2020年中考数学必考经典题讲练案-图形的变换综合问题

合集下载

2020年中考数学压轴解答题14 图形变换和类比探究类几何压轴综合问题 (学生版)

2020年中考数学压轴解答题14 图形变换和类比探究类几何压轴综合问题 (学生版)

备战2020中考数学之解密压轴解答题命题规律专题14 图形变换和类比探究类几何压轴综合问题【类型综述】本节内容每年中考都会选择一种变换作为压轴题的背景素材,可以对函数图象进行平移,可以对几何图形进行平移、旋转,考查学生的数学综合应用能力.在选择、填空中也会涉及变换的概念和简单应用.只要抓住全等变换的特点,找到变与不变的量就可以解决问题.预计在2019年中考中仍会在压轴部分渗透变换,但是会有新情境的渗透.【方法揭秘】1.平移的性质(1)平移前后,对应线段平行、对应角相等;(2)各对应点所连接的线段平行(或在同一直线上)或相等;(3)平移前后的图形全等,注意:平移不改变图形的形状和大小.2.旋转的性质:(1)对应点到旋转中心的距离相等;(2)每对对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等.3.中心对称的性质:在成中心对称的两个图形中,对应点的连线都经过对称中心,并且被对称中心平分_.成中心对称的两个图形全等.【典例分析】【例1】操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【例2】已知:如图1,OM是∠AOB的平分线,点C在OM上,OC=5,且点C到OA的距离为3.过点C作CD⊥OA,CE⊥OB,垂足分别为D、E,易得到结论:OD+OE等于多少;(1)把图1中的∠DCE绕点C旋转,当CD与OA不垂直时(如图2),上述结论是否成立?并说明理由;(2)把图1中的∠DCE绕点C旋转,当CD与OA的反向延长线相交于点D时:①请在图3中画出图形;②上述结论还成立吗?若成立,请给出证明;若不成立,请直接写出线段OD、OE之间的数量关系,不需证明.【例3】两个三角板ABC,DEF按如图所示的位置摆放,点B与点D重合,边AB与边DE在同一条直线上(假设图形中所有的点、线都在同一平面内),其中,∠C=∠DEF=90°,∠ABC=∠F=30°,AC=DE=4 cm.现固定三角板DEF,将三角板ABC沿射线DE方向平移,当点C落在边EF上时停止运动.设三角板平移的距离为x(cm),两个三角板重叠部分的面积为y(cm2).(1)当点C落在边EF上时,x=________cm;(2)求y关于x的函数表达式,并写出自变量x的取值范围;(3)设边BC的中点为点M,边DF的中点为点N,直接写出在三角板平移过程中,点M与点N之间距离的最小值.【例4】在△ABC中,∠ABC=90°,AB=BC=4,点M是线段BC的中点,点N在射线MB上,连接AN,平移△ABN,使点N移动到点M,得到△DEM(点D与点A对应,点E与点B对应),DM交AC于点P.(1)若点N是线段MB的中点,如图1.①依题意补全图1;②求DP的长;(2)若点N在线段MB的延长线上,射线DM与射线AB交于点Q,若MQ=DP,求CE的长.【例5】如图1,抛物线y=﹣x2+2x+3与x轴交于A,B,与y轴交于C,抛物线的顶点为D,直线l过C交x轴于E(4,0).(1)写出D的坐标和直线l的解析式;(2)P(x,y)是线段BD上的动点(不与B,D重合),PF⊥x轴于F,设四边形OFPC的面积为S,求S与x 之间的函数关系式,并求S的最大值;(3)点Q在x轴的正半轴上运动,过Q作y轴的平行线,交直线l于M,交抛物线于N,连接CN,将△CMN沿CN翻转,M的对应点为M′.在图2中探究:是否存在点Q,使得M′恰好落在y轴上?若存在,请求出Q的坐标;若不存在,请说明理由.【例6】再读教材:宽与长的比是5-1(约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调,匀称的美感.世界各国许多著名的建筑.为取得最佳的视觉效果,都采用了黄金矩形的设计,下面我们用宽为2的矩形纸片折叠黄金矩形.(提示; MN=2)第一步,在矩形纸片一端.利用图①的方法折出一个正方形,然后把纸片展平.第二步,如图②.把这个正方形折成两个相等的矩形,再把纸片展平.第三步,折出内侧矩形的对角线AB,并把AB折到图③中所示的AD处,第四步,展平纸片,按照所得的点D折出DE,使DE⊥ND,则图④中就会出现黄金矩形,问题解决:(1)图③中AB=________(保留根号);(2)如图③,判断四边形BADQ的形状,并说明理由;(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.(4)结合图④.请在矩形BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.【变式训练】一、单选题1.如图,正方形ABCD 中,6AB =,E 为AB 的中点,将ADE ∆沿DE 翻折得到FDE ∆,延长EF 交BC 于G ,FH BC ⊥,垂足为H ,连接BF 、DG .结论:①BF DE P ;②DFG ∆≌DCG ∆;③FHB ∆∽EAD ∆;④43GEB ∠=;⑤ 2.6BFG S ∆=.其中的正确的个数是( )A .2B .3C .4D .52.如图所示,点P 是边长为2的正方形ABCD 的对角线BD 上的动点,过点P 分别作PE ⊥BC 于点E,PF ⊥DC 于点F,连接AP 并延长,交射线BC 于点H,交射线DC 于点M,连接EF 交AH 于点G ,当点P 在BD 上运动时(不包括B 、D 两点),以下结论中:①MF =MC ;②AP =EF ;③AH ⊥EF ;④AP 2=PM•PH ;⑤EF 的最小值是2.其中正确结论有( )A .2个B .3个C .4个D .5个3.如图,在平面直角坐标系中,菱形ABCD 的顶点C 的坐标为()1,0-,点B 的坐标为()0,2,点A 在第二象限,直线1y x 52=-+与x 轴、y 轴分别交于点N 、M .将菱形ABCD 沿x 轴向右平移m 个单位,当点A 落在MN 上时,则m 为( )A .1B .2C .3D .44.如图,在平面直角坐标系中,A (1,2),B (3,2),连接AB ,点P 是x 轴上的一个动点,连接AP 、BP ,当△ABP 的周长最小时,对应的点P 的坐标和△ABP 的最小周长分别为( )A .(10)224+,,B .(30)224+,,C .(20)25,,D .(20)252+,,5.如图,将小正方形AEFG 绕大正方形ABCD 的顶点A 顺时针旋转一定的角度α(其中0°≤α≤90°),连接BG 、DE 相交于点O ,再连接AO 、BE 、DG .王凯同学在探究该图形的变化时,提出了四个结论: ①BG =DE ;②BG ⊥DE ;③∠DOA =∠GOA ;④S △ADG =S △ABE ,其中结论正确的个数有( )A .1个B .2个C .3个D .4个6.如图,点P 是等边三角形外一点,把BP 绕点B 顺时针旋转60°到BP ',已知AP B '∠=150°,:2:3P A P C ''=,则:PB P A '的值是( )A .2 : 1B .2 : 1C .5 : 2D .3 : 1二、填空题7.如图,在菱形ABCD 中,AB =2,∠BAD =60°,将菱形ABCD 绕点A 逆时针方向旋转,对应得到菱形AEFG,点E 在AC 上,EF 与CD 交于点P,则DP 的长是________.8.如图,在平面直角坐标系中,直线l :28y x =+与坐标轴分别交于A ,B 两点,点C 在x 正半轴上,且OC =O B .点P 为线段AB (不含端点)上一动点,将线段OP 绕点O 顺时针旋转90°得线段OQ ,连接CQ ,则线段CQ 的最小值为___________.9.如图,直角三角形ABC 中,90ACB ∠=︒,10AB =,6BC =,在线段AB 上取一点D ,作DF AB ⊥交AC 于点F ,现将ADF ∆沿DF 折叠,使点A 落在线段DB 上,对应点记为1A ;AD 的中点E 的对应点记为1E .若111E FA E BF ∆∆:,则AD =______.10.如图,四边形ABCD 是矩形,AD =5,AB =163,点E 在CD 边上,DE =2,连接BE ,F 是BE 边上的一点,过点F 作FG ⊥AB 于G ,连接DG ,将△ADG 沿DG 翻折的△PDG ,设EF =x ,当P 落在△EBC 内部时(包括边界),x 的取值范围是__.11.如图,将函数3(0)y x x=>的图象沿y 轴向下平移3个单位后交x 轴于点C ,若点D 是平移后函数图象上一点,且BCD ∆的面积是3,已知点(2,0)B -,则点D 的坐标__________.12.如图,有一条折线11223344A B A B A B A B ⋯,它是由过()10,0A ,()12,2B ,()24,0A 组成的折线依次平移4,8,12,⋯个单位得到的,直线2y kx =+与此折线恰有2(1n n ≥,且为整数)个交点,则k 的值为______.三、解答题13.如图,直线:y =﹣3x +4与x 轴、y 轴分别別交于点M 、点N ,等边△ABC 的高为3,边BC 在x 轴上,将△ABC 沿着x 轴的正方向平移,在平移过程中,得到△A 1B 1C 1,当点B 1与原点O 重合时,解答下列问题:(1)点A 1的坐标为 .(2)求△A 1B 1C 1的边A 1C 1所在直线的解析式;(3)若以P 、A 1、C 1、M 为顶点的四边形是平行四边形,请直接写出P 点坐标.14.如图1,在△ABC 中,AB=BC=5,AC=6,△ABC 沿BC 方向向右平移得△DCE,A 、C 对应点分别是D 、E.AC 与BD 相交于点O.(1)将射线BD 绕B 点顺时针旋转,且与DC,DE 分别相交于F,G,CH ∥BG 交DE 于H,当DF=CF 时,求DG 的长;(2)如图2,将直线BD 绕点O 逆时针旋转,与线段AD,BC 分别相交于点Q,P.设OQ=x,四边形ABPQ 的周长为y,求y 与x 之间的函数关系式,并求y 的最小值.(3)在(2)中PQ 的旋转过程中,△AOQ 是否构成等腰三角形?若能构成等腰三角形,求出此时PQ 的长?若不能,请说明理由.15.在平面直角坐标系中,O 为原点,点A (6,0),点B 在y 轴的正半轴上,ABO 30∠︒=.矩形CODE 的顶点D,E,C 分别在OA,AB,OB 上,OD=2..(Ⅰ)如图①,求点E 的坐标;(Ⅱ)将矩形CODE 沿x 轴向右平移,得到矩形C O D E '''',点C,O,D,E 的对应点分别为C O D E ,,,''''.设OO t '=,矩形C O D E ''''与ΔABO 重叠部分的面积为S .①如图②,当矩形C O D E ''''与ΔABO 重叠部分为五边形时,C E '',E D ''分别与AB 相交于点M,F,试用含有t 的式子表示S,并直接写出t 的取值范围;3S 53剟,求t 的取值范围(直接写出结果即可).16.如图,将矩形OABC放在平面直角坐标系中,O为原点,点A在x轴的正半轴上,B(8,6),点D是射线AO 上的一点,把△BAD沿直线BD折叠,点A的对应点为A′.(1)若点A′落在矩形的对角线OB上时,OA′的长=;(2)若点A′落在边AB的垂直平分线上时,求点D的坐标;(3)若点A′落在边AO的垂直平分线上时,求点D的坐标(直接写出结果即可).17.在Rt△ABC中,∠ACB=90°,∠BAC=60°,BC=23,D是AB的中点,直线BM∥AC,E是边CA延长线上一点,将△EDC沿CD翻折得到△E′DC,射线DE′交直线BM于点F.(1)如图1,当点E′与点F重合时,求证:四边形ABE′C为平行四边形;(2)如图2,延长ED交线段BF于点G.①设BG=x,GF=y,求y与x的函数关系式;②若△DFG的面积为33,求AE的长.18.如图①,若直线l︰y=-2x+4交x轴于点A、交y轴于点B,将△AOB绕点O逆时针旋转90o得到△COD.过点A,B,D的抛物线h︰y=ax2+bx+4.(1)求抛物线h的表达式;(2)若与y轴平行的直线m以1秒钟一个单位长的速度从y轴向左平移,交线段CD于点M、交抛物线h 于点N,求线段MN的最大值;(3)如图②,点E为抛物线h的顶点,点P是抛物线h在第二象限的上一动点(不与点D、B重合),连接PE,以PE 为边作图示一侧的正方形PEFG .随着点P 的运动,正方形的大小、位置也随之改变,当顶点F 或G 恰好落在y 轴上时,直接写出对应的点P 的坐标.19.已知,正方形ABCD 的边长为4,点E 是对角线BD 延长线上一点,AE=BD .将△ABE 绕点A 顺时针旋转α度(0°<α<360°)得到△AB′E′,点B 、E 的对应点分别为B′、E′.(1)如图1,当α=30°时,求证:B′C=DE ;(2)连接B′E 、DE′,当B′E=DE′时,请用图2求α的值;(3)如图3,点P 为AB 的中点,点Q 为线段B′E′上任意一点,试探究,在此旋转过程中,线段PQ 长度的取值范围为 .20.如图,在菱形ABCD 中,对角线AC 、BD 交于点O ,已知4AC =,25AB =(1)求BD 的长;(2)点E 为直线AD 上的一个动点,连接CE ,将线段EC 绕点C 顺时针旋转BCD ∠的角度后得到对应的线段CF (即)ECF BCD ∠=∠,EF 交CD 于点P .①当CE AD ⊥时,求EF 的长;②连接AF 、DF ,当DF 的长度最小时,求ACF ∆的面积.21.如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D,E两点分别在AC,BC上,且DE∥AB,将△CDE绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现:当α=0°时,ADBE的值为;(2)拓展探究:当0°≤α<360°时,若△EDC旋转到如图2的情况时,求出ADBE的值;(3)问题解决:当△EDC旋转至A,B,E三点共线时,若设CE=5,AC=4,直接写出线段BE的长.22.如图1,矩形ABCD中,AB=8,AD=6;点E是对角线BD上一动点,连接CE,作EF⊥CE交AB边于点F,以CE和EF为邻边作矩形CEFG,作其对角线相交于点H.(1)如图2,当点F与点B重合时,求CE和CG的长;(2)如图3,当点E是BD中点时,求CE和CG的长;(3)在图1,连接BG,当矩形CEFG随着点E的运动而变化时,猜想△EBG的形状?并加以证明.。

2020初中数学中考专题复习——图形变换旋转综合题解答题专项训练4(附答案详解)

2020初中数学中考专题复习——图形变换旋转综合题解答题专项训练4(附答案详解)

