数列求和教学设计
中学数学数列求和教案

中学数学数列求和教案一、教学目标1. 理解数列的基本概念,并能正确判断是否为等差数列或等比数列。
2. 掌握等差数列和等比数列的通项公式,并能正确计算相应的数值。
3. 理解数列的求和公式,并能运用求和公式计算数列的和值。
二、教学准备教师:备好黑板、粉笔,准备好习题和板书内容。
学生:纸、铅笔、计算器等。
三、教学过程1. 知识点引入教师向学生展示一些数字序列(如1, 3, 5, 7, 9...)并问学生如何判断它们是否为等差数列。
引导学生发现其中的规律,并引入等差数列的概念。
2. 等差数列的定义和性质教师将等差数列的定义和性质进行讲解,并帮助学生掌握等差数列的通项公式 an = a1 + (n-1)d。
3. 等差数列的求和公式教师引导学生思考如何求等差数列的和值,并引出等差数列的求和公式 Sn = n/2 (a1+an)。
4. 例题演练教师出示一个等差数列的例题,引导学生使用通项公式和求和公式计算数列的某一项和总和。
全班共同讨论,并解释结果的意义。
5. 等比数列的定义和性质教师将等比数列的定义和性质进行讲解,并帮助学生掌握等比数列的通项公式 an = a1 * r^(n-1)。
6. 等比数列的求和公式教师引导学生思考如何求等比数列的和值,并引出等比数列的求和公式 Sn = a1 * (1 - r^n) / (1 - r)。
7. 例题演练教师出示一个等比数列的例题,引导学生使用通项公式和求和公式计算数列的某一项和总和。
全班共同讨论,并解释结果的意义。
8. 综合练习教师布置一些综合性的练习题,让学生运用所学知识解答,并及时给予指导和纠正。
9. 课堂总结教师对本节课的重点内容进行总结,并强调数列求和在数学及现实生活中的应用价值。
四、巩固练习教师布置相关题目作为课后作业,要求学生用所学知识独立解答,并在下节课前交给教师检查。
五、教学拓展教师鼓励学生积极参与数学竞赛、参观数学实验室等拓展活动,加深对数列求和的理解和应用。
《数列求和》教学设计

《数列求和》教学设计(第一课时)目标:1、熟练掌握等差、等比数列的求和公式2、掌握非等差、等比数列求和的几种常见模型与方法重点:掌握由数列通项公式求数列的前几项和的方法难点:非等差,等比数列的求和如何化归为等差,等比数列的求和以及应用。
利用裂项相消法、错位相减法求数列的前几项和;高考定位:知识梳理:一、数列求和的常用方法1.公式法(1)等差数列的前n 项和公式:S n =n (a 1+a n )2=______________; (2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧ na 1,q =1,a 1-a n q 1-q=a 1(1-q n )1-q ,q ≠1.2.分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. 3.裂项相消法(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(2)裂项时常用的三种变形:①1n (n +1)=1n -1n +1; ②1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎪⎫12n -1-12n +1; ③1n +n +1=n +1-n .4.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n项和可用错位相减法求解.5.倒序相加法如果一个数列{a n}的前n项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法求解.6.并项求和法一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如a n=(-1)n f(n)类型,可采用两项合并求解.例如,S n=1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050.一、公式法求数列的前n项和•求数列的通项公式»等差数列»等比数列•求数列前n项和的公式»等差数列»等比数列高考链接例(2016·北京高考改编)已知{a n}是等差数列,{b n}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.(1)求{a n}的通项公式;a n=2n-1,b n=3n-1.(2) 求数列{a n},{b n}的前n项和;(3)设c n=a n+b n,求数列{c n}的前n项和;例题第二问主要考察的是等差数列与等比数列的求和公式,故而让学生快速计算,要求算的要快,要准确。
初中数列求和计算教案

初中数列求和计算教案教学目标:1. 理解数列求和的概念及意义;2. 掌握等差数列和等比数列的求和公式;3. 能够运用数列求和公式解决实际问题。
教学重点:1. 数列求和的概念及意义;2. 等差数列和等比数列的求和公式。
教学难点:1. 数列求和公式的运用;2. 解决实际问题。
教学准备:1. 数列求和的相关知识;2. 教学课件或黑板。
