不漏;正确分步,连续完整。 (3) 掌握基本方法,并能灵活选择使 用。
(三)、常用解题方法及适用题目类型

高中数学排列组合复习课件1

高中数学排列组合复习课件1

例2 5个男生3个女生排成一排,3个女生要排在一起, 有多少种不同的排法? 分析 此题涉及到的是排队问题,对于女生有特殊的限制, 因此,女生是特殊元素,并且要求她们要相邻,因此可以将 她们看成是一个元素来解决问题.
解 因为女生要排在一起,所以可以将3个女生看成是 一个人,与5个男生作全排列,有 A种66排法,其中女生内部 也有 种A排33 法,根据乘法原理,共有 种A不66 A同33的排法.
少有1人在内的抽法有
种C45.3 C450
结论6 排除法:有些问题,正面直接考虑比较复杂,而它的
反面往往比较简捷,可以先求出它的反面,再从整体中排
除.
练习: 有12个人,按照下列要求分配,求不同的分法 种数.
(1)分为两组,一组7人,一组5人; (2)分为甲、乙两组,甲组7人,乙组5人; (3)分为甲、乙两组,一组7人,一组5人; (4)分为甲、乙两组,每组6人; (5)分为两组,每组6人; (6)分为三组,一组5人,一组4人,一组3人; (7)分为甲、乙、丙三组,甲组5人,乙组4人,丙组3
例4 袋中有不同的5分硬币23个,不同的1角硬币10个, 如果从袋中取出2元钱,有多少种取法? 分析 此题是一个组合问题,若是直接考虑取钱的问题 的话,情况比较多,也显得比较凌乱,难以理出头绪来.但 是如果根据组合数性质考虑剩余问题的话,就会很容 易解决问题.
解 把所有的硬币全部取出来,将得到 0.05×23+0.10×10=2.15元,所以比2元多0.15元,所 以剩下0.15元即剩下3个5分或1个5分与1个1角,所以 共有 C233 C21种3 C取110 法.
排列组合解题技巧综合复习
教学目的 教学过程 课堂练习 课堂小结
1.熟悉解决排列组合问题的基本 方法;

排列组合复习课解排列组合问题的常用技巧课件

排列组合复习课解排列组合问题的常用技巧课件

交通安排
在城市中选择最佳的交通 路径,涉及排列组合中的 排列问题。
彩票中奖
计算彩票中奖的概率,涉 及排列组合中的组合问题。
排列组合在计算机科学中的应用
算法设计
计算机程序设计中,算法 的复杂度分析涉及排列组 合中的计算。
数据结构
在数据结构中,对数据的 排列和组合涉及排列组合 中的相关知识。
加密算法
密码的生成和破解,涉及 排列组合中的排列和组合 问题。
2023
REPORTING
排列组合复习课:解 排列组合问题的常用 技巧
• 排列组合基本概念 • 排列组合问题的常用解题技巧 • 排列组合问题中的计数原理 • 排列组合问题中的实际应用 • 排列组合问题的模拟试题与解析
2023
PART 01
排列组合基本概念
REPORTING
排列的定义与计算公式
排列的定义
反面思考法
总结词
在解决排列组合问题时,有时候从正面思考比较困难,可以采用反面思考法来解决问题。
详细描述
反面思考法是一种常用的解题技巧,它主要用于解决从正面思考比较困难的问题。具体来说,反面思考法是通过 考虑问题的反面情况来解决问题。这种方法特别适用于涉及对立事件或不可能事件的问题,它可以简化计算过程 并提高准确性。
分步乘法计数原理
要点一
总结词
分步乘法计数原理是解决排列组合问题的基本方法之一, 其核心思想是将问题按照不同的步骤分为若干个小的步骤, 然后分别计算每个步骤的数量,最后将各个步骤的数量相 乘得到总数量。
要点二
详细描述
分步乘法计数原理的步骤是首先确定问题的不同步骤,然 后对每一步进行计数,最后将各个步骤的计数结果相乘。 这个原理在排列组合问题中广泛应用,例如在解决排列问 题、组合问题以及概率问题时非常有效。