2020初中数学中考专题复习——图形变换旋转综合题解答题专项训练4(附答案详解) 1.在ABC ∆中,CA CB =,ACB α∠=.点P 是平面内不与点A ,C 重合的任意一点.连接AP ,将线段AP 绕点P 逆时针旋转α得到线段DP ,连接AD ,BD ,CP .(1)观察猜想如图1,当60α=︒时,BD CP 的值是______,直线BD 与直线CP 相交所成的较小角的度数是____________.(提示:求角度时可考虑延长CP 交BD 的延长线于E ) (2)类比探究如图2,当90α=︒时,请写出BD CP 的值及直线BD 与直线CP 相交所成的小角的度数,并就图2的情形说明理由.(3)解决问题当90α=︒时,若点E ,F 分别是CA ,CB 的中点,点P 在直线EF 上,请直接写出点C ,P ,D 在同一直线上时AD CP的值_______________. 2.如图,已知平行四边形ABCD ,∠ABC =120°,点E 为线段BC 上的动点,连接AE ,将线段AE 绕点A 逆时针旋转60°得到线段AF ,点E 的对应点是点F ,连接EF.(1)当点E 与点B 重合时,在图1中将图补充完整,并求出∠CEF 的度数; (2)如图2,求证:点F 在∠ABC 的平分线上.3.(1)如图①,在Rt △ABC 中,AB =AC ,D 为BC 边上一点(不与点B ,C 重合),将线段AD 绕点A 逆时针旋转90°得到AE ,连接EC ,试探索线段BC ,DC ,EC 之间满足的等量关系,并证明你的结论.(2)如图②,在Rt △ABC 与Rt △ADE 中,AB =AC ,AD =AE ,将△ADE 绕点A 旋转,使点D 落在BC 边上,试探索线段AD ,BD ,CD 之间满足的等量关系,并证明你的结论.4.如图,四边形ABCD 是正方形,连接AC ,将ABC ∆绕点A 逆时针旋转α得AEF ∆,连接CF ,O 为CF 的中点,连接OE ,OD .(1)如图1,当45α︒=时,求证:OE OD =;(2)如图2,当4590α︒︒<<时,(1)OE OD =还成立吗?请说明理由.5.在ABC ∆中,90ACB ∠=o ,2AC BC ==,以点B 为圆心、1为半径作圆,设点M 为⊙B 上一点,线段CM 绕着点C 顺时针旋转90o ,得到线段CN ,连接BM 、AN .(1)在图中,补全图形,并证明BM AN = .(2)连接MN ,若MN 与⊙B 相切,则BMC ∠的度数为 .(3)连接BN ,则BN 的最小值为 ;BN 的最大值为 . 6.如图,在等边△ABC 中,点D 是 AB 边上一点,连接CD ,将线段CD 绕点C 按顺时针方向旋转60°后得到CE ,连接AE .求证:AE ∥BC .7.如图,△ABC 和△ADE 是有公共顶点的等腰直角三角形,∠BAC =∠DAE =90°,点P 为直线BD ,CE 的交点.(1)如图,将△ADE 绕点A 旋转,当D 在线段CE 上时,连接BE ,下列给出两个结论:①BD =CD +2AD ;②BE 2=2(AD 2+AB 2).其中正确的是 ,并给出证明.(2)若AB =4,AD =2,把△ADE 绕点A 旋转,①当∠EAC =90°时,求PB 的长;②旋转过程中线段PB 长的最大值是 .8.如图,在ABC V 中,90C ∠=︒,10AB =,8AC =,将线段AB 绕点A 按逆时针方向旋转90︒到线段AD .EFG V 由ABC V 沿CB 方向平移得到,且直线EF 过点D .(1)求1∠的大小;(2)求AE 的长.9.问题的提出:如果点P 是锐角△ABC 内一动点,如何确定一个位置,使点P 到△ABC 的三顶点的距离之和PA+PB+PC 的值为最小?问题的转化:(1)把ΔAPC 绕点A 逆时针旋转60度得到AP C V ,''连接PP ',这样就把确定PA+PB+PC 的最小值的问题转化成确定BP PP P C +'+''的最小值的问题了,请你利用如图证明: +PA PB PC BP PP P C +=+'+'';问题的解决:(2)当点P 到锐角△ABC 的三项点的距离之和PA+PB+PC 的值为最小时,请你用一定的数量关系刻画此时的点P 的位置:_____________________________;问题的延伸:(3)如图是有一个锐角为30°的直角三角形,如果斜边为2,点P 是这个三角形内一动点,请你利用以上方法,求点P 到这个三角形各顶点的距离之和的最小值.10.在矩形ABCD 中,点P 在AD 上,AB=2,AP=1.直角尺的直角顶点放在点P 处,直角尺的两边分别交AB 、BC 于点E 、F ,连接EF(如图1).(1)当点E 与点B 重合时,点F 恰好与点C 重合(如图2).①求证:△APB ∽△DCP ;②求PC 、BC 的长.(2)探究:将直角尺从图2中的位置开始,绕点P 顺时针旋转,当点E 和点A 重合时停止.在这个过程中(图1是该过程的某个时刻),观察、猜想并解答:① tan ∠PEF 的值是否发生变化?请说明理由.② 设AE=x ,当△PBF 是等腰三角形时,请直接写出x 的值.11.如图1所示,点O 为直线AB 上一点,过点O 作射线OC ,使60AOC ︒∠=,将一块透明的三角尺的直角顶点放在点O 处,边OM 在射线OB 上,边ON 在直线AB 的下方.(1)将图1中的三角尺绕点O 逆时针旋转至如图2所示的位置,使边OM 在BOC ∠的内部,且恰好平分BOC ∠,求CON ∠的度数.(2)将图1中的三角尺绕点O 按每秒10︒的速度逆时针旋转一周,在旋转过程中,第t 秒时,直线ON 恰好平分锐角AOC ∠,则t 的值为________(直接写出结果).(3)将图1中的三角尺绕点O 逆时针旋转至如图3所示的位置,使ON 在AOC ∠的内部,请探究AOM ∠与NOC ∠之间的关系,并说明理由.12.如图1,在平面直角坐标系,O 为坐标原点,点A (﹣2,0),点B (0,3.(1)直接写求∠BAO 的度数;(2)如图1,将△AOB 绕点O 顺时针得△A ′OB ′,当A ′恰好落在AB 边上时,设△AB ′O 的面积为S 1,△BA ′O 的面积为S 2,S 1与S 2有何关系?为什么?(3)若将△AOB 绕点O 顺时针旋转到如图2所示的位置,S 1与S 2的关系发生变化了吗?证明你的判断.13.已知平行四边形ABCD .(1)如图1,将▱ABCD 绕点D 逆时针旋转一定角度得到▱A 1B 1C 1D ,延长B 1C 1,分别与BC 、AD 的延长线交于点M 、N .①求证:∠BMB 1=∠ADA 1;②求证:B 1N =AN +C 1M ;(2)如图2,将线段AD 绕点D 逆时针旋转,使点A 的对应点A 1落在BC 上,将线段CD 绕点D 逆时针旋转到C 1D 的位置,AC 1与A 1D 交于点H .若H 为AC 1的中点,∠ADC 1+∠A 1DC =180°,A 1B =nA 1C ,试用含n 的式子表示1A H DH的值. 14.如图,将ABC ∆绕点A 逆时针旋转90︒得到ADE ∆.(1)观察猜想小明发现,将DAC ∆绕点A 逆时针旋转90︒,如图1,他发现ACD ∆的面积1S 与BAE ∆的面积2S 之间有一定的数量关系,请直接写出这个关系:______;(2)类比探究如图2,M 是CD 的中点,请写出AM 与BE 之间的数量关系和位置关系,并说明理由;(3)解决问题如图3,AB AD =,AB AD ⊥,AC AE =,AC AE ⊥,C 在线段BD 上,AH BE ⊥交CD 于H ,若2BC =,3CD =,请直接写出AH 的长.15.在△ABC 中,AB =AC ,∠BAC =90°,D 为平面内的一点.(1)如图1,当点D 在边BC 上时,且∠BAD =30°,求证:AD 2BD .(2)如图2,当点D 在△ABC 的外部,且满足∠BDC ﹣∠ADC =45°,求证:BD 2AD . (3)如图3,若AB =4,当D 、E 分别为AB 、AC 的中点,把△DAE 绕A 点顺时针旋转,设旋转角为α(0<α≤180°),直线BD 与CE 的交点为P ,连接PA ,直接写出△PAC 面积的最大值.16.如图,△ABC 为等边三角形,点P 是线段AC 上一动点(点P 不与A ,C 重合),连接BP ,过点A 作直线BP 的垂线段,垂足为点D ,将线段AD 绕点A 逆时针旋转60°得到线段AE ,连接DE ,CE .(1)求证:BD =CE ;(2)延长ED 交BC 于点F ,求证:F 为BC 的中点;(3)在(2)的条件下,若△ABC 的边长为1,直接写出EF 的最大值.17.如图,在平面直角坐标系中,Rt △ABC 的顶点分别是A (﹣3,1)B (0,4)C (0,2).(1)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△A 1B 1C 1;(2)分别连接AB 1,BA 1后,求四边形AB 1A 1B 的面积.18.已知AOB 90∠=︒,COD 60∠=︒,按如图1所示摆放,将OA 、OC 边重合在直线MN 上,OB 、OD 边在直线MN 的两侧;(1)保持AOB ∠不动,将COD ∠绕点O 旋转至如图2所示的位置,则①AOC BOD ∠∠+= ;②BOC AOD ∠∠-= ;(2)若COD ∠按每分钟5︒的速度绕点O 逆时针方向旋转,AOB ∠按每分钟2︒的速度也绕点O 逆时针方向旋转,OC 旋转到射线ON 上时都停止运动,设旋转t 分钟,计算MOC AOD ∠∠-(用t 的代数式表示)。

2020年中考数学压轴题专题10 图形变换综合题探究专题学案(原版+解析)

2020年中考数学压轴题专题10 图形变换综合题探究专题学案(原版+解析)

专题十图形变换综合题探究专题【考题研究】本专题主要包括图形的变换和相似形.其中轴对称图形、平移、中心对称图形的识别,相似三角形性质以填空和选择题为主,主要是考查对图形的识别和性质;图形的折叠、平移、旋转与几何图形面积相关的计算问题以填空题和解答题为主,主要是考查对几何问题的综合运用能力;而相似三角形的性质及判断定的应用往往还会结合圆或者解直角三角形等问题一并考查,主要是以解答题为主。

【解题攻略】图形的轴对称、平移、旋转是近年中考的新题型、热点题型,它主要考查学生的观察与实验能力,探索与实践能力,因此在解题时应注意以下方面:1.熟练掌握图形的轴对称、图形的平移、图形的旋转的基本性质和基本方法。

2.结合具体问题大胆尝试,动手操作平移、旋转,探究发现其内在规律是解答操作题的基本方法。

3.注重图形与变换的创新题,弄清其本质,掌握其基本的解题方法,尤其是折叠与旋转等。

【解题类型及其思路】1.变换中求角度注意平移性质:平移前后图形全等,对应点连线平行且相等.2.变换中求线段长时把握折叠的性质:折线是对称轴、折线两边图形全等、对应点连线垂直对称轴、对应边平行或交点在对称轴上.3.变换中求坐标时注意旋转性质:对应线段、对应角的大小不变,对应线段的夹角等于旋转角.4.变换中求面积,注意前后图形的变换性质及其位置等情况。