教学过程:一、导入(5分钟)1. 引导学生回顾数列的概念,复习等差数列和等比数列的定义;2. 提问:我们已经学习了数列的概念,那么数列的和有什么意义呢?二、新课讲解(15分钟)1. 讲解数列求和的概念,即数列中所有项的和;2. 介绍等差数列求和公式:S = n/2 * (a1 + an),其中S为数列的和,n为项数,a1为首项,an为末项;3. 介绍等比数列求和公式:S = a1 * (1 - q^n) / (1 - q),其中S为数列的和,a1为首项,q为公比,n为项数;4. 通过例题讲解求和公式的运用。
三、课堂练习(15分钟)1. 布置练习题,让学生运用求和公式计算;2. 引导学生独立思考,解答问题;3. 挑选学生回答问题,并给予评价和指导。
四、拓展应用(15分钟)1. 引导学生思考实际问题,如计算一组连续自然数的和;2. 让学生运用求和公式解决实际问题,并解释结果的意义;3. 引导学生总结数列求和在实际生活中的应用。
五、课堂小结(5分钟)1. 回顾本节课所学内容,让学生总结数列求和的概念和意义;2. 强调数列求和公式的运用和实际应用。
教学反思:本节课通过讲解数列求和的概念和公式,让学生掌握等差数列和等比数列的求和方法,并在实际问题中运用。
在教学过程中,要注意引导学生独立思考,培养学生的解题能力。
同时,通过拓展应用环节,让学生感受数列求和在实际生活中的意义,提高学生的学习兴趣。
教学设计5:6.4 数列求和

6.4 数列求和[知识回顾]一、公式法1.如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n 项和公式,注意等比数列公比q 的取值情况要分q =1或q ≠1.2.一些常见数列的前n 项和公式: (1)1+2+3+4+…+n =n (n +1)2;(2)1+3+5+7+…+2n -1= ; (3)2+4+6+8+…+2n = . 二、非等差、等比数列求和的常用方法 1.倒序相加法如果一个数列{a n },首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法,等差数列的前n 项和即是用此法推导的.2.分组转化求和法若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转化法,分别求和而后相加减.3.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,等比数列的前n 项和就是用此法推导的.4.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. 5.数列求和的方法(1)一般的数列求和,应从通项入手,若无通项,先求通项,然后通过对通项变形,转化为与特殊数列有关或具备某种方法适用特点的形式,从而选择合适的方法求和.(2)解决非等差、等比数列的求和,主要有两种思路:①转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相减来完成.②不能转化为等差或等比数列的数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和.[考点探究]考点一分组转化法求和典题导入[例1] 等比数列{a n }中,a 1,a 2,a 3分别是下表第一、二、三行中的某一个数,且a 1,a 2,a 3中的任何两个数不在下表的同一列.第一列 第二列 第三列 第一行 3 2 10 第二行 6 4 14 第三行9818(1)求数列{a n }的通项公式;(2)若数列{b n }满足:b n =a n +(-1)n ln a n ,求数列{b n }的前2n 项和S 2n .由题悟法分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组求和法求{a n }的前n 项和.(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.以题试法1.已知数列{x n }的首项x 1=3,通项x n =2n p +nq (n ∈N *,p ,q 为常数),且x 1,x 4,x 5成等差数列.求:(1)p ,q 的值;(2)数列{x n }前n 项和S n 的公式.考点二错位相减法求和典题导入[例2] 已知数列{a n }的前n 项和S n =kc n -k (其中c ,k 为常数),且a 2=4,a 6=8a 3. (1)求a n ;(2)求数列{na n }的前n 项和T n .由题悟法用错位相减法求和应注意:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n-qS n ”的表达式.(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.以题试法2.已知等比数列{a n }的前n 项和为S n ,且满足S n =3n +k . (1)求k 的值及数列{a n }的通项公式;(2)若数列{b n }满足a n +12=(4+k )a n b n ,求数列{b n }的前n 项和T n .考点三裂项相消法求和典题导入[例3] 已知数列{a n }的前n 项和为S n ,a 1=1,S n =na n -n (n -1)(n ∈N *). (1)求数列{a n }的通项公式;(2)设b n =2a n a n +1,求数列{b n }的前n 项和T n .