《高三排列组合复习》课件

《高三排列组合复习》课件
3... times m}$
应用
计算在n个不同元素中取出m个 元素进行组合的不同方式的数目

示例
在5个不同元素中取出3个元素进 行组合的不同方式的数目为 $C_{5}^{3} = frac{5 times 4
times 3}{1 times 2 times 3} = 10$。
排列组合的逆序数计算
逆序数的定义
排列与组合的差异
排列考虑顺序,组合不考虑顺 序;
排列数的计算需要考虑取出的 元素顺序,而组合数的计算则 不需要考虑取出的元素顺序;
在实际应用中,排列和组合各 有其适用场景,需要根据具体 问题选择使用。
02
排列组合基本公式的应用
排列数公式的应用
排列数公式
$A_{n}^{m} = n(n-1)(n-2)...(n-m+1)$
06
复习总结与展望
本章重点回顾
排列组合的基本概念
排列组合的解题思路
排列和组合的定义、排列数和组合数 的计算公式等。
如何根据问题类型选择合适的解题方 法,如分步乘法计数原理、分类加法 计数原理等。
排列组合的常见问题类型
如分组、分配、排列、组合等问题。
学习心得体会
通过本次复习,我更加深入地理解了 排列组合的基本概念和计算方法,对 于常见问题类型也有了更清晰的认识 。
定序问题
总结词
解决定序问题需要使用定序法,根据题意确定元素的顺序。
详细描述
在排列组合问题中,有时需要特别注意元素的顺序。例如,有5个不同的书和4 个不同的笔,要求书和笔的顺序为“书-笔-书-笔-书”,则只要使用分组法,将元素分成若干组进行排列。
详细描述
求函数 y = x^2 - 4x + 4 在区间 [0,4] 的最值点

排列组合(讲义部分)

排列组合(讲义部分)

1、排列组合定义:题干当中给出两组或两组以上的对象或信息,在答案中需要考生对排列组合结果进行判断。

历年国考“排列组合”题量解题原则:1、最大信息优先2、确定信息优先3、顺藤摸瓜解题方法:一、带入排除法1.甲、乙、丙、丁是四位天资极高的艺才家,他们分别是舞蹈家、画家、歌唱家和作家,尚不能确定其中每个人所从事的专业领域,已知:(1)有一天晚上,甲和丙出席了歌唱家的首次演出。

(2)画家曾为乙和作家两个人画过肖像。

(3)作家正准备写一本甲的传记,他所写的丁传记是畅销书。

(4)甲从来没有见过丙。

下面哪一选项正确地描述了每个人的身份?()A.甲是歌唱家,乙是作家,丙是画家,丁是舞蹈家B.甲是舞蹈家,乙是歌唱家,丙是作家,丁是画家排列组合(讲义部分)C.甲是画家,乙是作家,丙是歌唱家,丁是作家D.甲是作家,乙是画家,丙是舞蹈家,丁是歌唱家2.李老师、王老师、张老师在同一所大学教语文、数学和外语,按规定每人只担任其中一门课。

而且①李老师上课全部用汉语。

②外语老师是该校一个学生的舅舅。

③张老师是女教师,她的女儿考大学之前,经常向数学老师请教。

请判定他们各自上的课程是:A.李老师上语文,王老师上外语,张老师上数学B.王老师上语文,李老师上外语,张老师上数学C.张老师上语文,王老师上外语,李老师上数学D.王老师上语文,张老师上外语,李老师上数学解题方法:二、列表法3.小红、小兰和小慧三姐妹,分别住在丰台区、通州区、朝阳区。

小红与住在通州的姐妹年龄不一样大,小慧比住在朝阳区的姐妹年龄小,而住在通州的姐妹比小兰年龄大。

那么按照年龄从大到小,这三姐妹的排序是()。

A.小红、小慧、小兰B.小红、小兰、小慧C.小兰、小慧、小红D.小慧、小红、小兰4.某办公室有三位工作人员:刘明、庄嫣和文虎。

他们三人中,一人是博士,一人是硕士,还有一人是本科毕业生。

已知博士比刘明大两岁;庄嫣与本科毕业生同岁,但是月份稍大;本科毕业生的年龄最小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1.由0,1,2,3,4,5可以组成多少个没有重复数字 五位奇数.
解:
先排末位共有_C _31_
然后排首位共有_C _41 _
最后排其它位置共有_A _43 _C
1 4
A
3 4
C
1 3
由分步计数原理得C
1 3
C
1 4
A
3 4
=288
练习题
1.7种不同的花种在排成一列的花盆里,若两 种葵花不种在中间,也不种在两端的花盆 里,问有多少不同的种法?
2、排列组合应用题极易出现“重”、“漏” 现象,而重”、“漏”错误常发生在该不 该分类、有无次序的问题上。为了更好地 防“重”堵“漏”,在做题时需认真分析 自己做题思路,也可改变解题角度,利用 一题多解核对答案
二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相
邻, 共有多少种不同的排法. 解:
2 从7盆不同的盆花中选出5盆摆放在主席台前,其 中有两盆花不宜摆放在正中间,则一共有_____种不 同的摆放方法(用数字作答)。
解: A51A64 1800
3 将5列车停在5条不同的轨道上,其中a列车不停在第 一轨道上,b列车不停在第二轨道上,那么不同的停放 方法有( )
(A)120种 (B)96种 (C)78种 (D)72种
(2) 间接法有的也称做排除法或排异法,有时用 这种方法解决问题来得简单、明快.但在应用时, 要注意对于不符合条件的排列不能重算或漏算.
(3)捆绑法、插空法对于有的问题的确是适用的好 方法,但要认真搞清在什么条件下使用. (“捆绑法” 用于相邻时,“插空法“用于不相邻时)
四.定序问题 例:7人排队,甲必须站在乙的左边,有 几种不同排法?
排列组合复习课(1)
解决排列组合综合性问题的一般过程如下:
1.认真审题,弄清要做什么事情.
2.怎样做才能完成所要做的事,即采取分步还是分 类, 确定分几步,及分多少类,做到不重不漏.
3.确定每一步(每一类)是排列问题(有序)还是组 合(无序)问题,或者是非排列组合问题.
4.解决排列组合综合性问题,还必须掌握一些常用 解题的原则与策略。
甲乙 丙丁
由分步计数原理可得共有 A
5A
5
2 2
A
2 2
=480
种不同的排法
三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个
独唱,舞蹈节目不能连续出场,则节目的出
场顺序有多少种?
解:分两步进行第一步排2个相声和3个独唱共