【典例指引】类型一【图形的平移】【典例指引1】1.两个三角板ABC,DEF按如图所示的位置摆放,点B与点D重合,边AB 与边DE在同一条直线上(假设图形中所有的点、线都在同一平面内),其中,∠C=∠DEF=90°,∠ABC=∠F=30°,AC=DE=4 cm.现固定三角板DEF,将三角板ABC沿射线DE方向平移,当点C落在边EF上时停止运动.设三角板平移的距离为x(cm),两个三角板重叠部分的面积为y(cm2).(1)当点C落在边EF上时,x=________cm;(2)求y关于x的函数表达式,并写出自变量x的取值范围;(3)设边BC的中点为点M,边DF的中点为点N,直接写出在三角板平移过程中,点M与点N之间距离的最小值.【举一反三】如图①,将两块全等的三角板拼在一起,其中△ABC的边BC在直线l上,AC⊥BC 且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,EF⊥FP且EF=FP.(1)在图①中,通过观察、测量,猜想直接写出AB与AP满足的数量关系和位置关系,不要说明理由;(2)将三角板△EFP沿直线l向左平移到图②的位置时,EP交AC于点Q,连接AP、BQ.猜想写出BQ与AP满足的数量关系和位置关系,并说明理由.类型二【图形的轴对称--折叠】【典例指引2】将一个直角三角形纸片放置在平面直角坐标系中,点,点,点.是边上的一点(点不与点,重合),沿着折叠该纸片,得点的对应点. (Ⅰ)如图①,当时,求点的坐标;(Ⅱ)如图②,当点落在轴上时,求点的坐标;(Ⅲ)当与坐标轴平行时,求点的坐标(直接写出结果即可).【举一反三】如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作FG∥CD,交AE于点G,连接DG.(1)求证:四边形DEFG为菱形;(2)若CD=8,CF=4,求CEDE的值.类型三【图形的旋转】【典例指引3】如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.【举一反三】(1)(问题发现)如图1,在Rt△ABC中,AB=AC=2,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为(2)(拓展研究)在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;(3)(问题发现)当正方形CDEF旋转到B,E,F三点共线时候,直接写出线段AF的长.类型四【图形的位似】【典例指引4】如图,二次函数y=x2﹣3x的图象经过O(0,0),A(4,4),B(3,0)三点,以点O为位似中心,在y轴的右侧将△OAB按相似比2:1放大,得到△OA′B′,二次函数y=ax2+bx+c(a≠0)的图象经过O,A′,B′三点.(1)画出△OA′B′,试求二次函数y=ax2+bx+c(a≠0)的表达式;(2)点P(m,n)在二次函数y=x2﹣3x的图象上,m≠0,直线OP与二次函数y=ax2+bx+c (a≠0)的图象交于点Q(异于点O).①连接AP,若2AP>OQ,求m的取值范围;②当点Q在第一象限内,过点Q作QQ′平行于x轴,与二次函数y=ax2+bx+c(a≠0)的图象交于另一点Q′,与二次函数y=x2﹣3x的图象交于点M,N(M在N的左侧),直线OQ′与二次函数y=x2﹣3x的图象交于点P′.△Q′P′M∽△QB′N,则线段NQ的长度等于.【举一反三】如图所示,网格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC是格点三角形.在建立平面直角坐标系后,点B的坐标为(-1,-1).(1)把△ABC向下平移5格后得到△A1B1C1,写出点A1,B1,C1的坐标,并画出△A1B1C1;(2)把△ABC绕点O按顺时针方向旋转180°后得到△A2B2C2,写出点A2,B2,C2的坐标,并画出△A2B2C2;(3)把△ABC以点O为位似中心放大得到△A3B3C3,使放大前后对应线段的比为1∶2,写出点A3,B3,C3的坐标,并画出△A3B3C3.【新题训练】1.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)写出点B的坐标;(3)将△ABC向右平移5个单位长度,向下平移2个单位长度,画出平移后的图形△A′B′C′;(4)计算△A′B′C′的面积﹒(5)在x轴上存在一点P,使PA+PC最小,直接写出点P的坐标.2.如图(1),在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),将线段AB 先向上平移2个单位长度,再向右平移1个单位长度,得到线段CD,连接AC,BD,构成平行四边形ABDC .(1)请写出点C 的坐标为 ,点D 的坐标为 ,S 四边形ABDC ; (2)点Q 在y 轴上,且S △QAB =S 四边形ABDC ,求出点Q 的坐标;(3)如图(2),点P 是线段BD 上任意一个点(不与B 、D 重合),连接PC 、PO ,试探索∠DCP 、∠CPO 、∠BOP 之间的关系,并证明你的结论.3.(问题情境)在综合实践课上,同学们以“图形的平移”为主题开展数学活动,如图①,先将一张长为4,宽为3的矩形纸片沿对角线剪开,拼成如图所示的四边形ABCD ,3AD =,4BD =,则拼得的四边形ABCD 的周长是_____.(操作发现)将图①中的ABE △沿着射线DB 方向平移,连结AD 、BC 、AF 、CE ,如图②.当ABE △的平移距离是12BE 的长度时,求四边形AECF 的周长. (操作探究)将图②中的ABE △继续沿着射线DB 方向平移,其它条件不变,当四边形ABCD 是菱形时,将四边形ABCD 沿对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.4.如图,在66⨯的正方形方格中,每个小正方形的边长都为1,顶点都在网格线交点处的三角形,ABC V 是一个格点三角形.()1在图①中,请判断ABC V 与DEF V 是否相似,并说明理由;()2在图②中,以O 为位似中心,再画一个格点三角形,使它与ABC V 的位似比为2:1 ()3在图③中,请画出所有满足条件的格点三角形,它与ABC V 相似,且有一条公共边和一个公共角.5.已知:AD 是ABC ∆的高,且BD CD =.(1)如图1,求证:BAD CAD ∠=∠;(2)如图2,点E 在AD 上,连接BE ,将ABE ∆沿BE 折叠得到'A BE ∆,'A B 与AC 相交于点F ,若BE =BC ,求BFC ∠的大小;(3)如图3,在(2)的条件下,连接EF ,过点C 作CG EF ⊥,交EF 的延长线于点G ,若10BF =,6EG =,求线段CF 的长.图1. 图2. 图3.6.如图,长方形OABC 在平面直角坐标系xOy 的第一象限内,点A 在x 轴正半轴上,点C 在y 轴的正半轴上,点D 、E 分别是OC 、BC 的中点,30∠=︒CDE ,点E 的坐标为()2,a .(1)求a 的值及直线DE 的表达式;(2)现将长方形OABC 沿DE 折叠,使顶点C 落在平面内的点'C 处,过点'C 作y 轴的平行线分别交x 轴和BC 于点F ,G .①求'C 的坐标;②若点P 为直线DE 上一动点,连接'PC ,当'PC D 为等腰三角形,求点P 的坐标.(说明:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半)7.如图1,四边形ABCD 的对角线AC ,BD 相交于点O ,OB =OD ,OC =OA +AB ,AD =m ,BC =n ,∠ABD +∠ADB =∠ACB .(1)填空:∠BAD 与∠ACB 的数量关系为________;(2)求m n的值; (3)将△ACD 沿CD 翻折,得到△A ′CD (如图2),连接BA ′,与CD 相交于点P .若CD =5+12,求PC 的长.8.如图,直线:y 3x +4与x 轴、y 轴分别別交于点M 、点N ,等边△ABC 的高为3,边BC 在x 轴上,将△ABC 沿着x 轴的正方向平移,在平移过程中,得到△A 1B 1C 1,当点B 1与原点O 重合时,解答下列问题:(1)点A1的坐标为.(2)求△A1B1C1的边A1C1所在直线的解析式;(3)若以P、A1、C1、M为顶点的四边形是平行四边形,请直接写出P点坐标.9.已知:△ABC和△ADE均为等边三角形,连接BE,CD,点F,G,H分别为DE,BE,CD 中点.(1)当△ADE绕点A旋转时,如图1,则△FGH的形状为,说明理由;(2)在△ADE旋转的过程中,当B,D,E三点共线时,如图2,若AB=3,AD=2,求线段FH的长;(3)在△ADE旋转的过程中,若AB=a,AD=b(a>b>0),则△FGH的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.10.综合与实践问题背景折纸是一种许多人熟悉的活动,将折纸的一边二等分、四等分都是比较容易做到的,但将一边三等分就不是那么容易了,近些年,经过人们的不懈努力,已经找到了多种将正方形折纸一边三等分的精确折法,最著名的是由日本学者芳贺和夫发现的三种折法,现在被数学界称之为芳贺折纸三定理.其中,芳贺折纸第一定理的操作过程及内容如下(如图1):操作1:將正方形ABCD对折,使点A与点D重合,点B与点C重合.再将正方形ABCD展开,得到折痕EF;操作2:再将正方形纸片的右下角向上翻折,使点C与点E重合,边BC翻折至B'E的位置,得到折痕MN ,B 'E 与AB 交于点P .则P 即为AB 的三等分点,即AP :PB =2:1.解决问题(1)在图1中,若EF 与MN 交于点Q ,连接CQ .求证:四边形EQCM 是菱形; (2)请在图1中证明AP :PB =2:l .发现感悟若E 为正方形纸片ABCD 的边AD 上的任意一点,重复“问题背景”中操作2的折纸过程,请你思考并解决如下问题:(3)如图2.若DE AE =2.则AP BP= ; (4)如图3,若DE AE =3,则AP BP = ; (5)根据问题(2),(3),(4)给你的启示,你能发现一个更加一般化的结论吗?请把你的结论写出来,不要求证明.11.在平面直角坐标系中,四边形AOBC 是矩形,点(0,0)O ,点(5,0)A ,点(0,3)B .以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(Ⅰ)如图①,当点D 落在BC 边上时,求点D 的坐标;(Ⅱ)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H .①求证ADB AOB △△≌;②求点H 的坐标.(Ⅲ)记K 为矩形AOBC 对角线的交点,S 为KDE △的面积,求S 的取值范围(直接写出结果即可).12.已知O 为直线MN 上一点,OP ⊥MN ,在等腰Rt △ABO 中,90BAO ∠=︒,AC ∥OP 交OM 于C ,D 为OB 的中点,DE ⊥DC 交MN 于E .(1) 如图1,若点B 在OP 上,则①AC OE (填“<”,“=”或“>”);②线段CA 、CO 、CD 满足的等量关系式是 ;(2) 将图1中的等腰Rt △ABO 绕O 点顺时针旋转α(045α︒<<︒),如图2,那么(1)中的结论②是否成立?请说明理由;(3) 将图1中的等腰Rt △ABO 绕O 点顺时针旋转α(),请你在图3中画出图形,并直接写出线段CA 、CO 、CD 满足的等量关系式 ;13.如图1,在中,,,点,分别在边,上,,连接,点,,分别为,,的中点.(1)观察猜想 图1中,线段与的数量关系是 ,位置关系是 ;(2)探究证明 把绕点逆时针方向旋转到图2的位置,连接,,,判断的形状,并说明理由; (3)拓展延伸 把绕点在平面内自由旋转,若,,请直接写出面积的最大值.14.已知∠MAN=135°,正方形ABCD绕点A旋转.(1)当正方形ABCD旋转到∠MAN的外部(顶点A除外)时,AM,AN分别与正方形ABCD 的边CB,CD的延长线交于点M,N,连接MN.①如图1,若BM=DN,则线段MN与BM+DN之间的数量关系是;②如图2,若BM≠DN,请判断①中的数量关系是否仍成立?若成立,请给予证明;若不成立,请说明理由;(2)如图3,当正方形ABCD旋转到∠MAN的内部(顶点A除外)时,AM,AN分别与直线BD交于点M,N,探究:以线段BM,MN,DN的长度为三边长的三角形是何种三角形,并说明理由.15.已知:如图,是由一个等边△ABE和一个矩形BCDE拼成的一个图形,其点B,C,D的坐标分别为(1,2),(1,1),(3,1).(1)直接写出E点和A点的坐标;(2)试以点B为位似中心,作出位似图形A1B1C1D1E1,使所作的图形与原图形的位似比为3∶1;(3)直接写出图形A1B1C1D1E1的面积.16.如图1,将长为10的线段OA绕点O旋转90°得到OB,点A的运动轨迹为»AB,P是半径OB上一动点,Q是»AB上的一动点,连接PQ.发现:∠POQ=________时,PQ有最大值,最大值为________;思考:(1)如图2,若P是OB中点,且QP⊥OB于点P,求»BQ的长;(2)如图3,将扇形AOB沿折痕AP折叠,使点B的对应点B′恰好落在OA的延长线上,求阴影部分面积;探究:如图4,将扇形OAB沿PQ折叠,使折叠后的弧QB′恰好与半径OA相切,切点为C,若OP=6,求点O到折痕PQ的距离.17.(本小题10分)将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(3,0),点B(0,1),点O(0,0).过边OA上的动点M(点M不与点O,A重合)作MN⊥AB 于点N,沿着MN折叠该纸片,得顶点A的对应点A′.设OM =m,折叠后的△A′MN与四边形OMNB重叠部分的面积为S.图①(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当S 3M的坐标(直接写出结果即可).18.如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°操作:将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF绕点E 旋转,并使边DE与边AB交于点P,边EF与边BC于点Q.探究一:在旋转过程中,(1)如图2,当1CEEA =时,EP 与EQ 满足怎样的数量关系?并给出证明; (2)如图3,当2CEEA=时,EP 与EQ 满足怎样的数量关系?并说明理由; (3)根据你对(1)、(2)的探究结果,试写出当CEm EA=时,EP 与EQ 满足的数量关系式为 ,其中m 的取值范围是 .(直接写出结论,不必证明) 探究二:若2CEEA=且AC =30cm ,连接PQ ,设△EPQ 的面积为S (cm 2),在旋转过程中: (1)S 是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由. (2)随着S 取不同的值,对应△EPQ 的个数有哪些变化,求出相应S 的值或取值范围.专题十 图形变换综合题探究专题【考题研究】本专题主要包括图形的变换和相似形.其中轴对称图形、平移、中心对称图形的识别,相似三角形性质以填空和选择题为主,主要是考查对图形的识别和性质;图形的折叠、平移、旋转与几何图形面积相关的计算问题以填空题和解答题为主,主要是考查对几何问题的综合运用能力;而相似三角形的性质及判断定的应用往往还会结合圆或者解直角三角形等问题一并考查,主要是以解答题为主。

2020年中考数学复习解答题专题练 图形的变换

2020年中考数学复习解答题专题练 图形的变换

2020年中考数学复习解答题专题练图形的变换1如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,将△ABC绕点C按逆时针方向旋转得到△A′B′C,此时点A′恰好在AB边上,求点B′与点B之间的距离.2. 如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿着射线BC的方向平移2个单位后,得到△A′B′C′,连接A′C,求△A′B′C的面积.3. 如图,方格图中每个小正方形的边长为1,点A,B,C都是格点.(1)画出△ABC关于直线BM对称的△A1B1C1.(2)写出AA1的长度.4.如图,在△ABC中,D,E分别是边AB,BC上的点,且DE∥AC,若S△BDE =4,S△CDE=16,求△ACD的面积.5. 如图,P,Q是方格纸中的两格点,请按要求画出以PQ为对角线的格点四边形.(1)在图中画出一个面积最小的PAQB.(2)在图中画出一个四边形PCQD,使其是轴对称图形而不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.6. 如图,在边长为a的正方形ABCD中,把边BC绕点B逆时针旋转60°,得到线段BM,连接AM并延长交CD于点N,连接MC,求△MNC的面积.7. 如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF经过点D.(1)求∠BDF的大小.(2)求CG的长.8. 如图,在菱形ABCD中,∠BAD=120°,点E,F分别在边AB,BC上,△BEF与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6√2,求FG的长.9. 如图,在△ABC中,∠A=90°,D为BC的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,试探索线段BE,EF,FC之间的数量关系.10阅读下面材料:小伟遇到这样一个问题:如图1,在正三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB的度数.小伟是这样思考的:如图2,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决.(1)请你回答:图1中∠APB的度数等于__150°__.(直接写答案)参考小伟同学思考问题的方法,解决下列问题:如图3,在正方形ABCD内有一点P,且PA=2√2,PB=1,PD=√17.(2)求∠APB的度数.(3)求正方形的边长.11.已知:△ABC中,∠C=90°,AC=BC,点M,N分别在AC,BC上,将△ABC沿MN折叠,顶点C恰好落在斜边上的P点.(1)如图1,当MN∥AB时,①求证:AM=MC;②PAPB =CM CN;(2)如图2,当MN与AB不平行时,PAPB =CMCN还成立吗?请说明理由.12.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为______;②线段AD,BE之间的数量关系为______. (2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.【解析】(1)∵∠ACB=∠DCE,∠DCB=∠DCB,∴∠ACD=∠BCE,在△ACD和△BCE中,{AC=BC,∠ACD=∠BCE, CD=CE,∴△ACD≌△BCE,∴AD=BE,∠CEB=∠ADC=180°-∠CDE=120°, ∴∠AEB=∠CEB-∠CED=60°.答案:①60°②AD=BE(2)∠AEB=90°,AE=BE+2CM.理由:∵△ACB和△DCE均为等腰直角三角形, ∴CA=CB,CD=CE,∠ACB=∠DCE=90°,∴∠ACD=∠BCE.在△ACD和△BCE中,{CA=CB,∠ACD=∠BCE, CD=CE,∴△ACD≌△BCE,∴AD=BE,∠ADC=∠BEC. ∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°,∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°,∴∠AEB=∠BEC-∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM,∴AE=AD+DE=BE+2CM.2020年中考数学复习解答题专题练图形的变换(解析版)1如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,将△ABC绕点C按逆时针方向旋转得到△A′B′C,此时点A′恰好在AB边上,求点B′与点B之间的距离.【解析】连接B′B.在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,所以BC=ACtan ∠A=6×tan60°=6√3,由旋转的性质得:A′C=AC=6,B′C=BC,∠ACA′=∠BCB′.又因为∠A=60°,所以∠ACA′=∠BCB′=∠A=60°,即△BCB′是等边三角形,所以BB′=BC=6√3.2.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿着射线BC的方向平移2个单位后,得到△A′B′C′,连接A′C,求△A′B′C的面积.【解析】∵△ABC沿着射线BC的方向平移2个单位后,得到△A′B′C′,∴A ′B ′=AB=4,∠A ′B ′C ′=∠B=60°,B ′C=6-2=4,过点A ′作A ′D ⊥B ′C 于点D,则A ′D=√32A ′B ′=√32×4=2√3,∴S △A ′B ′C =12B ′C ·A ′D=12×4×2√3=4√3.3. 如图,方格图中每个小正方形的边长为1,点A,B,C 都是格点.(1)画出△ABC 关于直线BM 对称的△A 1B 1C 1.(2)写出AA 1的长度.【解析】(1)作图如下:(2)由图直接读出AA 1=10.4.如图,在△ABC 中,D,E 分别是边AB,BC 上的点,且DE ∥AC,若S △BDE =4,S △CDE =16,求△ACD 的面积.【解析】∵S △BDE =4,S △CDE =16,∴S△BDE ∶S△CDE=1∶4,∵△BDE和△CDE的点D到BC的距离相等,∴BECE =14,∴BEBC=15,∵DE∥AC,∴△DBE∽△ABC,∴S△DBE ∶S△ABC=1∶25,5. 如图,P,Q是方格纸中的两格点,请按要求画出以PQ为对角线的格点四边形.(1)在图中画出一个面积最小的PAQB.(2)在图中画出一个四边形PCQD,使其是轴对称图形而不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.【解析】(1)答案不唯一.(2)答案不唯一.6. 如图,在边长为a的正方形ABCD中,把边BC绕点B逆时针旋转60°,得到线段BM,连接AM并延长交CD于点N,连接MC,求△MNC的面积.【解析】作MG ⊥BC 于点G,MH ⊥CD 于点H,则BG=GC,AB ∥MG ∥CD,∴AM=MN,∵MH ⊥CD,∠D=90°,∴MH ∥AD,∴NH=HD,由旋转变换的性质可知,△MBC 是等边三角形,∴MC=BC=a,由题意得,∠MCD=30°,∴MH=12MC=12a,CH=√32a,∴DH=a-√32a,∴CN=CH-NH=√32a-(a-√32a)=(√3-1)a,∴△MNC 的面积=12×a 2×(√3-1)a=√3-14a 2. 7. 如图,在Rt △ABC 中,∠C=90°,AB=10,AC=8.线段AD 由AB 绕点A 按逆时针方向旋转90°得到,△EFG 由△ABC 沿CB 方向平移得到,且直线EF 经过点D.(1)求∠BDF的大小.(2)求CG的长.【解析】(1)由旋转知,AB=AD,∠DAB=90°, ∴∠ABD=∠ADB=12(180°-90°)=45°,由平移知:DF∥AB,∴∠BDF=∠ABD,∴∠BDF=45°,(2)由平移知EG∥AC,EG=AC,∴四边形ACGE是平行四边形,又∠C=90°, ∴四边形ACGE是矩形,∴AE∥CF,∠EAC=90°,AE=CG,又∵∠DAB=90°,∴∠EAB+∠EAD=∠CAB+∠EAB,∴∠DAE=∠CAB,由(1)知DF∥AB,∴∠EDA+∠DAB=180°,∴∠EDA=90°,∠EDA=∠C,∴△AED∽△ABC,∴AEAB =AD AC,∴AE10=108,∴AE=252,∴CG=252.8. 如图,在菱形ABCD中,∠BAD=120°,点E,F分别在边AB,BC上,△BEF与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6√2,求FG的长.【解析】∵四边形ABCD是菱形,∠BAD=120°,∴AB=BC=CD=AD,∠CAB=∠CAD=60°,∴△ABC,△ACD是等边三角形.∵EG⊥AC,∴∠AEG=∠AGE=30°,∵∠B=∠EGF=60°,∴∠AGF=90°,∴FG⊥BC,=BC·FG,∴2·S△ABC×(6√2)2=6√2·FG,∴2×√34∴FG=3√6.9. 如图,在△ABC中,∠A=90°,D为BC的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,试探索线段BE,EF,FC之间的数量关系.解:FC2+BE2=EF2,理由如下:∵D为BC的中点,∴BD=CD,作△BDE关于点D成中心对称的△CDG,由中心对称的性质可得△BDE≌△CDG,∴CG=BE,∠DCG=∠B,又∵∠B+∠ACB=90°,∴∠DCG+∠ACB=90°,即∠FCG=90°,∴FC2+GC2=FG2,又由题意知FD为EG的中垂线,∴FG=EF,∴FC2+BE2=EF2.10阅读下面材料:小伟遇到这样一个问题:如图1,在正三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB的度数.小伟是这样思考的:如图2,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决.(1)请你回答:图1中∠APB的度数等于__150°__.(直接写答案)参考小伟同学思考问题的方法,解决下列问题:如图3,在正方形ABCD内有一点P,且PA=2√2,PB=1,PD=√17.(2)求∠APB的度数.(3)求正方形的边长.解:(1)150°(2)如图,把△APB绕点A逆时针旋转90°得到△ADP′,由旋转的性质,P′A=PA=2√2,P′D=PB=1,∠PAP′=90°,∴△APP ′是等腰直角三角形,∴PP ′=√2PA=√2×2√2=4,∠AP ′P=45°,∵PP ′2+P ′D 2=42+12=17,PD 2=(√17)2=17,∴PP ′2+P ′D 2=PD 2,∴∠PP ′D=90°,∴∠AP ′D=∠AP ′P+∠PP ′D=45°+90°=135°,故∠APB=∠AP ′D=135°.(3)∵∠APB+∠APP ′=135°+45°=180°,∴点P ′,P ,B 三点共线,过点A 作AE ⊥PP ′于E ,则AE=PE=12PP ′=12×4=2, ∴BE=PE+PB=2+1=3,在Rt △ABE 中,AB=√AE 2+BE 2=√22+32=√13.11.已知:△ABC 中,∠C=90°,AC=BC,点M,N 分别在AC,BC 上,将△ABC 沿MN 折叠,顶点C 恰好落在斜边上的P 点.(1)如图1,当MN ∥AB 时,①求证:AM=MC;②PA PB =CM CN ;(2)如图2,当MN 与AB 不平行时,PA PB =CM CN 还成立吗?请说明理由.【解析】(1)①由折叠可知∠CMN=∠NMP,CM=PM,∵MN ∥AB,∴∠CMN=∠A,∠NMP=∠MPA,∴∠A=∠MPA,∴MA=MP,∴AM=CM,②由①可知∠CMN=∠A=45°,∠CNM=∠B=45°,∠A=∠B=45°,∴MC=NC=AM=BN,∴∠PMA=∠PNB=90°,∴△APM ∽△BPN∴APPB =AMBN,∴APPB=CMCN;(2)成立,理由如下:过M,N分别作AB的垂线,垂足分别为E,F, 由题意可知,CM=PM,CN=PN,∠MPN=90°,∴∠MPE+∠NPF=90°,∵∠MPE+∠EMP=90°,∴∠EMP=∠NPF,∴△MEP∽△PFN,∴PMPN =MEPF=PENF,∵∠A=∠B=45°,ME⊥AP,NF⊥AB,∴△MAE和△NFB均为等腰直角三角形, ∴ME=AE,NF=BF,由△MEP∽△PFN,∴MEPE =PFNF,∴AEPE=PFBF,∴AE+PEPE =PF+BFBF,∴APPE=PBBF,∴APPB =PEBF=PENF,∴APPB=MPPN=CMCN.12.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为______;②线段AD,BE之间的数量关系为______. (2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.【解析】(1)∵∠ACB=∠DCE,∠DCB=∠DCB,∴∠ACD=∠BCE,在△ACD和△BCE中,{AC=BC,∠ACD=∠BCE, CD=CE,∴△ACD≌△BCE,∴AD=BE,∠CEB=∠ADC=180°-∠CDE=120°, ∴∠AEB=∠CEB-∠CED=60°.答案:①60°②AD=BE(2)∠AEB=90°,AE=BE+2CM.理由:∵△ACB和△DCE均为等腰直角三角形, ∴CA=CB,CD=CE,∠ACB=∠DCE=90°,∴∠ACD=∠BCE.在△ACD和△BCE中,{CA=CB,∠ACD=∠BCE, CD=CE,∴△ACD≌△BCE,∴AD=BE,∠ADC=∠BEC. ∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°,∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°,∴∠AEB=∠BEC-∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM,∴AE=AD+DE=BE+2CM.。