本例条件不变,若数列{b n }满足b n =1S n +n ,求数列{b n }的前n 项和T n .由题悟法利用裂项相消法求和应注意(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项;(2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n}是等差数列,则1a n a n+1=1d⎝⎛⎭⎫1a n-1a n+1,1a n a n+2=12d⎝⎛⎭⎫1a n-1a n+2.以题试法3.在等比数列{a n}中,a1>0,n∈N*,且a3-a2=8,又a1、a5的等比中项为16.(1)求数列{a n}的通项公式;(2)设b n=log4a n,数列{b n}的前n项和为S n,是否存在正整数k,使得1S1+1S2+1S3+…+1S n<k对任意n∈N*恒成立.若存在,求出正整数k的最小值;不存在,请说明理由.答案[知识回顾]一、公式法 2.(2)n 2 (3) n 2+n [例1][自主解答] (1)当a 1=3时,不合题意;当a 1=2时,当且仅当a 2=6,a 3=18时,符合题意; 当a 1=10时,不合题意.因此a 1=2,a 2=6,a 3=18.所以公比q =3,故a n =2·3n -1.(2)因为b n =a n +(-1)n ln a n =2·3n -1+(-1)n ln(2·3n -1)=2·3n -1+(-1)n (ln 2-ln 3)+(-1)n n ln 3,所以S 2n =b 1+b 2+…+b 2n =2(1+3+…+32n -1)+[-1+1-1+…+(-1)2n ](ln 2-ln 3)+[-1+2-3+…+(-1)2n 2n ]ln 3=2×1-32n1-3+n ln 3=32n +n ln 3-1. 1.解:(1)由x 1=3,得2p +q =3,又因为x 4=24p +4q , x 5=25p +5q ,且x 1+x 5=2x 4,得3+25p +5q =25p +8q , 解得p =1,q =1.(2)由(1),知x n =2n +n ,所以S n =(2+22+…+2n )+(1+2+…+n )=2n +1-2+n n +12.[例2][自主解答] (1)由S n =kc n -k ,得a n =S n -S n -1=kc n -kc n -1(n ≥2). 由a 2=4,a 6=8a 3 ,得kc (c -1)=4,kc 5(c -1)=8kc 2(c -1),解得⎩⎪⎨⎪⎧c =2,k =2,所以a 1=S 1=2,a n =kc n -kc n -1=2n (n ≥2), 于是a n =2n . (2)T n =∑i =1nia i =∑i =1ni ·2i ,即T n =2+2·22+3·23+4·24+…+n ·2n . T n =2T n -T n =-2-22-23-24-…-2n +n ·2n +1 =-2n +1+2+n ·2n +1=(n -1)2n +1+2. 2.解:(1)当n ≥2时,由a n =S n -S n -1=3n +k -3n -1-k =2·3n -1,得等比数列{a n }的公比q=3,首项为2.∴a 1=S 1=3+k =2,∴k =-1,∴数列{a n }的通项公式为a n =2·3n -1. (2)由a n +12=(4+k )a nb n ,可得b n =n2·3n -1, 即b n =32·n 3n .∵T n =32⎝⎛⎭⎫13+232+333+…+n 3n , ∴13T n =32⎝⎛⎭⎫132+233+334+…+n 3n +1, ∴23T n =32⎝⎛⎭⎫13+132+133+…+13n -n 3n +1, ∴T n =94⎝⎛⎭⎫12-12·3n -n 3n +1.[例3][自主解答] (1)∵S n =na n -n (n -1),当n ≥2时, S n -1=(n -1)·a n -1-(n -1)(n -2),∴a n =S n -S n -1=na n -n (n -1)-(n -1)a n -1+(n -1)·(n -2), 即a n -a n -1=2.∴数列{a n }是首项a 1=1,公差d =2的等差数列, 故a n =1+(n -1)·2=2n -1,n ∈N *. (2)由(1)知b n =2a n a n +1=22n -12n +1=12n -1-12n +1, 故T n =b 1+b 2+…+b n =⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+⎝⎛⎭⎫15-17+…+⎝⎛⎭⎫12n -1-12n +1=1-12n +1=2n2n +1.解:S n =na n -n (n -1)=n (2n -1)-n (n -1)=n 2. b n =1S n +n =1n 2+n =1nn +1=1n -1n +1, T n =⎝⎛⎭⎫11-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1n +1=1-1n +1=nn +1.3.解:(1)设数列{a n }的公比为q ,由题意可得a 3=16, ∵a 3-a 2=8,则a 2=8,∴q =2. ∴a n =2n +1.(2)∵b n =log 42n +1=n +12,∴S n =b 1+b 2+…+b n =nn +34. ∵1S n =4nn +3=43⎝⎛⎭⎫1n -1n +3, ∴1S 1+1S 2+1S 3+…+1S n=43⎝⎛⎭⎫11-14+12-15+13-16+…+1n -1n +3 =43⎝⎛⎭⎫1+12+13-1n +1-1n +2-1n +3<229, ∴存在正整数k 的最小值为3.。