A
5 5
种,第二步将4舞蹈插入第一步排
好的5个元素中间包含首尾两个空位共有
三.多排问题直排策略 例7.8人排成前后两排,每排4人,其中甲乙在
前排,丁在后排,共有多少排法 解:8人排前后两排,相当于8人坐8把椅子,可以
把椅子排成一排. 先在前4个位置排甲乙两 个特殊元素有_A_42__种,再排后4个位置上的
特上殊任元意素排有列_有_A __41__A__55种_种,其,则余共的有5人__A_在4_2 A_541_个A_55_位_种置.
一般地,元素分成多排的排列问题, 可归结前排为一排考虑后,再排分段研究.
• 直接法
• 间接法
☆ 解关于排列的应用题的方法: •
插空法
说明:
• 捆绑法
(1)对于有限制条件的排列问题,直接法处理时
通常是先排特殊元素(元素分析)或特殊位置(位 置分析),若以位置为主,需先满足特殊位置的要求,
再处理其它位置,有两个以上约束条件,往往是考虑 一个约束条件的同时要兼顾其它条件.若以元素为主, 需先满足特殊元素要求再处理其它的元素 .
四.定序问题
例4.7人排队,其中甲乙丙3人顺序一定共有多
少不同的排法
解:(倍缩法)对于某几个元素顺序一定的排列问题,
可先把这几个元素与其他元素一起进行排列,
然后用总排列数除以这几个元素之间的全排列
数,则共有不同排法种数是: A
7 7
A
3 3
(空位法)设想有7把椅子让除甲乙丙以外的四人
就坐共有
A
4 7
解: A44A3 1A3 1A3 3 1 A 3 3 A 3 1 A 3 3 A 3 2 A 3 3 7 8
小结:1、“在”与“不在”可以相互转化。 解决某些元素在某些位置上用“定位法”, 解决某些元素不在某些位置上一般用“间 接法”或转化为“在”的问题求解。

A
4 6
不同的方法
由分步计数原理,节目的
不同顺序共有A
5 5
A
4 6






练习题 某班新年联欢会原定的5个节目已排成节 目单,开演前又增加了两个新节目.如果 将这两个新节目插入原节目单中,且两 个新节目不相邻,那么不同插法的种数 为( 30 )
某人射击8枪,命中4枪,4枪命中恰好 有3枪连在一起的情形的不同种数为 ( 20 )
练习
7位同学站成一排照相,按下列要求, 各有多少种不同的排法? (1)7位同学站成一排,共有多少种不同的排法? (2)7位同学站成两排(前3后4); (3)7位同学站成一排,其中甲站在中间的位置; (4)7位同学站成一排,甲、乙只能站在两端; (5)7位同学站成一排,甲、乙不能站在排头和排尾; (6)甲不在排头,乙不在排尾; (7)甲、乙两同学必须相邻; (8)甲、乙和丙三个同学都相邻; (9)甲、乙、丙三人互不相邻;
解一:分两步完成;
第一步选两葵花之外的花占据两端和中间的位置 有A53种排法
第二步排其余的位置:有A44种排法 共 有 A 5 3 A 4 4 种 不 同 的 排 法 解二:第一步由葵花去占位:有A42种排法第二步由其余元素占位:
有A55种排法
共 有 A 4 2 A 5 5 种 不 同 的 排 法
种方法,其余的三个位置甲乙丙共
有1
种坐法,则共有
A
4 7
种方法
思考:可以先让甲乙丙就坐吗?
(插入法)先排甲乙丙三个人,共有1种排法,再 把其余4四人依次插入共有 4*5*6*7 方法
推荐:定序排列问题:当某几个元素次序一定时, 可用全部元素的总排列数除以这几个元素的全排列 数.(对称法)
三大原则:
一、特殊优先原则 在有限制的问题中,优先考虑特殊元素或特殊
位置.
二、先取后排原则 先取后排原则也是解排列组合问题的总原则,尤其是 排列与组合的综合问题 。
三、正难则反原则 若从正面直接解决问题有困难时,则考虑排除
法:先不管约束条件,求出总数,再剔除不合要求 的部分.
一.特殊元素和特殊位置优先策略
相关文档
最新文档