2020初中数学中考专题复习——图形变换旋转综合题填空题专项训练2(附答案详解)

2020初中数学中考专题复习——图形变换旋转综合题填空题专项训练2(附答案详解)

2020初中数学中考专题复习——图形变换旋转综合题填空题专项训练2(附答案详解)1.如图,把△ABC纸片沿DE折叠,点A落在四边形BCDE的外部,用∠1和∠2表示出∠A,则关系式是______.2.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=4,∠BAC=30°,则线段PM的最大值是___.3.如图,△ABC是边长为6的等边三角形,点D在边AB上,AD=2,点E是BC上一点连结DE,将DE绕点D逆时针旋转60°得DF,连结CF,则CF的最小值是_____.4.如图,已知在平面直角坐标系中,点A(0,3),点B为x轴上一动点,连接AB,线段AB绕着点B按顺时针方向旋转90°至线段CB,过点C作直线l∥y轴,在直线l上有一点D位于点C下方,满足CD=BO,则当点B从(﹣3,0)平移到(3,0)的过程中,点D的运动路径长为_____.5.如图,点P为∠MON平分线OC上一点,以点P为顶点的∠APB两边分别与射线OM、ON相交于点A、B,如果∠APB在绕点P旋转时始终满足OA•OB=OP2,我们就把∠APB叫做∠MON的关联角.如果∠MON=50°,∠APB是∠MON的关联角,那么∠APB的度数为_____.6.如图,已知在△ABC中,AB=3,AC=2,∠A=45o,将这个三角形绕点B旋转,使点A落在射线AC上的点A1处,点C落在点C1处,那么AC1=_____.7.如图,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点,作正方形DEFG,连接AE,若BC=DE=4,将正方形DEFG绕点D逆时针方向旋转,在旋转过程中,当AE为最大值时,则AF的值_____.8.如图,将△ABC绕点A顺时针旋转60°得到△AED,若AB=5,AC=4,BC=2,则BE的长为_____.9.如图,在等腰直角三角形ABC中,∠B=90°,将△ABC绕顶点A逆时针方向旋转60°后得到△AB'C',则∠BAC'等于_______.10.若把一次函数y kx b =+的图像先绕着原点旋转180︒,再向左平移2个单位长度后,恰好经过点40A -(,)和点02B (,),则原一次函数的表达式是____. 11.如图,将边长为3cm 的正方形ABCD 绕顶点B 逆时针旋转30°得到正方形EBCF ,则两个图形重叠部分(阴影部分)的面积为______cm 2.12.如图,正方形OABC 的边长为6,以O 为圆心,EF 为直径的半圆经过点A ,连接AE ,CF 相交于点P ,将正方形OABC 从OA 与OF 重合的位置开始,绕着点O 逆时针旋转90°,交点P 运动的路径长是______.13.如图,已知Rt △ABC 中,∠ACB=90°,AC=8,BC=6.将△ABC 绕点B 旋转得到△DBE ,点A 的对应点D 落在射线BC 上.直线AC 交DE 于点F ,那么CF 的长为______.14.如图,在等腰ABC ∆中,AB AC =,030B ∠=.以点B 为旋转中心,旋转030,点,A C 分别落在点','A C 处,直线,'AC AC 交于点D ,那么AD AC的值为_______.15.如图,在Rt△ABC中,∠ACB=90°,AB=2,点D为线段AB的中点,将线段BC绕点B顺时针旋转90°,得到线段BE,连接DE,则DE最大值是______.\16.如图,点A的坐标为(﹣1,0),AB⊥x轴,∠AOB=60°,点B在双曲线l上,将△AOB绕点B顺时针旋转90°得到△CDB,则点D_____双曲线l上(填“在”或“不在”).17.如图,在△ABC中,AB=AC=23,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为________.18.如图,△AOB的边OB在x轴上,AC⊥x轴于C,D为AC上一点,将△CBD沿BD翻折,使点C落在AB边上的E点.已知∠AOB=60°,AO=43,点B的坐标为(8+23,0),则点D的坐标为_____.19.如图,已知正方形ABCD的边长为2,以点A为圆心,1为半径作圆,E是⊙A上的任意一点,将点E绕点D按逆时针方向旋转90°得到点F,则线段AF的长的最小值_____.20.四边形ABCD 是边长为4的正方形,点P 是平面内一点.且满足BP ⊥PC ,现将点P 绕点D 顺时针旋转90度,则CQ 的最大值=___________.21.如图,直线l 1,l 2,l 3相交于点A 、B 、C ,得到△ABC ,其中∠ACB=90°,AC=6,BC=8,点O 在线段AC 上,且OA=2OC ,将△ABC 绕点O 旋转得到△A 1B 1C 1,当点A 1落在这三条直线上时,线段AA 1长是_______.22.小明将一副三角板中的两块直角三角尺的直角顶点C 按如图所示的方式叠放在一起,当∠ACE <180°且点E 在直线AC 的上方时,他发现若∠ACE =_____,则三角板BCE 有一条边与斜边AD 平行.(写出所有可能情况)23.如图,两块相同的三角板完全重合在一起,A 30∠=o ,AC 10=,把上面一块绕直角顶点B 逆时针旋转到A'BC'V 的位置,点C'在AC 上,A'C'与AB 相交于点D ,则BC'=______.24.已知ABC V 中,AC 2=,C 30∠=o ,点M 为边AC 中点,把BCM V 沿中线BM 125.如图,点O 是等边△ABC 内一点,∠AOB =110°.将△BOC 绕点C 按顺时针方向旋转60°得△ADC ,连接OD .当α为______度时,△AOD 是等腰三角形?26.定义:在平面直角坐标系中,一个图形先向右平移a 个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫作图形的()Y a,θ变换.如图,等边ABC V 的边长为1,点A 在第一象限,点B 与原点0重合,点C 在x 轴的正半轴上111.A B C V 就是ABC V 经()Y 1,180o 变换后所得的图形,则点1A 的坐标是______.27.如图,AOB V 中,AOB 90∠=o ,AO 3=,BO 6=,AOB V 绕顶点O 逆时针旋转到A'OB'V 处,此时线段A'B'与BO 的交点E 为BO 的中点,则线段B'E 的长度为______.28.如图,在正方形ABCD 中,点M 在CD 的边上,且DM=2,ΔAEM 与ΔADM 关于AM 所在的直线对称,将ΔADM 按顺时针方向绕点A 旋转90°得到ΔABF ,连接EF ,已知线段EF 34ABCD 的边长为_____29.Rt ABC ∆中,8AB =,6BC =,将它绕着斜边AC 中点O 逆时针旋转一定角度后得到'''A B C ∆,恰好使''//A B AC ,同时''A B 与,AB BC 分别交于点,E F ,则EF 的长为__________.30.如图,在△ABC 中,AC=BC=8,∠C=90°,点D 为BC 中点,将△ABC 绕点D 逆时针旋转45°,得到△A′B′C′,B′C′与AB 交于点E ,则S 四边形ACDE = .参考答案1.∠A=12(∠1-∠2)【解析】∵△A′ED是△AED翻折变换而成,∴∠A=∠A′,∵∠AFE是△A′DF的外角,∴∠AFE=∠A′+∠2,∵∠1是△AEF的外角,∴∠1=∠A+∠AFE,即∠1=∠A+∠A′+∠2=2∠A′+∠2,即∠A=12(∠1-∠2);故答案是∠A=12(∠1-∠2)。

2020中考数学图形的变化综合复习基础训练题(附答案)

2020中考数学图形的变化综合复习基础训练题(附答案)