教学设计2:6.4 数列求和

第四节 数列求和1.公式法直接利用等差数列、等比数列的前n 项和公式求和 (1)等差数列的前n 项和公式: S n =n (a 1+a n )2=na 1+n (n -1)2d ;(2)等比数列的前n 项和公式: 1111,(1)1.11n n nna q S a a q a q q qq ⎧=⎪=⎨--=≠⎪--⎩2.倒序相加法如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和公式即是用此法推导的.3.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法.4.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. 5.分组求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和而后相加减.6.并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f(n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050.1.(人教A 版教材习题改编)等差数列{a n }的通项公式为a n =2n +1,其前n 项的和为S n ,则数列{S nn}的前10项的和为( )A .120B .70C .75D .100 【解析】 ∵S n =n (3+2n +1)2=n (n +2),∴S nn =n +2.∴数列{S nn }前10项的和为:(1+2+…+10)+20=75.【答案】 C2.一个球从100 m 高处自由落下,每次着地后又跳回到原高度的一半再落下,当它第10次着地时,经过的路程是( )A .100+200×(1-2-9) B .100+100(1-2-9)C .200(1-2-9) D .100(1-2-9) 【解析】 第10次着地时,经过的路程为100+2(50+25+…+100×2-9)=100+2×100×(2-1+2-2+ (2)9) =100+200×2-1(1-2-9)1-2-1=100+200(1-2-9). 【答案】 A3.(2013·合肥质检)若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10=( ) A .15 B .12 C .-12 D .-15 【解析】 ∵a n =(-1)n (3n -2),∴a 1+a 2+…+a 10=(-1+4)+(-7+10)+…+(-25+28)=3×5=15. 【答案】 A4.(2012·大纲全国卷)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列{1a n a n +1}的前100项和为( )A .100101B .99101C .99100D .101100 【解析】 设等差数列{a n }的首项为a 1,公差为d.∵a 5=5,S 5=15,∴⎩⎪⎨⎪⎧a 1+4d =5,5a 1+5×(5-1)2d =15,∴⎩⎪⎨⎪⎧a 1=1,d =1, ∴a n =a 1+(n -1)d =n .∴1a n a n +1=1n (n +1)=1n -1n +1,∴数列{1a n a n +1}的前100项和为1-12+12-13+…+1100-1101=1-1101=100101.【答案】 A5.设数列{a n }的通项a n =4n -1,数列{b n }的通项b n =3n -1,则数列{a n ·b n }的前n 项和T n =________.【解析】 T n =1·2+4·5+42·8+…+4n -1(3n -1),① 4T n =4·2+42·5+43·8+…+4n (3n -1).②②-①得:3T n =-2-3(4+42+…+4n -1)+4n (3n -1)=-2+4(1-4n -1)+4n (3n -1)=2+(3n -2)·4n .所以T n =(n -23)·4n +23.【答案】 (n -23)·4n +23已知函数f(x)=2x -3x -1,点(n ,a n )在f(x)的图象上,a n 的前n 项和为S n .(1)求使a n <0的n 的最大值; (2)求S n .【思路点拨】 (1)由条件,求出a n ,利用数列的性质求a n <0的n 的最大值;(2)将{a n }转化为两个特殊数列求和.