2020中考数学图形的变化综合复习基础训练题(附答案)1.在平面直角坐标系中,以原点O 为位似中心,把△ABC 放大得到△A 1B 1C 1,使它们的相似比为1:2,若点A 的坐标为(2,2),则它的对应点A 1的坐标一定是( ) A .(﹣2,﹣2) B .(1,1)C .(4,4)D .(4,4)或(﹣4,﹣4)2.如果35b a =,则a ba-=( ) A .23 B .85C .25D .833.在平面直角坐标系中,点A (1,3)绕原点顺时针旋转90°,得到点A',则点A'的坐标为( ) A .(﹣3,1)B .(3,﹣1)C .(﹣1,3)D .(1,3)4.将点(4,2)A 向左平移2个单位长度得到点'A ,则点'A 的坐标是( ) A .(6,2)B .(4,0)C .(2,2)D .(4,4)5.如图,已知点D 、E 分别在ABC ∆的边AB 、AC 上,//DE BC ,点F 在CD 延长线上,//BC AF ,则下列结论错误的是( )A .DE AFAF BC= B .FD DCAE EC= C .AD AEAB AC= D .BD DEAB AF= 6.如图,点D 是△ABC 的边AB 上的一点,过点D 作BC 的平行线交AC 于点E ,连接BE ,过点D 作BE 的平行线交AC 于点F ,则下列结论错误的是( )A .AD AEBD EC=B .AF DFAE BE= C .AE AFEC FE= D .DE AFBC FE= 7.在下列图形中,不是中心对称图形的是( )A .B .C .D .8.在直角坐标中,将△ABC的三个顶点的纵坐标分别乘以-1,横坐标不变,则所得图形与原图的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.将原图向下平移1个单位9.如图,A(3,1),B(1,3),将∆AOB绕点O旋转1500后,得到∆A’OB’,则此时点A的对应点A’的坐标为()A.(-3,1)B.(-2,0)C.(-1,-3)或(-2,0)D.(-3,-1)或(-2,0)10.如图,在矩形ABCD中,AB=3,BC=4,O 为矩形ABCD对角线的交点,以D为圆心1为半径作⊙D,P为⊙D上的一个动点,连接AP、OP,则△AOP面积的最大值为()A.4 B.215C.358D.17411.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的余弦值是______.12.在比例尺是1:38000的交通游览图上,某隧道长约4cm,那么它的实际长度约为__m .13.圆内接正六边形的边长为6,则该正六边形的边心距为_____.14.在ABC ∆中,90ACB ∠=o ,点D 、E 分别在边BC 、AC 上,3AC AE =,45CDE ∠=o(如图),DCE ∆沿直线DE 翻折,翻折后的点C 落在ABC ∆内部的点F ,直线AF 与边BC 相交于点G ,如果BG AE =,那么tan B =__________.15.下列4种图案中,是中心对称图形的有_____个.16.用计算器计算:sin35°=_______________.(结果保留两个有效数字) 17.已知在ABC △中,∠C=90°,AC=3,AB=4,那么tanA=____________18.在直角坐标系中,点(1,1)A -,点(3,2)B ,P 是x 轴上的一点,则PA PB +的最小值是__________.19.小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数为,则电子表的实际时刻是_____.20.如图,已知四边形ABCD ,画四边形A 1B 1C 1D 1,使它与四边形ABCD 关于C 点中心对称.21.抛物线l1:y=x2+bx+c与它的对称轴x=﹣2交于点A,且经过点B(0,﹣2).(1)求抛物线l1的解析式;(2)如图1,直线y=kx+2k﹣8(k<0)与抛物线l1交于点E,F,若△AEF的面积为22,求k的值;(3)如图2,将抛物线l1向下平移n(n>0)个单位长度得到抛物线l2,抛物线l2与y 轴交于点C,过点C作x轴的平行线交抛物线l2于另一点D;抛物线l2的对称轴与x轴的交于点M,P为线段OC上一点,若△POM与△PCD相似,并且符合该条件的点P 有且只有2个,求n的值及相应点P的坐标.22.如图,在△ABC中,点D,E分别在边AB,AC上,∠ACD=∠B,DE∥BC.(1)求证:△ADE∽△ACD;(2)若DE=6,BC=10,求线段CD的长.23.(2015秋•抚州校级期中)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB 于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.(1)求线段CD的长;(2)当t为何值时,△CPQ与△ABC相似?(3)当t为何值时,△CPQ为等腰三角形?24.在直角坐标系中△ABC三个顶点坐标分别为A(7,1)、B(8,2)、C(9,0).(1)请在图中画出△ABC的一个以点P (12,0)为位似中心,相似比为3的位似图形△A′B′C′(要求与△ABC同在P点一侧);(2)请直接写出点B′及点C′的坐标;(3)求线段BC的对应线段B′C′所在直线的解析式.25.如图,将绕着点B顺时针旋转至,使得C点落在AB的延长线上的D 点处,的边BC恰好是的角平分线.(1)试求旋转角的度数;(2)设BE与AC的交点为点P,求证:.26.(数学概念)若四边形ABCD的四条边满足AB⋅CD=AD⋅BC,则称四边形ABCD是和谐四边形.(特例辨别)(1)下列四边形:①平行四边形,②矩形,③菱形,④正方形.其中一定是和谐四边形的是________.(概念判定)(2)如图①,过⊙O外一点P引圆的两条切线PS、PT,切点分别为A、C,过点P作一条射线PM,分别交⊙O于点B、D,连接AB、BC、CD、DA.求证:四边形ABCD 是和谐四边形.(知识应用)(3)如图②,CD是⊙O的直径,和谐四边形ABCD内接于⊙O,且BC AD.请直接写出AB与CD的关系.27.在Rt△ABC中,BC=2,AC=4,点D为AB的中点,P为AC边上一动点.△BDP 沿着PD所在的直线翻折,点B的对应点为E.(1)若PD⊥AB,求AP.(2)当AD=PE时,求证:四边形BDEP为菱形.(3)若△PDE与△ABC重合部分的面积等于△PAB面积的14,求AP.参考答案1.D【解析】【分析】根据如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k进行解答.【详解】∵以原点O为位似中心,相似比为:1:2,把△ABC放大得到△A1B1C1,点A的坐标为(2,2),则它的对应点A1的坐标一定为:(4,4)或(-4,-4),故选D.【点睛】本题考查了位似变换:位似图形与坐标,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.2.C【解析】【分析】根据两內项之积等于两外项之积用b表示出a,然后代入比例式进行计算即可得解.【详解】解:∵35ba=,∴a=53 b,∴a ba-=5b-b35b3=25.故选:C.【点睛】本题考查了比例的性质,熟记“两內项之积等于两外项之积”,并用b表示出a是解题的关键.3.B【解析】【分析】如图,作AE⊥x轴于E,A′F⊥x轴于F.利用全等三角形的性质解决问题即可.【详解】如图,作AE⊥x轴于E,A′F⊥x轴于F.∵∠AEO=∠OFA′=∠AOA′=90︒,∴∠AOE+∠A′OF=90︒,∠A′OF+∠A′=90︒,∴∠AOE=∠A′,∵OA=OA′,∴△AOE≌△OA′F(AAS),∴OF=AE3,A′F=OE=1,∴A′3,﹣1).故选:B.【点睛】本题考查旋转变换,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.4.C【解析】【分析】让点A的横坐标减2,纵坐标不变,可得A′的坐标.【详解】解:将点A(4,2)向左平移2个单位长度得到点A′,则点A′的坐标是(4−2,2),即(2,2),故选:C.【点睛】本题考查坐标的平移变化,用到的知识点为:左右平移只改变点的横坐标,左减右加.5.A【解析】【分析】由AF∥BC,DE∥BC,得到AF∥DE,根据平行线分线段成比例定理即可得到结论.【详解】∵AF∥BC,DE∥BC,∴AF∥DE,∴DE CDAF CF=,,AF DFBC CD=∴DE AFAF BC≠故A错误,∵AF∥DE,∴FD DCAE EC=,故B正确,∵DE∥BC,∴AD AEAB AC=,故C正确,∵AF∥DE,∴DE CD AF CF=,∵AF∥BC,∴BD CD AB CF=,∴BD DEAB AF=,故D正确,故选:A.【点睛】考查平行线分线段成比例定理,三条平行线被两条直线所截,所得的对应线段成比例.6.D【解析】【分析】由平行线分线段成比例和相似三角形的性质进行判断. 【详解】∵DE//BC,∴AD AEBD EC=,故A正确;∵DF//BE,∴△ADF∽△ABF, ∴AF DFAE BE=,故B正确;∵DF//BE,∴AD AFBD FE=,∵AD AEBD EC=,∴AE AFEC FE=,故C正确;∵DE//BC,∴△ADE∽△ABC,∴DE ADBC AB=,∵DF//BE,∴AF ADAE AB=,∴DE AFBC AE=,故D错误.故选D.【点睛】本题考查平行线分线段成比例性质,相似三角形的性质,由平行线得出比例关系是关键. 7.C【解析】【分析】根据中心对称图形的概念,对各选项分析判断即可得解.【详解】解:A、是中心对称图形,故本选项不符合题意;B、是中心对称图形,故本选项不符合题意;C、不是中心对称图形,故本选项符合题意;D、是中心对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8.A【解析】纵坐标都乘以−1,即纵坐标变为相反数,横坐标不变,符合关于x轴对称,故选:A. 9.C. 【解析】 试题分析:∵A (3,1),B (1,3),∴tanα=1333=, ∴OA 与x 轴正半轴夹角为30°,OB 与y 轴正半轴夹角为30°,∴∠AOB=90°-30°-30°=30°,根据勾股定理,22(3)12OA =+=,221(3)2OB =+=,①如图1,顺时针旋转时,∵150°+30°=180°,∴点A′、B 关于原点O 成中心对称,∴点A′(-1,-3);②如图2,逆时针旋转时,∵150°+30°=180°,∴点A′在x 轴负半轴上,∴点A′的坐标是(-2,0).综上所述,点A′的坐标为(-1,-3)或(-2,0).故选C.考点: 坐标与图形变化-旋转.10.D【解析】【详解】解:当P点移动到平行于OA且与⊙D相切时,△AOP面积的最大,如图,∵P是⊙D的切线,∴DP垂直与切线,延长PD交AC于M,则DM⊥AC,∵在矩形ABCD中,AB=3,BC=4,∴AC= 22AB BC+=5,∴OA= 52,∵∠AMD=∠ADC=90°,∠DAM=∠CAD,∴△ADM∽△ACD,∴DM AD CD AC=,∵AD=4,CD=3,AC=5,∴DM= 125,∴PM=PD+DM=1+ 125=175,∴△AOP的最大面积= 12OA•PM=1517225⨯⨯=174,故选D.【点睛】本题考查了圆的切线的性质,矩形的性质,平行线的性质,勾股定理的应用以及三角形相似的判定和性质,本题的关键是判断出P 处于什么位置时面积最大.11.【解析】试题分析:∵∠AED 与∠ABC 都对, ∴∠AED=∠ABC ,在Rt △ABC 中,AB=2,AC=1,根据勾股定理得:BC=, 则cos ∠AED=cos ∠ABC==. 考点:1.圆周角定理;2.勾股定理;3.锐角三角函数的定义.12.1520【解析】【分析】根据游览图上的距离与实际距离的比就是比例尺,列出比例式求解即可.【详解】设隧道的实际长度是xcm ,根据题意得:4:1:38000x =.解得:1520001520x cm ==米.故答案为:1520【点睛】本题主要考查了比例尺的含义,实际就是比例的问题.13.3【解析】【分析】根据题意画出图形,利用等边三角形的性质及锐角三角函数的定义直接计算即可.【详解】如图所示,连接OB 、OC ,过O 作OG ⊥BC 于G .∵此多边形是正六边形,∴△OBC 是等边三角形,∴∠OBG =60°,∴边心距OG =OB •sin ∠OBG =63⨯=33(cm ). 故答案为:33.【点睛】本题考查了正多边形与圆、锐角三角函数的定义及特殊角的三角函数值,熟知正六边形的性质是解答本题的关键.14.37【解析】 【分析】 设k AE BG == ,()3k k 0AG =≠ ,可得2k EC = ,由折叠的性质可得2k EF EC == ,45FED DEC ==︒∠∠ ,根据相似三角形的性质可得13AE EF AC GC == ,即36k GC EF == ,即可求tan B 的值 .【详解】根据题意,标记下图∵90ACB ∠=︒ ,45CDE ∠=︒∴45DEC ∠=︒∵3AC AE =∴设k AE BG == ,()3k k 0AG =≠∴2k EC =∵DEF V 由CDE △ 折叠得到∴2k EF EC == ,45FED DEC ==︒∠∠∴90FEC ∠=︒ ,且90ACB ∠=︒∴EF BC ∥∴AEF ACG ∽△△∴13AE EF AC GC == ∴36k GC EF ==∴7k BC BG GC =+=∴3tan =7AC B BC = 故答案为37 .【点睛】本题考查了三角形的折叠问题,理解折叠后的等量关系,利用代数式求出tan B 的值即可.15.2【解析】【分析】根据中心对称图形的概念即可求解.【详解】第1个图形,是中心对称图形,符合题意;第2个图形,不是中心对称图形,不符合题意;第3个图形,是中心对称图形,符合题意;第4个图形,不是中心对称图形,不符合题意.故答案为:2.【点睛】本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后两部分重合.16.0.57【解析】试题解析:先按键“sin”,再输入“35”,最后按键“=”;sin350.57360.57.≈≈o故答案为0.57.点睛:有效数字:从左边第一个不是0的数字算起,到末尾数字为止都是有效数字. 17.7 【解析】【分析】先利用勾股定理计算BC 的长度,然后根据三角函数的定义可求得tanA 的值.【详解】如图,在Rt △ABC 中,∵∠C=90°,AC=3,AB=4∴根据勾股定理2222437BC AB AC =-=-=. ∴7tan 3BC A AC == . 故填7.【点睛】本题考查锐角三角函数的定义,解决本题需注意①熟记正切的计算方法是解决本题的关键;②可先根据题意画出相应的图象,这样方便正确找出对应的线段.18.5【解析】【分析】作点A 关于x 轴的对称点A’,连接A’B ,则A’B 的长就是PA PB +的最小值,然后结合图象利用勾股定理求解即可.【详解】解:如图,作点A关于x轴的对称点A’,连接A’B交x轴于点P’,则P’的位置就是符合题+的最小值,意的P点位置,A’B的长就是PA PB由图象可得:A’(-1,-1),B(3,2),+的最小值是5,∴A’B=22345+=,即PA PB故答案为:5.【点睛】本题考查了轴对称-最短路径问题以及勾股定理的应用,熟练掌握求最短路径问题的方法是解题的关键.19.10:50【解析】【分析】镜子中看到的数字与实际数字是关于镜面成垂直的线对称.注意镜子的2实际应为5.【详解】解:电子表的实际时刻是10:50,可以把给定的读数写在纸上,然后把纸翻过来看到的读数就是实际读数.故答案为10:50【点睛】此题考查镜面对称,解题关键在于掌握对于这类题型常用的解题方法为把给定的读数写在纸上,然后把纸翻过来看到的读数就是实际读数.20.见解析【解析】试题分析:分别画出A、B、C、D各点关于点C的对称点,然后顺次连接即可.解:四边形A1B1C1D1如图所示.21.(1)y =x 2+4x ﹣2;(2)k =﹣4;(3)当n =2﹣2时,点P 的坐标为(0,﹣2)和(0,﹣23);当n =4时,点P 坐标为(0,﹣2)和(0,﹣4). 【解析】【分析】(1)待定系数法求解可得;(2)设直线y=kx+2k-8与抛物线l 1的对称轴交点为G ,则G (-2,-8),由顶点A 坐标知AG=2,由S △AEF =S △AGE -S △AGF =12AG•(-2-x E )-12AG•(-2-x F )=12AG•(x F -x E )2知x F -x E =22,再联立得24228y x x y kx k ⎧=+-⎨=+-⎩,消去y 整理得x 2+(4-k )x-2k+6=0,据此知248k k x -±-=,继而得出x F -x E 28k -k 的方程,解之可得答案; (3)分△PCD ∽△MOP 和△PCD ∽△POM 得出t 关于n 的关系式,再根据符合该条件的点P 有且只有两个,进一步求解可得.【详解】解:(1)∵y =x 2+bx +c 与它的对称轴x =﹣2交于点A ,且经过点B (0,﹣2) ∴可得222b c ⎧-=-⎪⎨⎪=-⎩,解得42b c =⎧⎨=-⎩, ∴抛物线l 1的解析式为y =x 2+4x ﹣2.(2)如图1,设直线y =kx +2k ﹣8与抛物线l 1的对称轴交点为G ,则G (﹣2,﹣8),又可得抛物线l 1的顶点A (﹣2,﹣6), ∴AG =2,S △AEF =S △AGE ﹣S △AGF11(2)(2)22E F AG x AG x =----- 1()2F E AG x x =- 又∵S △AEF =2,AG =2,∴x F ﹣x E =2,将抛物线l 1与直线y =kx +2k ﹣8联立得24228y x x y kx k ⎧=+-⎨=+-⎩,消去y 得x 2+4x ﹣2=kx +2k ﹣8,整理得x 2+(4﹣k )x ﹣2k +6=0,得2482k k x -±-=, ∴x F ﹣x E 28k - 2822k -=解得k =±4, 又k <0,∴k =﹣4.(3)设抛物线l 2的解析式为y =x 2+4x ﹣2﹣m , ∴C (0,﹣2﹣n ),D (﹣4,﹣2﹣n ),M (﹣2,0) 设P (0,t ).①当△PCD∽△MOP时,PC MO CD OP=,∴224t nt ++=-,∴t2+(n+2)t+8=0;②当△PCD∽△POM时,PC PO CD OM=,∴242t n t ++-=,∴t=23n+ -;(Ⅰ)当方程①有两个相等实数根时,△=(n+2)2﹣4×1×8=0,解得n=±2﹣2,又n>0,∴n=2﹣2,此时方程①有两个相等实根t1=t2=﹣2,方程②有一个实数根t=423 -;∴n=2﹣2,此时点P的坐标为(0,﹣2)和(0,423 -);(Ⅱ)当方程①有两个不相等的实数根时,把②代入①,得:22(2)(2)8093n n++-+=,即(n+2)2=36,解得n1=4,n2=﹣8,又n>0,∴n=4,此时方程①有两个不相等的实数根,t1=﹣2,t2=﹣4,方程①有一个实数根t=﹣2;∴n=4,此时点P坐标为(0,﹣2)和(0,﹣4),综上,当n=﹣2时,点P的坐标为(0,﹣)和(0,3-);当n=4时,点P坐标为(0,﹣2)和(0,﹣4).【点睛】本题是二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、割补法求三角形的面积、相似三角形的判定与性质及一元二次方程根的判别式等知识点.22.(1)证明见解析;(2)【解析】【分析】(1)由DE∥BC可得∠ADE=∠B,∠ACD=∠B,则∠ADE=∠ACD,结论得证;(2)可证△CDE∽△BCD,由比例线段可求出线段CD的长.【详解】(1)证明:∵DE∥BC∴∠ADE=∠B,∵∠ACD=∠B,∴∠ADE=∠ACD,∵∠DAE=∠CAD,∴△ADE∽△ACD;(2)解:∵DE∥BC,∴∠BCD=∠EDC,∵∠B=∠DCE,∴△CDE∽△BCD,∴DECD=CDBC,∴610CD CD,∴CD=215.【点睛】本题主要考查了相似三角形的判定和性质,找准对应边是解题的关键.23.(1)4.8.(2)t为3或;(3)当t为2.4秒或秒或秒时,△CPQ为等腰三角形.【解析】试题分析:(1)先根据勾股定理求出AB的长,再由三角形的面积公式即可得出结论;(2)先用t表示出DP,CQ,CP的长,再分PQ⊥CD与PQ⊥AC两种情况进行讨论;(3)根据题意画出图形,分CQ=CP,PQ=PC,QC=QP三种情况进行讨论.解:(1)∵∠ACB=90°,AC=8,BC=6,∴AB=10.∵CD⊥AB,∴S△ABC=BC•AC=AB•CD.∴CD===4.8.∴线段CD的长为4.8.(2)由题可知有两种情形,设DP=t,CQ=t.则CP=4.8﹣t.①当PQ⊥CD时,如图a∵△QCP∽△△ABC∴=,即=,∴t=3;②当PQ⊥AC,如图b.∵△PCQ∽△ABC∴=,即=,解得t=,∴当t为3或时,△CPQ与△△ABC相似;(3)①若CQ=CP,如图1,则t=4.8﹣t.解得:t=2.4.②若PQ=PC,如图2所示.∵PQ=PC,PH⊥QC,∴QH=CH=QC=.∵△CHP∽△BCA.∴=.∴=,解得t=.③若QC=QP,过点Q作QE⊥CP,垂足为E,如图3所示.同理可得:t=.综上所述:当t为2.4秒或秒或秒时,△CPQ为等腰三角形.考点:相似形综合题.24.(1)见解析;(2)B′(0,6),C′(3,0);(3)y=﹣2x+6.【解析】【分析】(1)根据画位似图形的一般步骤和相似比找出图形;(2)根据相似比和相似三角形的性质求出点B′及点C′的坐标;(3)运用待定系数法求出一次函数解析式.【详解】解:(1)如图△A′B′C′即为所求;(2)∵△ABC与△A′B′C′的相似比为1:3,∴B′(0,6),C′(3,0);(3)设B′C′所在直线的解析式为y=kx+b,,解得,∴B′C′所在直线的解析式y=﹣2x+6.【点睛】本题考查的知识点是作图-图形变换,解题关键是注意画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.25.(1);(2)证明见解析.【解析】【分析】(1)根据旋转的性质,得到∠ABC=EBD,由BC平分∠EBD,得到∠ABE=∠EBC=∠CBD,根据平角定义,即可得到答案;(2)由(1)知,∠EBC=∠CBD=60°,由三角形外角定理可得,则即可得到结论成立.【详解】(1)解:由旋转的性质,得:∠ABC=∠EBD,即,∴∠ABE=∠CBD,∵BC平分∠EBD,∴∠EBC=∠CBD,∴∠ABE=∠EBC=∠CBD,∵∠ABE+∠EBC+∠CBD=180°,∴∠CBD=60°.(2)证明:如图,BE 与AC 相交与点P ,DE 与AC 相交与点F ,由(1)知,∠EBC=∠CBD=60°,由三角形外角定理,得:∠APB=∠EBC+∠C=60°+∠C ,∠CBD=∠A+∠C=60°, ∴∠APB=∠A+2∠C∴∠APB>∠A ,结论成立.【点睛】本题考查了旋转的性质,角平分线定理,三角形外角定理,解题的关键是正确找出角之间的关系.26.③④【解析】 分析:(1)由于菱形和正方形的四条边相等,因此对边的乘积相等,所以菱形和正方形是和谐四边形;(2)连接CO 并延长,交⊙O 于点E ,连接BE .通过证明△PBC ∽△PCD ,得CB PC CD PD =.同理,AB PA AD PD =.由P A 、PC 为⊙O 的切线,得P A =PC ,故CB AB CD AD=,所以AB ⋅CD =AD ⋅BC ,所以四边形ABCD 是和谐四边形.(3)AB ∥CD ,CD =3AB .详解:(1)③④.(2)证明:连接CO 并延长,交⊙O 于点E ,连接BE .∵PT是⊙O的切线,切点为C,∴∠PCE=90°.∴∠PCB+∠ECB=90°.∵CE是⊙O的直径,∴∠CBE=90°,∴∠BEC+∠ECB=90°,∴∠BEC=∠PCB.又∵∠BEC=∠BDC,∴∠PCB=∠BDC.又∵∠BPC=∠CPD,∴△PBC∽△PCD,∴CB PC CD PD=.同理,AB PA AD PD=.∵P A、PC为⊙O的切线,∴P A=PC,∴CB AB CD AD=.∴AB⋅CD=AD⋅BC.∴四边形ABCD是和谐四边形.(3)AB∥CD,CD=3AB.点睛:解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.27.(1)52;(2)见解析:(3) AP=35【解析】【分析】(1)如图1,根据勾股定理可求出AB,从而得到AD、BD的值,易证△ADP∽△ACB,只需运用相似三角形的性质就可求出AP的值;(2)由折叠可得:PE=PB,DE=DB,又有AD=PE,AD=DB,从而PE=PB=DB=DE,然后根据四条边相等的四边形形是菱形即可证明四边形BDEP为菱形;(3)根据条件可得S△PDF=14S△P AB=12S△ADP=12S△EDP,从而可得AF=PF,EF=DF.而符合条件的位置有两个(图3、图4),需分两种情况讨论:①如图3,根据三角形中位线定理可得DF∥BP,则有∠EDP=∠BPD.由折叠可得∠BDP=∠EDP,从而可得∠BDP=∠BPD,即可得到BP=BD=25,在Rt△BCP中运用勾股定理可求出PC,就可得到AP的值;②如图4,连接AE,由AF=PF,EF=DF可得四边形AEDP是平行四边形,则有AP=ED,由折叠可得DE=DB,即可得到AP=DB=25.【详解】解:(1)如图1,∵∠C=90°,BC=2,AC=4,∴AB==2.∵点D为AB的中点,∴AD=BD=.∵PD⊥AB,∴∠ADP=90°.∵∠A=∠A,∠ADP=∠C,∴△ADP∽△ACB,∴=,∴=,∴AP=;(2)证明:如图2,由折叠可得:PE=PB,DE=DB.∵AD=PE,AD=DB,∴PE=PB=DB=DE,∴四边形BDEP为菱形;(3)∵点D是线段AB的中点,∴S△ADP=S△BDP=S△PAB.由折叠可得:S△EDP=S△BDP,∴S△PDF=S△PAB=S△ADP=S△EDP,∴AF=PF,EF=DF.①如图3,根据三角形中位线定理可得:DF∥BP,∴∠EDP=∠BPD.由折叠可得∠BDP=∠EDP,∴∠BDP=∠BPD,∴BP=BD=,∴PC===1,∴AP=4﹣1=3;②如图4,连接AE,∵AF=DF,EF=PF,∴四边形AEDP是平行四边形,∴AP=ED,由折叠可得:DE=DB,∴AP=DB=.综上所述:AP=3或.【点睛】本题考查了勾股定理,相似三角形的判定与性质,折叠的性质,菱形的判定,三角形的中位线,平行四边形的判定与性质及分类讨论的数学思想.证明△ADP∽△ACB是解答(1)的关键,熟练掌握菱形的判定方法是解(2)的关键,分两种情况讨论是解答(3)的关键.。

2020年中考数学图形的变换专题(附答案)

2020年中考数学图形的变换专题(附答案)

2020年中考数学图形的变换专题(附答案)一、单选题(共12题;共24分)1.若△ABC与△DEF的相似比是3:2,△DEF的最长边是6cm,那么△ABC的最长边是()A. 4cmB. 9cmC. 4cm或9cmD. 以上答案都不对2.如果五边形ABCDE∽五边形POGMN且对应高之比为3:2,那么五边形ABCDE和五边形POGMN的面积之比是()A. 2:3B. 3:2C. 6:4D. 9:43.如图,在直角坐标系中,将矩形OABC沿OB对折,使点A落在A1处,已知OA=,AB=1,则点A1的坐标是( )A. (,)B. (,3)C. (,)D. (,)4.如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为()(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).A. 5.1米B. 6.3米C. 7.1米D. 9.2米5.设a、b、c分别为△ABC中∠A,∠B和∠C的对边,则△ABC的面积为()A. B. C. D.6.如图,在ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:① :②S△BCE=36:③S△ABE=12:④△AEF∽△ACD;其中一定正确的是()A. ①②③④B. ①④C. ②③④D. ①②③7.如图,E是平行四边形ABCD的边AB延长线上一点,DE交BC于F,连接AF,CE.则图中与△ABF面积一定相等的三角形是()A. △BEFB. △DCFC. △ECFD. △EBC8.如图,一把梯子靠在垂直水平地面的墙上,梯子AB的长是3米。

若梯子与地面的夹角为α,则梯子顶端到地面的距离BC为()A. 3sina米B. 3cosa米。

2020初中数学中考专题复习——图形变换旋转综合题专项训练(附答案详解)

2020初中数学中考专题复习——图形变换旋转综合题专项训练(附答案详解)