【尝试解答】 (1)∵点(n ,a n )在函数f (x )=2x -3x -1的图象上, ∴a n =2n -3n -1,∵a n <0,∴2n -3n -1<0,即2n <3n +1, 又∵n ∈N *,∴n ≤3,即n 的最大值为3. (2)∵a n =2n -3n -1,∴S n =a 1+a 2+a 3+…+a n =(21-3×1-1)+(22-3×2-1)+…+(2n -3×n -1) =(21+22+…+2n )-3(1+2+3+…+n )-n =2(1-2n )1-2-3·n (n +1)2-n=2n +1-n (3n +5)2-2.,1.数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差数列或等比数列求和. 2.常见类型及方法(1)a n =kn +b ,利用等差数列前n 项和公式直接求解; (2)a n =a ·q n -1,利用等比数列前n 项和公式直接求解;(3)a n =b n ±c n ,数列{b n },{c n }是等比数列或等差数列,采用分组求和法求{a n }的前n 项和.若数列{a n }是1,(1+12),(1+12+14),…,(1+12+14+…+12n -1),…,试求数列{a n }的前n 项和S n .【解】 a n =1+12+14+…+12n -1=1-(12)n1-12=2(1-12n ),∴S n =2[(1-12)+(1-122)+…+(1-12n )]=2[(1+1+…+1)n 个-(12+122+…+12n )]=2[n -12(1-12n )1-12]=2[n -(1-12n )]=2n -2+12n -1.公差不为0的等差数列{a n }中,a 1=2,且a 1,a 3,a 7成等比数列.(1)求数列{a n }的通项公式;(2)若数列{c n }的前n 项和为S n ,且na n c n =1,求证:S n <1.【思路点拨】 (1)由a 1,a 3,a 7成等比数列,求得公差d ,进而确定{a n }的通项公式. (2)根据{c n }的通项公式特征,利用裂项相消法求得S n ,从而证得S n <1. 【尝试解答】 (1)设等差数列{a n }的公差为d ,则a 3=2+2d ,a 7=2+6d . ∵a 1,a 3,a 7成等比数列,∴(2+2d )2=2(2+6d ),又d ≠0,∴可求d =1. ∴a n =a 1+(n -1)d =n +1, ∴数列{a n }的通项公式为a n =n +1.(2)∵na n c n =1,又由(1)知a n =n +1,∴c n =1n (n +1)=1n -1n +1.∴S n =11×2+12×3+…+1n (n +1)=(1-12)+(12-13)+…+(1n -1n +1)=1-1n +1<1.,1.本题中在求数列{c n }的前n 项和S n 时,把c n =1n (n +1)变形为c n =1n -1n +1是解题的关键.2.裂项相消法求和就是将数列中的每一项裂成两项或多项,使这些裂开的项出现有规律的相互抵消,要注意消去了哪些项,保留了哪些项.从而达到求和的目的.已知等差数列{a n }中,a 2=8,S 6=66.(1)求数列{a n }的通项公式a n ;(2)设b n =2(n +1)a n,T n =b 1+b 2+…+b n ,求T n ,T 10.【解】 (1)设等差数列{a n }的公差为d ,则由题意得⎩⎪⎨⎪⎧a 2=a 1+d =8,S 6=6a 1+6×52d =66解之得⎩⎪⎨⎪⎧a 1=6,d =2. ∴a n =6+(n -1)·2=2n +4.(2)b n =2(n +1)a n =1(n +1)(n +2)=1n +1-1n +2,∴T n =(12-13)+(13-14)+…+(1n +1-1n +2)=12-1n +2=n2(n +2),从而T 10=102(10+2)=512.数列{a n }的前n 项和为S n ,a 1=1,a n +1=2S n (n ∈N *).(1)求数列{a n }的通项公式a n ; (2)求数列{na n }的前n 项和T n .【思路点拨】 由a n +1=S n +1-S n 得S n 与S n +1的递推关系,求得S n 和a n ,由a n 的特征,利用错位相减法求数列{na n }的前n 项和T n .【尝试解答】 (1)∵a n +1=2S n ,∴S n +1-S n =2S n ,∴S n +1=3S n .又∵S 1=a 1=1, ∴数列{S n }是首项为1、公比为3的等比数列,因此S n =3n -1(n ∈N *). 当n ≥2时,a n =2S n -1=2·3n -2(n ≥2),∴数列{a n }的通项公式a n =⎩⎪⎨⎪⎧1, n =1,2·3n -2,n ≥2.(2)T n =a 1+2a 2+3a 3+…+na n . 当n =1时,T 1=1;当n ≥2时,T n =1+4·30+6·31+…+2n ·3n -2,① 3T n =3+4·31+6·32+…+2n ·3n -1,②①-②得:-2T n =-2+4+2(31+32+…+3n -2)-2n ·3n -1 =2+2·3(1-3n -2)1-3-2n ·3n -1=-1+(1-2n )·3n -1,∴T n =12+(n -12)·3n -1(n ≥2).又∵T 1=a 1=1也满足上式, ∴T n =12+(n -12)·3n -1(n ∈N *).,1.本例(2)求T n 时,易盲目利用错位相减法直接求和,忽视讨论n =1的情形. 2.