A.1 个
B.2 个
C.3 个
D.4 个
15.在 Rt△ ABC 中,AC=BC,点 D 为 AB 中点.∠GDH=90°,∠GDH 绕点 D 旋转,
DG,DH 分别与边 AC,BC 交于 E,F 两点.下列结论:①AE+BF=AC,②AE2+BF2
=EF2,③S = 四边形 CEDF 1 S△ ABC,④△DEF 始终为等腰直角三角形.其中正确的是(
A.45°
B.60°
C.70°
D.90°
14.如图,把 Rt△ ABC 绕顶点 C 顺时针旋转 90°得到 Rt△ DFC,若直线 DF 垂直平分
AB,垂足为点 E,连接 BF,CE,且 BC=2,下面四个结论:①BF= 2 2 ;②∠CBF=45°;
③△BEC 的面积=△ FBC 的面积;④△ECD 的面积为 2 2 3 ,其中正确的结论有( )
经过的路径为 BD ,则图中阴影部分的面积是( )
A. 2 3
B. 4 3
C.4π
D.条件不足,无法计算
21.如图,平面直角坐标系中,矩形 OABC 的顶点 A(﹣6,0),C(0,2 3 ).将矩
形 OABC 绕点 O 顺时针方向旋转,使点 A 恰好落在 OB 上的点 A1 处,则点 B 的对应 点 B1 的坐标为_____.
2020 初中数学中考专题复习——图形变换旋转综合题专项训练(附答案详解) 1.已知正方形 MNKO 和正六边形 ABCDEF 边长均为 1,把正方形放在正六边形外边, 使 OK 边与 AB 边重合,如图所示.按下列步骤操作: 将正方形在正六边形外绕点 B 顺时针旋转,使 KN 边与 BC 边重合,完成第一次旋转;再绕点 C 顺时针旋转,使 NM 边与 CD 边重合,完成第二次旋转;……在这样连续 6 次旋转的过程中,点 M 在图中 直角坐标系中的纵坐标可能是( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年中考数学必考经典题讲练案【苏科版】专题15图形的变换综合问题【方法指导】1.图形的平移:①平移后,对应线段相等且平行,对应点所连的线段相等且平行;②平移后,对应角相等且对应角的两边分别平行、方向相同;③平移不改变图形的形状和大小,只改变图形的位置,平移后新旧两个图形全等.2.图形的旋转:①在图形旋转过程中,图形上每一个点都绕旋转中心沿相同方向转动了相同角度;②注意每一对对应点与旋转中心的连线所成的角度都叫旋转角,旋转角都相等;③对应点到旋转中心的距离相等.3.图形的轴对称:如果一个平面图形沿着一条直线折叠,直线两旁的部分能够重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;反过来,成轴对称的两个图形中,对应点的连线被对称轴垂直平分.4.图形的中心对称:①关于中心对称的两个图形是全等形;②关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分;③关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等. 【题型剖析】【类型1】翻折变换问题1.(2019秋•苏州期末)如图,将矩形ABCD沿对角线AC折叠,点B的对应点为点B',AB与CD相交于点F,若3AB=,1sin2CAB∠=,则DF的长度是()A.1B.2C3D.3【分析】根据1sin2CAB∠=可得30CAB∠=︒,根据翻折和矩形性质可得FAC∆是等腰三角形,30DAF∠=︒,再根据锐角三角函数即可求解.【解答】解:1 sin2CAB∠=30CAB ∴∠=︒折叠可知:30FAC BAC ∠=∠=︒四边形ABCD 是矩形,//DC AB ∴,90D ∠=︒,3DC AB ==30FCA CAB ∴∠=∠=︒,FC FA ∴=,30DAF ∠=︒3FA FC DC FD FD ==-=-sin DF DAF AF ∴∠=132DF DF =- 解得1DF =.所以DF 的长为1.故选:A .【点评】本题考查了翻折变换、矩形的性质、解直角三角形,解决本题的关键是利用特殊角的三角函数.【变式1-1】(2019秋•滨湖区期末)如图,等边三角形ABC 的边长为5,D 、E 分别是边AB 、AC 上的点,将ADE ∆沿DE 折叠,点A 恰好落在BC 边上的点F 处,若2BF =,则BD 的长是( )A .2B .3C .218D .247【分析】根据折叠得出60DFE A ∠=∠=︒,AD DF =,AE EF =,设BD x =,5AD DF x ==-,求出DFB FEC ∠=∠,证DBF FCE ∆∆∽,进而利用相似三角形的性质解答即可.【解答】解:ABC ∆是等边三角形,60A B C ∴∠=∠=∠=︒,5AB BC AC ===,沿DE 折叠A 落在BC 边上的点F 上,ADE FDE ∴∆≅∆,60DFE A ∴∠=∠=︒,AD DF =,AE EF =,设BD x =,5AD DF x ==-,CE y =,5AE y =-,2BF =,5BC =,3CF ∴=,60C ∠=︒,60DFE ∠=︒,120EFC FEC ∴∠+∠=︒,120DFB EFC ∠+∠=︒,DFB FEC ∴∠=∠,C B ∠=∠,DBF FCE ∴∆∆∽, ∴BD BF DF FC CE EF ==, 即2535x x y y -==-, 解得:218x =, 即218BD =, 故选:C .【变式1-2】(2019秋•赣榆区期末)如图,矩形ABCD 中,6AB =,12BC =,如果将该矩形沿对角线BD 折叠,那么图中阴影部分BED ∆的面积是( )A .18B .22.5C .36D .45【分析】根据折叠的性质得到CBD EBD ∠=∠,而CBD BDE ∠=∠,则EBD EDB ∠=∠,得BE ED =,然后设DE x =,则12AE x =-,在Rt ABE ∆中,利用勾股定理得到关于x 的方程,解方程求出x ,最后根据三角形的面积公式计算即可.【解答】解:将该矩形沿对角线BD 折叠,CBD EBD ∴∠=∠,而CBD BDE ∠=∠,EBD EDB ∴∠=∠,BE ED ∴=,6AB =,12BC =设DE x =,则12AE x =-,在Rt ABE ∆中,222AB AE BE +=,即2226(12)x x +-=, 解得:152x = 1115622.5222BED S DE AB ∆∴=⨯⨯=⨯⨯= 故选:B .【变式1-3】(2018秋•崇川区校级期末)如图,将长方形纸片ABCD 沿对角线AC 折叠,点B 落在点E 处,10AB =,5AD =,下列结论中正确的有( ).①AFC ∆是等腰三角形②ADF ∆的面积是758③点B 与点E 关于AC 对称④若直线AD 与直线CE 交于点G ,那么直线FG 垂直平分ACA .1 个B .2 个C .3 个D .4 个【分析】①根据折叠和矩形的性质即可证明AFC ∆是等腰三角形;②根据勾股定理可求得DF 的长进而得结论正确;③根据线段垂直平分线的判定可证得AC 是BE 的垂直平分线,得结论正确;④根据三角形全等证明EG DG =,从而得GA GC =,又FA FC =,可得GF 是AC 的垂直平分线,得结论正确.【解答】解:如图所示:①四边形ABCD 为矩形//DC AB ∴,FCA CAB ∴∠=∠,由折叠可知:FAC CAB ∠=∠,FCA FAC ∴∠=∠,FA FC ∴=,AFC ∴∆是等腰三角形.∴①正确;②设DF x =,则10FC FA x ==-,5AD =,∴在Rt ADF ∆中,2225(10)x x +=-,解得154x =, 11157552248ADF S DF AD ∆∴==⨯⨯=. ADF ∴∆的面积为758. ∴②正确;③AB AE =,CB CE =,AC ∴是BE 的垂直平分线,∴点B 与点E 关于AC 对称.∴③正确;④如图:延长AD 和CE 交于点G ,连接GF ,FD FE=,FG FG=,Rt GDF Rt GEF(HL)∴∆≅∆,GD GE∴=,又AD CE=,GA GC∴=,FD FE=,FG∴是AC的垂直平分线,∴④正确.故选:D.【类型2】对称:最短路径问题【例2】(2019秋•金坛区期中)如图,已知45MON∠=︒,点A、B在边ON上,3OA=,点C是边OM上一个动点,若ABC∆周长的最小值是6,则AB的长是()A.12B.34C.56D.1【分析】作点A关于OM的对称点D,连接BD交OM于点C,此时ABC∆的周长最小,再根据勾股定理即可求解.【解答】解:如图:作点A关于OM的对称点D,连接BD,交OM于点C,AC DC∴=,此时ABC∆周长最小,ABC∴∆周长为:AC BC AB DC BC AB BD AB++=++=+,6BD AB∴+=,45MON∠=︒,根据对称性:45DOC ∠=︒,3OD OA ==,90DOB ∴∠=︒,在Rt DOB ∆中,6BD AB =-,3OB AB =+,∴根据勾股定理,得222OB OD BD +=即222(3)3(6)AB AB ++=-1AB ∴=.故选:D .【点评】本题考查了轴对称-最短路线问题,解决本题的关键是准确画图找到动点C .【变式2-1】(2019秋•邳州市期中)如图,在ABC ∆中,AC BC =,90ACB ∠=︒,点D 在BC 上,6BD =,2CD =,点P 是AB 上的动点,则PC PD +的最小值是( )A .7B .8C .9D .10【分析】过点B 作D B BC '⊥,且6BD '=,连接CD '交AB 于点P ,由“SAS ”可证BPD BPD '∆≅∆,可得DP D P '=,可得PC PD +的最小值为D C ',由勾股定理可求解.【解答】解:如图,过点B 作D B BC '⊥,使6BD '=,连接CD '交AB 于点PAC BC =,90ACB ∠=︒,45ABC ∴∠=︒,且BD BC '⊥45D BP DBP '∴∠=∠=︒,且6BD BD '==,BP BP =()BPD BPD SAS '∴∆≅∆DP D P '∴=CP DP CP D P '∴+=+PC PD ∴+的最小值为D C ',6BD =,2CD =8BC ∴=,22228610D C BC D B '∴=+'=+PC PD ∴+的最小值为10故选:D .【变式2-2】(2019秋•江都区期中)如图,在等腰三角形ABC 中,13AB AC ==,10BC =,D 是BC 边上的中点,12AD =,M ,N 分别是AD 和AB 上的动点,则BM MN +的最小值是( )A .10B .6013C .12D .12013【分析】作BH AC ⊥,垂足为H ,交AD 于M '点,过M '点作M N AB ''⊥,垂足为N ',则BM M N '+''为所求的最小值,根据勾股定理求出AD ,再根据面积不变求出BH 即可.【解答】解:如图,作BH AC ⊥,垂足为H ,交AD 于M '点,过M '点作M N AB ''⊥,垂足为N ',则BM M N '+''为所求的最小值.AB AC =,D 是BC 边上的中点,AD ∴是BAC ∠的平分线,M H M N ∴'='',BH ∴是点B 到直线AC 的最短距离(垂线段最短), 13AB AC ==,10BC =,D 是BC 边上的中点,AD BC ∴⊥,12AD =,1122ABC S AC BH BC AD ∆=⨯=⨯, 131012BH ∴⨯=⨯, 解得:12013BH =, 故选:D .【类型3】点的坐标对称问题【例3】(2019秋•苏州期末)在平面直角坐标系中,点(2,5)-关于y 轴对称的点的坐标为( )A .(2,5)B .(2,5)--C .(2,5- )D .(2,5)-【分析】平面直角坐标系中任意一点(,)P x y ,关于y 轴的对称点的坐标是(,)x y -,即关于纵轴的对称点,纵坐标不变,横坐标变成相反数. 【解答】解:关于纵轴的对称点,纵坐标不变,横坐标变成相反数.∴点(2,5)-关于y 轴对称的点的坐标是(2,5)--.故选:B .【点评】此题主要考查了关于y 轴对称点的性质,正确记忆平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系是解题关键.【变式3-1】(2019秋•金乡县期中)已知:点(1,3)A m -与点(2,1)B n -关于x 轴对称,则2019()m n +的值为( )A .0B .1C .1-D .20193【分析】根据关于x 轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得m 、n 的值,进而可得答案. 【解答】解:点(1,3)A m -与点(2,1)B n -关于x 轴对称,12m ∴-=,13n -=-,3m ∴=,2n =-,2019()1m n +=,故选:B .【变式3-2】(2019秋•海陵区校级期中)已知点(1,23)P a a +-关于x 轴的对称点在第一象限,则a 的取值范围是( )A .32a >B .1a >-C .312a -<<D .32a <【分析】根据题意确定点P在四象限,再利用第四象限内点的坐标符号可得a的取值范围.【解答】解:点(1,23)P a a+-关于x轴的对称点在第一象限,∴点P在四象限,∴10 230aa+>⎧⎨-<⎩,解得:312a-<<,故选:C.【类型4】三视图问题【例4】(2019•溧水区二模)长方体的主视图与俯视图如图所示,则这个长方体的体积是()A.20B.30C.40D.50【分析】由所给的视图判断出长方体的长、宽、高,让它们相乘即可得到体积.【解答】解:由主视图可知,这个长方体的长和高分别为5和4,由俯视图可知,这个长方体的长和宽分别为5和2,因此这个长方体的长、宽、高分别为5、2、4,因此这个长方体的体积为42540⨯⨯=立方单位.故选:C.【点评】三视图问题一直是中考考查的高频考点,一般题目难度中等偏下,本题是由两种视图来推测整个正方体的特征,这种类型问题在中考试卷中经常出现,本题所用的知识是:主视图主要反映物体的长和高,左视图主要反映物体的宽和高,俯视图主要反映物体的长和宽.【变式4-1】(2019•高邮市二模)我国古代数学家利用“牟合方盖“找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,如图所示的几何体是可以形成“牟合方盖”的一种模型,它的左视图是()【分析】根据左视图的定义,得出圆柱以及立方体的摆放即可得出左视图为2个正方形以及一个圆的组合体,进而得出答案即可.【解答】解:利用圆柱直径等于立方体边长,得出此时摆放,圆柱左视图是正方形,得出圆柱以及立方体的摆放的主视图为1列,上边一个正方形,下边是正方形与圆的组合体.故选:A .【变式4-2】(2019•建湖县二模)一个圆锥的主视图是边长为6cm 的正三角形,则这个圆锥的侧面积等于( )A .36 2cm πB .224cm πC .218cm πD .12 2cm π【分析】根据视图的意义得到圆锥的母线长为6cm ,底面圆的半径为3cm ,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【解答】解:根据题意得圆锥的母线长为6cm ,底面圆的半径为3cm , 所以这个圆锥的侧面积2162318()2cm ππ=⨯⨯⨯=. 故选:C .【类型5】旋转的性质 【例5】(2019•崇川区校级三模)如图,P 是半圆O 上一点,Q 是半径OA 延长线上一点,1AQ OA ==,以PQ 为斜边作等腰直角三角形PQR ,连接OR .则线段OR 的最大值为( )A 322B .3C 2D .1【分析】将RQO ∆绕点R 顺时针旋转90︒,可得RPE ∆,可得ER RO =,90ERO ∠=︒,2PE OQ ==,由直角三角形的性质可得2EO RO =,由三角形三边关系可得3EO PO EP +=,即可求解.【解答】解:将RQO ∆绕点R 顺时针旋转90︒,可得RPE ∆,ER RO ∴=,90ERO ∠=︒,2PE OQ ==2EO RO ∴=,3EO PO EP +=∴23ROOR ∴的最大值32=故选:A . 【点评】本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的性质等知识,添加恰当辅助线是本题的关键.【变式5-1】(2019•南京模拟)在平面直角坐标系中,点A 的坐标是(2,1),将点A 绕原点O 旋转180︒得到点A ',则点A '的坐标是( )A .(1,2)--B .(1,2)-C .(2,1)--D .(2,1)-【分析】根据中心旋转的性质解决问题即可.【解答】解:由题意点A 与点A '关于原点对称,(2,1)A ,(2,1)A ∴'--,故选:C .【点评】本题考查坐标与图形的性质,中心对称等知识,解题的关键是理解题意,熟练掌握基本知识,属于中考常考题型.【变式5-2】(2019•海门市二模)两块等腰直角三角形纸片AOB 和COD 按图1所示放置,直角顶点重合在点O 处,25AB =,17CD =.保持纸片AOB 不动,将纸片COD 绕点O 逆时针旋转(090)a α<<︒,如图2所示.当BD 与CD 在同一直线上(如图3)时,tan α的值等于( )A .725B .825C .724D .1725【分析】如图2中,延长BD 交OA 于G ,交AC 于E ,只要证明AOC BOD ∆≅∆即可解决问题.如图3中,设AC x =,在RT ABC ∆中,利用勾股定理求出x ,再根据三角函数的定义即可解决问题.【解答】解:如图2中,延长BD 交OA 于G ,交AC 于E .90AOB COD ∠=∠=︒,AOC DOB ∴∠=∠,在AOC ∆和BOD ∆中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,()AOC BOD SAS ∴∆≅∆,AC BD ∴=,CAO DBO ∠=∠,90DBO OGB ∠+∠=︒,OGB AGE ∠=∠,90CAO AGE ∴∠+∠=︒,90AEG ∴∠=︒,BD AC ∴⊥,如图3中,设AC x =, BD 、CD 在同一直线上,BD AC ⊥,ABC ∴∆是直角三角形,222AC BC AB ∴+=,222(17)25x x ∴++=,解得7x =, 2224BC AB AC ∴=-=,45ODC DBO α∠=∠+∠=︒,45ABC DBO ∠+∠=︒,ABC α∴∠=∠,7tan tan 24AC ABC BC α∴=∠==. 