(1)如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求和.一般是和式两边同乘以等比数列{b n }的公比,若{b n }的公比为参数,应分公比等于1和不等于1两种情况讨论.(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”.即公比q 的同次幂项相减,转化为等比数列求和.(2012·江西高考)已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N *),且S n 的最大值为8. (1)确定常数k ,并求a n ; (2)求数列{9-2a n2n }的前n 项和T n .【解】 (1)当n =k ∈N +时,S n =-12n 2+kn 取最大值,即8=S k =-12k 2+k 2=12k 2,故k 2=16,因此k =4, 从而a n =S n -S n -1=92-n (n ≥2).又a 1=S 1=72,所以a n =92-n .(2)因为b n =9-2a n 2n =n2n -1,T n =b 1+b 2+…+b n =1+22+322+…+n -12n -2+n2n -1,所以T n =2T n -T n =2+1+12+…+12n -2-n 2n -1=4-12n -2-n2n -1=4-n +22n -1.两种思路解决非等差、等比数列的求和,主要有两种思路(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相减来完成.(2)不能转化为等差或等比数列的,往往通过裂项相消法、倒序相加法等来求和.两个提醒1.裂项相消法,分裂通项是否恰好等于相应的两项之差.2.在正负项抵消后,是否只剩下第一项和最后一项,或有时前面剩下两项,后面也剩下两项,未消去的项有前后对称的特点(见学生用书第99页)数列求和是高考的热点,主要涉及等差、等比数列求和、错位相减法求和、裂项相消法求和与并项法求和,题目呈现方式多样,在选择题、填空题中以考查基础知识为主,在解答题中以考查错位相减法和裂项相消法求和为主,求解的关键是抓住通项公式的特征,正确变形,分清项数求和.易错辨析之九通项遗漏导致错位相减求和错误(2012·浙江高考改编)已知数列{a n}的前n项和为S n,且S n=2n2+n-3,n∈N*,数列{b n}满足a n=4log2b n+3,n∈N*.(1)求a n,b n;(2)求数列{a n·b n}的前n项和T n.【错解】(1)由S n=2n2+n-3,得n≥2时,S n-1=2(n-1)2+(n-1)-3,∴a n=2n2-2(n-1)2+1=4n-1,由4n-1=a n=4log2b n+3,得b n=2n-1,n∈N*.(2)由(1)知a n b n=(4n-1)·2n-1,n∈N*,所以T n=3+7×2+11×22+…+(4n-1)·2n-1,2T n=3×2+7×22+…+(4n-5)·2n-1+(4n-1)·2n,所以2T n-T n=(4n-1)2n-[3+4(2+22+…+2n-1)]=(4n-5)2n+5.故T n=(4n-5)2n+5,n∈N*.错因分析:(1)求a n,忽视n=1的情形,错求a n,导致后续问题不能正确求解.(2)错位相减求和时,弄错等比数列的项数,盲目认为除首、末项外成等比数列.防范措施:(1)由S n 求a n ,当n =1时,a 1=S 1检验是否满足a n =S n -S n -1(n ≥2),若不满足,应分段表示a n ,从而求T n 时,应分类讨论.(2)由于{a n b n }的通项分段表示,求T n 时,不仅注意对n 进行讨论,而且在写出“T n ”与“qT n ”的表达式时应特别注意将两式“错项对齐”.即公比q 的同次幂项相减,转化为等比数列求和. 【正解】 (1)在错解中,补上当n =1时,a 1=S 1=0,不适合a n =4n -1(n ≥2),因此a n =⎩⎪⎨⎪⎧0 (n =1),4n -1 (n ≥2),∴a 1=4log 2b 1+3,∴b 1=2-34,于是b n =⎩⎪⎨⎪⎧2-34 (n =1),2n -1(n ≥2).(2)T n =a 1b 1+a 2b 2+a 3b 3+…+a n b n , 当n =1时,T 1=a 1b 1=0×2-34=0,当n ≥2时,T n =7×2+11×22+15×23+…+(4n -1)·2n -1, ∴2T n =7×22+11×23+…+(4n -5)·2n -1+(4n -1)·2n , 则T n =2T n -T n =(4n -1)·2n -14-4(22+23+…+2n -1)=(4n -1)·2n-14-4×22(1-2n -2)1-2=(4n -5)·2n +2,又n =1时,T 1=0适合上式, 故T n =(4n -5)·2n +2,n ∈N *.1.(2012·课标全国卷)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为( ) A .3 690 B .3 660 C .1 845 D .1 830 【解析】 ∵a n +1+(-1)n a n =2n -1,当n =2k 时,a 2k +1+a 2k =4k -1,当n =2k -1时,a 2k -a 2k -1=4k -3,从而a 2k +1+a 2k -1=2,a 2k +3+a 2k +1=2,因此a 2k +3=a 2k -1,∴a 1=a 5=a 9=…=a 61, 于是S 60=a 1+a 2+a 3+…+a 60=(a 2+a 3)+(a 4+a 5)+…+(a 60+a 61) =3+7+11+…+(2×60-1)=30×(3+119)2=1 830.【答案】 D2.(2013·青岛调研)已知等差数列{a n }满足a 2=0,a 6+a 8=-10. (1)求数列{a n }的通项公式;(2)求数列{a n2n -1}的前n 项和.【解】(1)设等差数列{a n }的公差为d ,由已知条件可得⎩⎪⎨⎪⎧a 1+d =0,2a 1+12d =-10,解得⎩⎪⎨⎪⎧a 1=1,d =-1. 故数列{a n }的通项公式为a n =2-n . (2)设数列{a n2n -1}的前n 项和为S n ,∵a n 2n -1=2-n 2n -1=12n -2-n 2n -1, ∴S n =(2+1+12+122+…+12n -2)-(1+22+322+…+n2n -1).记T n =1+22+322+…+n2n -1,①则12T n =12+222+323+…+n2n ,② ①-②得:12T n =1+12+122+…+12n -1-n 2n ,∴12T n =1-12n1-12-n 2n .即T n =4(1-12n )-n2n -1. ∴S n =2[1-(12)n ]1-12-4(1-12n )+n 2n -1=4(1-12n )-4(1-12n )+n 2n -1=n2n -1.。
数列求和公式教案

数列求和公式教案教案标题:数列求和公式教案教案目标:1. 了解数列的概念和特点。
2. 掌握数列求和公式的推导和应用。
3. 培养学生的逻辑思维和数学推理能力。
教学重点:1. 数列求和公式的推导过程。
2. 数列求和公式的应用。
教学难点:1. 数列求和公式的推导过程。
2. 复杂数列求和公式的应用。
教学准备:1. 教师准备:白板、黑板笔、教材、多媒体课件。
2. 学生准备:课本、笔记工具。
教学过程:Step 1: 引入(5分钟)教师通过提问和示例引入数列的概念,引发学生对数列的兴趣,并与学生一起总结数列的特点。
Step 2: 数列求和公式的推导(15分钟)2.1 教师给出一些简单的数列,引导学生观察规律,并引导学生尝试推导数列求和公式。
2.2 教师给出数列求和公式的推导过程,逐步解释每个步骤的原因和意义。
2.3 学生进行小组合作,尝试推导其他数列的求和公式,并与全班分享他们的思路和答案。
Step 3: 数列求和公式的应用(20分钟)3.1 教师通过多个实际问题引导学生将数列求和公式应用于实际情境中。
3.2 学生进行个人或小组练习,解决与数列求和相关的问题。
3.3 学生展示他们的解决方法和答案,并与全班进行讨论和比较。
Step 4: 拓展与延伸(10分钟)4.1 教师提供一些复杂的数列求和问题,引导学生运用已学知识进行解决。
4.2 学生进行个人或小组探究,解决更具挑战性的数列求和问题。
4.3 学生展示他们的解决方法和答案,并与全班进行讨论和比较。
Step 5: 总结与评价(5分钟)教师与学生一起总结数列求和公式的推导过程和应用方法,并对学生的学习成果进行评价和反馈。
教学延伸:1. 学生可以尝试推导其他类型的数列求和公式,如等差数列、等比数列等。
2. 学生可以通过阅读相关数学文献或书籍,了解更多数列求和公式的应用领域。
教学资源:1. 教材:数学教材相关章节。
2. 多媒体课件:用于展示示例和推导过程等。
教学评价:1. 学生的课堂参与情况。
数列求和免费教案

数列求和免费教案教案标题:数列求和免费教案教学目标:1. 学生能够理解数列的概念和性质。
2. 学生能够应用递推公式求解数列的前n项和。
3. 学生能够解决实际问题中与数列求和相关的计算。
教学准备:1. 教师准备白板、黑板笔、教学投影仪等教学工具。
2. 学生准备纸和笔。
教学过程:步骤一:导入(5分钟)教师通过提问引导学生回顾数列的概念,并与学生一起讨论数列的应用领域,如金融、物理等。
步骤二:概念讲解(10分钟)教师通过示例和图示解释数列的递推公式和通项公式,并与学生一起探讨数列的性质,如等差数列和等比数列的特点。
步骤三:数列求和方法介绍(10分钟)教师向学生介绍数列求和的常用方法,包括等差数列求和公式和等比数列求和公式,并通过实例演示求解数列的前n项和。
步骤四:练习与讨论(15分钟)教师提供一些练习题,要求学生独立解答,并在解答完成后进行讨论和答疑。
教师可以选择一些实际问题,让学生应用数列求和的方法解决问题。
步骤五:拓展应用(10分钟)教师引导学生思考更复杂的数列求和问题,如求解部分项和、求解无穷级数等,并与学生一起探讨解决方法。
步骤六:总结与归纳(5分钟)教师与学生一起总结数列求和的方法和应用,并提醒学生在实际问题中灵活运用数列求和的知识。
步骤七:作业布置(5分钟)教师布置相关的作业,要求学生练习数列求和的应用,并在下节课前完成。
教学延伸:1. 学生可以通过编写程序来计算数列的前n项和,进一步巩固数列求和的概念和方法。
2. 学生可以研究更复杂的数列求和问题,如级数求和、递归数列求和等,拓展数列求和的应用领域。