故选:C .【点评】本题考查旋转的性质、全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的性质解决问题.【类型6】有关旋转的综合问题【例6】(2019•洛阳二模)如图1,在Rt ABC ∆中,90ABC ∠=︒,4AB BC ==,点D 、E 分别是边AB 、AC 的中点,连接DE ,将ADE ∆绕点A 按顺时针方向旋转,记旋转角为α,BD 、CE 所在直线相交所成的锐角为β.(1)问题发现当0α=︒时,CE BD = ;β= ︒. (2)拓展探究试判断:当0360α︒<︒时,CE BD和β的大小有无变化?请仅就图2的情形给出证明. (3)在ADE ∆旋转过程中,当//DE AC 时,直接写出此时CBE ∆的面积.【分析】(1)利用等腰直角三角形的性质,线段的中点的定义即可判断.(2)结论:CE BD和β的大小无变化.如图2中,延长CE 交AB 于点O ,交BD 于K .证明DAB EAC ∆∆∽,即可解决问题.(3)分两种情形:①当点E 在线段AB 上时,②当点E 在线段BA 的延长线上时,分别求解即可.【解答】解:(1)如图1中,90B ∠=︒,BA BC =,45A ∴∠=︒,2AC AB =, 点D 、E 分别是边AB 、AC 的中点, 12BD AB ∴=,12EC AC =, ∴2EC DB=,45β=︒, 故答案为2,45︒.(2)结论:CE BD和β的大小无变化. 理由:如图2中,延长CE 交AB 于点O ,交BD 于K .2AE =,2AC =, ∴2AE AC AD AB == ∴AE AD AC AB=, DAE BAC ∠=∠,DAB EAC ∴∠=∠,DAB EAC ∴∆∆∽,∴2EC AC BD AB=OBK OCA ∠=∠, BOK COA ∠=∠,45BKO CAO ∠=∠=︒,∴CE BD和β的大小无变化.(3)当点E 在线段AB 上时,14(422)8422BCE S ∆=⨯⨯-=-, 当点E 在线段BA 的延长线上时,14(422)8422BCE S ∆=⨯⨯+=+. 综上所述,BCE ∆的面积为842-或842+.【点评】本题属于几何变换综合题,考查了相似三角形的判定和性质,等腰直角三角形的性质,三角形的面积等知识,解题的关键是正确寻找相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题. 【变式6-1】(2019•常州二模)如图,将矩形ABCD 绕点D 旋转90︒得到矩形A B C D ''',其中点A 、B 、C 分别对应点A '、B '、C ',此时,点A '落在CD 边上,点C '在AD 延长线上.连接AC 、BD 相交于点O ,连接A C ''、B D '相交于点O ',连接OO '.(1)直接写出OO D '∠= ︒;(2)将△OO D '绕点O 旋转,使点D 与点A 重合,得OEA ∆,点O '对应点E ,连接O E '交AC 于点M .求证:M 为AC '中点.【分析】(1)根据旋转的性质即可得到结论;(2)根据旋转的性质得到AE O D '=,由矩形性质得O C O D '''=,于是得到AE O C ''=,由旋转可知O ∠ D 90O OAE '=∠=︒.由矩形性质O C D O D '''∠=∠ 90C ODA '=︒-∠,根据全等三角形的性质即可得到结论.【解答】解:(1)将矩形ABCD 绕点D 旋转90︒得到矩形A B C D ''',90ODO ∴∠'=︒,DO DO =',ODO ∴∆'是等腰直角三角形,45OO D ∴∠'=︒,故答案为:45;(2)由旋转得AE O D '=,由矩形性质得O C O D '''=,AE O C ''∴=,由旋转可知O ∠ D 90O OAE '=∠=︒.由矩形性质O C D O D '''∠=∠ 90C ODA '=︒-∠,90MAE OAD ∠=︒-∠,又ODA OAD ∠=∠,O C D MAE ''∴∠=∠,O MC EMA ''∠=∠,AEM ∴∆≅△()C O M AAS '',AM MC ∴=.即M 是AC 中点.【点评】本题考查了旋转的性质,矩形的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.【变式6-2】(2019•徐州一模)将一副直角三角尺按图1摆放,其中90C ∠=︒,90EDF ∠=︒,60B ∠=︒,45F ∠=︒,等腰直角三角尺的直角边DF 恰好垂直平分AB ,与AC 相交于点G ,43BC cm =.(1)求DG 的长;(2)如图2.将DEF ∆绕点D 按顺时针方向旋转,直角边DF 经过点C ,另一直角边DE 与AC 相交于点H ,分别过点H ,D 作AB ,BC 的垂线,垂足分别为点M ,N .猜想HM 与CN 之间的数量关系,并证明;(3)如图3,在旋转的过程中,若DEF ∆两边DE ,DF 与ABC ∆两边AC ,BC 分别交于K 、T 两点,则KT 的最小值为 .【分析】(1)解直角三角形求出AB ,再在Rt ADG ∆中,根据tan30DG AD =︒计算即可解决问题.(2)利用相似三角形的性质解决问题即可.(3)证明K ,D ,T ,C 四点共圆,推出KT 是该圆的直径,易知当CD 是该圆的直径时,KT 的长最短.【解答】解:(1)如图1中,在Rt ABC ∆中,90C ∠=︒,43BC =30CAB ∠=︒283AB BC ∴==DF 垂直平分线段AB , 43AD DB ∴==, 在Rt ADG ∆中,3tan30434DG AD =︒=⨯=. (2)结论:3CN HM =.理由:如图2中,90ACB ∠=︒,AD DB =,CD DA DB ∴==,60B ∠=︒,BDC ∴∆是等边三角形,60DCB CDB ∴∠=∠=︒,90ACB CDH ∠=∠=︒,30MDH HCD ∴∠=∠=︒,3CD DH ∴=,60DHM DCN ∠=∠=︒,90DMH DNC ∠=∠=︒,DMH DNC ∴∆∆∽,∴3NC CD HM DH==, 3CN HM ∴=.(3)如图3中,连接CD .90KCT KDT ∠=∠=︒,180KCT KDT ∴∠+∠=︒,K ∴,D ,T ,C 四点共圆,KT ∴是该圆的直径,KT CD ,∴当KT CD =时,KT 的长最短,此时1432KT CD AB ===.【达标检测】1.(2019•南通)如图是一个几何体的三视图,该几何体是( )A .球B .圆锥C .圆柱D .棱柱【解析】解:由于主视图和左视图为正方形可得此几何体为柱体,由俯视图为圆形可得为圆柱.故选:C .2.(2019•徐州)下图均由正六边形与两条对角线所组成,其中不是轴对称图形的是( )【解析】解:D 不是轴对称图形,故选:D .3.(2019•常州)若△ABC ~△A ′B 'C ′,相似比为1:2,则△ABC 与△A 'B ′C '的周长的比为()A .2:1B .1:2C .4:1D .1:4【解析】解:∵△ABC ~△A ′B 'C ′,相似比为1:2,∴△ABC 与△A 'B ′C '的周长的比为1:2.故选:B .4.(2019•宿迁)一个圆锥的主视图如图所示,根据图中数据,计算这个圆锥的侧面积是( )A.20πB.15πC.12πD.9π【解析】解:由勾股定理可得:底面圆的半径,则底面周长=6π,底面半径=3,由图得,母线长=5,侧面面积6π×5=15π.故选:B.5.(2019•南京)如图,△A'B'C'是由△ABC经过平移得到的,△A'B'C'还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是()A.①④B.②③C.②④D.③④【解析】解:先将△ABC绕着B'B的中点旋转180°,再将所得的三角形绕着点B'旋转180°,即可得到△A'B'C';先将△ABC沿着B'C的垂直平分线翻折,再将所得的三角形沿着B'C'的垂直平分线翻折,即可得到△A'B'C';故选:D.6.(2019•徐州)如图,无人机于空中A处测得某建筑顶部B处的仰角为45°,测得该建筑底部C处的俯角为17°.若无人机的飞行高度AD为62m,则该建筑的高度BC为m.(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)【解析】解:作AE⊥BC于E,则四边形ADCE为矩形,∴EC=AD=62,在Rt△AEC中,tan∠EAC,则AE200,在Rt△AEB中,∠BAE=45°,∴BE=AE=200,∴BC=200+62=262(m),则该建筑的高度BC为262m,故答案为:262.7.(2019•镇江)将边长为1的正方形ABCD绕点C按顺时针方向旋转到FECG的位置(如图),使得点D 落在对角线CF上,EF与AD相交于点H,则HD=.(结果保留根号)【解析】解:∵四边形ABCD为正方形,∴CD=1,∠CDA=90°,∵边长为1的正方形ABCD绕点C按顺时针方向旋转到FECG的位置,使得点D落在对角线CF上,∴CF,∠CFDE=45°,∴△DFH为等腰直角三角形,∴DH=DF=CF﹣CD1.故答案为1.8.(2019•河南)如图,在矩形ABCD中,AB=1,BC=a,点E在边BC上,且BE a.连接AE,将△ABE沿AE折叠,若点B的对应点B′落在矩形ABCD的边上,则a的值为或.【解析】解:分两种情况:①当点B′落在AD边上时,如图1.∵四边形ABCD是矩形,∴∠BAD=∠B=90°,∵将△ABE沿AE折叠,点B的对应点B′落在AD边上,∴∠BAE=∠B′AE∠BAD=45°,∴AB=BE,∴a=1,∴a;②当点B′落在CD边上时,如图2.∵四边形ABCD是矩形,∴∠BAD=∠B=∠C=∠D=90°,AD=BC=a.∵将△ABE沿AE折叠,点B的对应点B′落在CD边上,∴∠B=∠AB′E=90°,AB=AB′=1,EB=EB′a,∴DB′,EC=BC﹣BE=a a a.在△ADB′与△B′CE中,,∴△ADB′∽△B′CE,∴,即,解得a1,a2(舍去).综上,所求a的值为或.故答案为或.9.(2019•淮安)如图,在矩形ABCD中,AB=3,BC=2,H是AB的中点,将△CBH沿CH折叠,点B 落在矩形内点P处,连接AP,则tan∠HAP=.【解析】解:如图,连接PB,交CH于E,由折叠可得,CH垂直平分BP,BH=PH,又∵H为AB的中点,∴AH=BH,∴AH=PH=BH,∴∠HAP=∠HP A,∠HBP=∠HPB,又∵∠HAP+∠HP A+∠HBP+∠HPB=180°,∴∠APB=90°,∴∠APB=∠HEB=90°,∴AP∥HE,∴∠BAP=∠BHE,又∵Rt△BCH中,tan∠BHC,∴tan∠HAP,故答案为:.10.(2019•宿迁)如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为.【解析】解:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动将△EFB绕点E旋转60°,使EF与EG重合,得到△EFB≌△EHG从而可知△EBH为等边三角形,点G在垂直于HE的直线HN上作CM⊥HN,则CM即为CG的最小值作EP⊥CM,可知四边形HEPM为矩形,则CM=MP+CP=HE EC=1故答案为.11.(2019•扬州)如图,将四边形ABCD绕顶点A顺时针旋转45°至四边形AB′C′D′的位置,若AB =16cm,则图中阴影部分的面积为cm2.【解析】解:由旋转的性质得:∠BAB'=45°,四边形AB'C'D'≌四边形ABCD,则图中阴影部分的面积=四边形ABCD的面积+扇形ABB'的面积﹣四边形AB'C'D'的面积=扇形ABB'的面积32π;故答案为:32π.三.解答题(共5小题)12.(2019•南通)如图,矩形ABCD中,AB=2,AD=4.E,F分别在AD,BC上,点A与点C关于EF 所在的直线对称,P是边DC上的一动点.(1)连接AF,CE,求证四边形AFCE是菱形;(2)当△PEF的周长最小时,求的值;(3)连接BP交EF于点M,当∠EMP=45°时,求CP的长.【解析】证明:(1)如图:连接AF,CE,AC交EF于点O∵四边形ABCD是矩形,∴AB=CD,AD=BC,AD∥BC∴∠AEO=∠CFO,∠EAO=∠FCO,∵点A与点C关于EF所在的直线对称∴AO=CO,AC⊥EF∵∠AEO=∠CFO,∠EAO=∠FCO,AO=CO∴△AEO≌△CFO(AAS)∴AE=CF,且AE∥CF∴四边形AFCE是平行四边形,且AC⊥EF∴四边形AFCE是菱形;(2)如图,作点F关于CD的对称点H,连接EH,交CD于点P,此时△EFP的周长最小,∵四边形AFCE是菱形∴AF=CF=CE=AE,∵AF2=BF2+AB2,∴AF2=(4﹣AF)2+4,∴AF∴AE CF∴DE∵点F,点H关于CD对称∴CF=CH∵AD∥BC∴(3)如图,延长EF,延长AB交于点N,过点E作EH⊥BC于H,交BP于点G,过点B作BO⊥FN 于点O,由(2)可知,AE=CF,BF=DE∵EH⊥BC,∠A=∠ABC=90°∴四边形ABHE是矩形∴AB=EH=2,BH=AE∴FH=1∴EF,∵AD∥BC∴△BFN∽△AEN∴∴∴BN=3,NF∴AN=5,NE∵∠N=∠N,∠BON=∠A=90°∴△NBO∽△NEA∴∴∴BO,NO∵∠EMP=∠BMO=45°,BO⊥EN ∴∠OBM=∠BMO=45°∴BO=MO∴ME=EN﹣NO﹣MO∵AB∥EH∴△BNM∽△GEM∴∴∴EG∴GH=EH﹣EG∵EH∥CD∴△BGH∽△BPC∴∴∴CP13.(2019•徐州)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF.求证:(1)∠ECB=∠FCG;(2)△EBC≌△FGC.【解析】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠BCD,由折叠可得,∠A=∠ECG,∴∠BCD=∠ECG,∴∠BCD﹣∠ECF=∠ECG﹣∠ECF,∴∠ECB=∠FCG;(2)∵四边形ABCD是平行四边形,∴∠D=∠B,AD=BC,由折叠可得,∠D=∠G,AD=CG,∴∠B=∠G,BC=CG,又∵∠ECB=∠FCG,∴△EBC≌△FGC(ASA).14.(2019•常州)如图,把平行四边形纸片ABCD沿BD折叠,点C落在点C′处,BC′与AD相交于点E.(1)连接AC′,则AC′与BD的位置关系是;(2)EB与ED相等吗?证明你的结论.【解析】解:(1)连接AC′,∵四边形ABCD平行四边形,∴AD=BC,AD∥BC,∴∠ADB=∠CBD,由折叠知,BC'=BC,∠C'BD=∠CBD,∴AD=BC',∠ADB=∠C'BD,∴BE=DE,∴AE=C'E,∴∠DAC'(180°﹣∠AEC')=90°∠AEC',同理:∠ADB=90°∠BED,∵∠AEC'=∠BED,∴∠DAC'=∠ADB,∴AC'∥BD,故答案为:AC′∥BD;(2)EB与ED相等.由折叠可得,∠CBD=∠C'BD,∵AD∥BC,∴∠ADB=∠CBD,∴∠EDB=CBD,∴BE=DE.15.(2019•淮安)如图①,在△ABC中,AB=AC=3,∠BAC=100°,D是BC的中点.小明对图①进行了如下探究:在线段AD上任取一点P,连接PB.将线段PB绕点P按逆时针方向旋转80°,点B的对应点是点E,连接BE,得到△BPE.小明发现,随着点P在线段AD上位置的变化,点E的位置也在变化,点E可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)当点E在直线AD上时,如图②所示.①∠BEP=50°;②连接CE,直线CE与直线AB的位置关系是EC∥AB.(2)请在图③中画出△BPE,使点E在直线AD的右侧,连接CE.试判断直线CE与直线AB的位置关系,并说明理由.(3)当点P在线段AD上运动时,求AE的最小值.【解析】解:(1)①如图②中,∵∠BPE=80°,PB=PE,∴∠PEB=∠PBE=50°,②结论:AB∥EC.理由:∵AB=AC,BD=DC,∴AD⊥BC,∴∠BDE=90°,∴∠EBD=90°﹣50°=40°,∵AE垂直平分线段BC,∴EB=EC,∴∠ECB=∠EBC=40°,∵AB=AC,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ABC=∠ECB,∴AB∥EC.故答案为50,AB∥EC.(2)如图③中,以P为圆心,PB为半径作⊙P.∵AD垂直平分线段BC,∴PB=PC,∴∠BCE∠BPE=40°,∵∠ABC=40°,∴AB∥EC.(3)如图④中,作AH⊥CE于H,∵点E在射线CE上运动,点P在线段AD上运动,∴当点P运动到与点A重合时,AE的值最小,此时AE的最小值=AB=3.16.(2019•南京一模)已知,如图,在△ABC中,∠ACB=90°,∠B=60°,BC=2,∠MON=30°.(1)如图1,∠MON的边MO⊥AB,边ON过点C,求AO的长;(2)如图2,将图1中的∠MON向右平移,∠MON的两边分别与△ABC的边AC、BC相交于点E、F,连接EF,若△OEF是直角三角形,求AO的长;(3)在(2)的条件下,∠MON与△ABC重叠部分面积是否存在最大值,若存在,求出最大值,若不存在,请说明理由.【解析】解:(1)∵∠MON=30°,MO⊥AB,∴∠COB=60°,∵∠B=60°∴△BOC是等边三角形∵BC=2,∴BO=2在△ABC中,∠ACB=90°,∠B=60°,BC=2,∴AB=4.∴AO=AB﹣BO=2(2)①∠OEF=90°设AO=x,根据题意得OB=4﹣x,,OF=4﹣x,∴,∴,②∠OFE=90°设AO=x,根据题意得OB=4﹣x,,OF=4﹣x,∴∴,∴△OEF是直角三角形时,AO长为或(3)设AO=x,根据题意得OB=4﹣x,,设重叠部分的面积为S,根据题意得:S=S△ABC﹣S△AOE﹣S△OBF ∴整理得:∵,∴S有最大值∴当时,S最大值.。

相关文档
最新文档