教学评估:1. 教师通过课堂练习和讨论,观察学生对数列求和的理解和应用能力。
2. 教师可以布置作业来评估学生的数列求和能力,并及时给予反馈。
教学反思:教师可以根据学生的学习情况和反馈,调整教学方法和内容,以提高学生对数列求和的理解和应用能力。
《数列求和》教学设计

《数列求和》教学设计一、教学目标1.知识目标学生能够理解数列求和的基本概念,掌握常用的数列求和公式,能够熟练应用求和公式解决实际问题。
2.能力目标学生能够运用数学思维和方法,分析问题,提出合理的求和方法,并能灵活运用求和公式解决实际问题。
3.情感目标学生能够树立积极的学习态度,发现数列求和的有趣之处,提高数学思维能力和解决问题的能力。
二、教学重点和难点1.教学重点(1)数列求和的基本概念和常用的求和公式;(2)运用求和公式解决实际问题。
2.教学难点(1)问题分析和求解的过程;(2)运用数列求和解决实际问题。
三、教学过程设计1.导入新课(10分钟)(1)向学生提问:“在做加法运算的时候,我们经常会遇到从1开始的连续整数相加的问题,你们知道如何快速求和吗?”(2)引导学生思考,并提示“等差数列”的概念。
(3)分享一个有趣的问题:“小明和小红相约去打篮球,每天他们都会增加一个篮球的练习量,小明从第一天开始每天练习一个篮球,小红从第一天开始每天练习两个篮球,问他们练习30天后总共练习了多少个篮球?”(4)引导学生思考解决问题的方法。
2.板书设计(5分钟)根据导入新课的内容,板书“等差数列”和“数列求和”的概念。
3.概念讲解(20分钟)(1)对等差数列的概念进行详细讲解和举例。
(2)引入数列求和的概念,并通过具体的例子让学生理解求和的含义。
(3)介绍数学家高斯的求和故事,引出等差数列求和公式。
4.基本求和公式(20分钟)(1)教师讲解等差数列求和的基本公式S_n=(a_1+a_n)*n/2,并通过例题进行演练。
(2)介绍等差数列求和公式的推导过程,并通过几个简单例子进行说明。
5.应用题训练(25分钟)(1)学生分组进行应用题训练,训练内容包括常见的等差数列求和问题和实际生活中的应用问题。
(2)学生在小组内共同讨论,解决问题,并由小组代表上台分享解题思路和解题过程。
6.拓展练习(15分钟)(1)给出一些拓展练习,要求学生在规定时间内完成,并进行答案的交流和讨论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列求和教学设计
鹿城中学田光海高三数学
一、教材分析
数列的求和是北师大版高中必修5第一章第内容。
它是等差数列和等比数列的延续,与前面学习的函数也有着密切的联系。
它是从实际问题中抽离出来的数学模型,实际问题中有广泛地应用。
同时,在公式推导过程中蕴含着分类讨论等丰富的数学思想。
二、教法分析
基于本节课是专题方法推导总结课,应着重采用探究式教学方法。
在教学中以学生的讨论和自主探究为主,辅之以启发性的问题诱导点拨,充分体现学生是主体,教师服务于学生的思路。
三、学法分析
在此之前,已经学习了等差数列与等比数列的概念及通项公式,已经具备了一定的知识基础。
在教师创设的情景中,结合教师点拨提问,经过交流讨论,形成认识过程。
在这个过程中,学生主动参与学习,提高自身的数学修养。
让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。
四、三维目标
1知识与技能
理解掌握各种数列求和的方法,学会解析数列解答题,提高解决中难题的能力.
2过程与方法
通过对例题的研究使学生感受数列求和方法的多样性
3情感态度与价值观
感受数学问题的差异,但又能以不同的方法加以解决,进而体会到数学知识的灵活性五、教学重点与难点
本着课程标准,在吃透教材的基础上,我确立如下教学重点与难点:
重点:数列求和公式的推导及其简单应用。
此推导过程中蕴含了分类讨论,递推、转化等重要思想,是解决一般数列求和问题的关键,所以非常重要。
为此,我给出了四种方法进行数
列求和,加深学生理解,突出重点。
难点:数列求和公式的推导及应用。
在此之前,已经学习了等差数列与等比数列的前n 项和,可由此引发进行数列求和的专题学习,为此,我引导学生先进性等差与等比数列的复习。
由此引入专题学习。
下面,为了讲清重点和难点,达到本节课的教学目标,我再从教法学法上谈谈: 六、教学过程
(n a a +求下列各数列的前n 项和Sn:3
)
(1)1)n
a a
a +++≠
五:板书设计
六.教学反思
这节课是高中数学必修5第二章数列的重要的内容之一,是在学习了等差、等比数列的前n项和的基础上,对一些非等差、等比数列的求和进行探讨。
这节课总体上感觉备课比较充分,各个环节相衔接,能够形成一节完整就为系统的课。
本节课教学过程分为导入新课、知识回顾、例题讲解、练习训练、课堂小结、布置作业。
本节课总体上讲对于内容的把握基本到位,对学生的定位准确,教学过程中留给学生思考的时间,以学生为主体。
没有精心的预设,就没有精彩的生成。
我一直都是深刻记得这句话,也在教学中实践它。
但是我仍然感觉自己做不到“精彩”而更多的是“平淡无奇”。
是这节课我有了深刻的体会,让我开始审视我前面几个月所走过了路,才发现教学真的是需要智慧,做到用心去体会,用心去设计,用心去聆听学生的声音……。