数列求和(公开课)

合集下载

第五章 第四节 数列求和(优秀经典公开课比赛课件)

第五章  第四节 数列求和(优秀经典公开课比赛课件)

首页 上页 下页 尾页
教材通关
2.常见数列的求和公式 (1)12+22+32+…+n2=nn+162n+1 (2)13+23+33+…+n3=nn2+12
高考·导航 主干知识 自主排查 核心考点 互动探究 课时作业
首页 上页 下页 尾页
教材通关
[小题诊断]
1.(2018·安溪质检)数列{an}的前n项和为Sn,已知Sn=1-2+3
首页 上页 下页 尾页
教材通关
3.1+2x+3x2+…+nxn-1=________(x≠0且x≠1).
解析:设Sn=1+2x+3x2+…+nxn-1,① 则xSn=x+2x2+3x3+…+nxn,② ①-②得:(1-x)Sn=1+x+x2+…+xn-1-nxn =11--xxn-nxn, ∴Sn=11--xxn2-1n-xnx. 答案:11--xxn2-1n-xnx
高考·导航 主干知识 自主排查 核心考点 互动探究 课时作业
首页 上页 下页 尾页
教材通关
[必记结论]
1.常见的裂项公式
(1)nn1+1=n1-n+1 1.
(2)2n-112n+1=122n1-1-2n1+1.
(3)
1 n+
n+1=
n+1-
n.
高考·导航 主干知识 自主排查 核心考点 互动探究 课时作业
a1+4d=5, ∴5a1+5×25-1d=15,
∴ad1==11,,
∴an=a1+(n-1)d=n.∴ana1n+1=nn1+1=n1-n+1 1,
∴数列
1 anan+1
的前100项和为
1-12

12-13
+…+
1010-1101
=1-1101=110001. 答案:A

数列求和法-公开课ppt课件

数列求和法-公开课ppt课件

Sn2
an (Sn
1), 2
Qan SnSn1
∴ S n 2 (S n S n 1 )(S n 1 2 ) 1 2 (S n 1 S n ) S n S n 1

1 1 2 Sn Sn1

∴数列
∴1
Sn
S1n S1是1以2(nS111)1首2项n,12为即. 公差S的n 等差2数n1列
14 47 7 10(3 n2 )3 (n1 )
1
提示:
1 ( 1 1 )
(3n2)(3n1) 3 3n2 3n1

1 1
1
14 47
(3n2)(3n1)
1[(1 1)(1 1) ( 1 1 )]
3 4 47
3n2 3n1
1(1 1 ) n 3 3n1 3n.1
错位相减法
错位相减法:主要用于一个等差数列与一个等比数列 对应项相乘得的新数列求和,此法即为等比数列求 和公式的推导方法.
1

数列求和法小结
公式法求和
分组求和法
倒序相加法
裂项相消法
错位相减法
周期法求和
其它方法:递推法、合并法
.
( a 1 9 a 1 9 9 3 9 a 1 4 ) 9 a 1 9 9 8 a 2 9 0 a 9 2 0 0 a 0 2 0 0
a19 9a 9 20 0a 0 20 0a 1 2002
a1a2a3a45
.
其它方法求和
例7:求和 1 3 5 ( 1 )n(2 n 1 )
而 a 6 k 1 a 6 k 2 a 6 k 3 a 6 k 4 a 6 k 5 a 6 k 6 0
∴ S 2002 ( a 1 a 2 a 3 a 6 ) ( a 7 a 8 a 1 ) 2 ( a 6 k 1 a 6 k 2 a 6 k 6 )

数列求和(错位相减法-公开课)

数列求和(错位相减法-公开课)

32 3n 3 3 2 (2n 1) 3 n1 6 (2 2n) 3n1 1 3
故Sn 3 (1 n) 3n1
课堂总结
数列求和的新方法:错位相减法
1、什么数列可以用错位相减法来求和?
通项公式是“等差×等比”型的数列
2、错位相减法的步骤是什么?
Sn a1 a2 a3 an1 an
后一项都比前 一项多乘个q
Sn a1 a1q a1q a1q
2
2 3
n 2
a1q
n1
n1
n


qSn a1q a1q a1q a1q
①—② ,得
a1q
错 位 相 n 减 a1 an q 法 a1 a1q q 1时 : S n 错位相减法:来自展开,乘公比,错位,相减
即S n 1 2 2 2 2 (n 1) 2 n 1 n 2 n
2Sn 1 2 2 2 2 3 (n - 1) 2 n n 2 n1 ①-②得 Sn 1 2 1 2 2 1 23 1 2 n n 2 n1
公式法
(3)求数列{a n bn }的前n项和
分组求和法
新问题: 求数列{a n bn } 的前n项和

情景重现:
银行贷款问题
N年后,如果你自己开了公司,当了 老板,但是由于资金短缺,需向银行贷款 1000万。银行向你推荐了一个新的贷款 方案:
银行一次性借给你1000万元,你可以分30个月 偿还,第一个月还2元,第二个月还4元,第三个月 还8元,第四个月还10元,以此类推,每个月的还 款数是前一个月的两倍。 你能接受这个方案吗?

数列求和【公开课教学PPT课件】

数列求和【公开课教学PPT课件】


1 2
Tn

1 2

3 22

5 23

2n 3 2n 1
2n1
2n
(1
1 2
)Tn

2
1 2

1 22

1 23

Tn

6

2n 3 2n1

1 2n2

2n 1 2n

3
2n 3 2n
高考数学第一轮复习 第六章 数列 第4节 数列求和
已知数列{an}是递增的等比数列,且a1+a4=9,a2a3=8.
(2)Sn

a1(1 qn ) 1 q
2n 1, bn

an1 Sn Sn1

Sn1 Sn Sn Sn1

1 Sn
1 Sn1
Tn b1 b2 b3 bn
( 1 1 )( 1 1 ) ( 1 1 )
S1 S2
S2 S3
Sn

1 S1
高考数学第一轮复习 第六章 数列 第4节 数列求和
考点二 分组、并项求和法
例2. 设等比数列{an}的通项公式为an=3n ,等差数列{bn}的通项 公式为bn=2n+1.
(1)记cn=an+bn,求数列{cn}的前n项和Sn. (2)记dn=(-1)nbn ,求数列{dn}的前n项和Tn.
解:(1)
cn an bn,an,bn分别为等差、等比数列。
高考数学第一轮复习 第六章 数列 第4节 数列求和
考点一 倒序相加法
例1. 若数列{an}是首项为1,公差为2的等差数列.求
S Cn0a1 Cn1a2 Cn2a3 + Cnnan1

第讲数列的求和精选课件

第讲数列的求和精选课件
若一个数列是由等比数列或是等差数列组成,以 考查公式为主,可先分别求和,再将各部分合并,这就是我们说 的分组求和.
【互动探究】 1.(2019 年陕西)已知{an}是公差不为零的等差数列,a1=1,
且 a1,a3,a9 成等比数列. (1)求数列{an}的通项公式; (2)求数列{2 a n}的前 n 项和 Sn.
4.数列 112,214,318,…,n+21n,…的前 n 项和 Sn=______ __12_n_(n_+__1_)_+__1_-__21_n___.
5.数列{an}的通项公式 an=
1 n+
n+1,若前
n
项的和为
10,
则项数 n=___1_2_0___.
考点1 利用公式或分组法求和
例1:(2011 年重庆)设{an}是公比为正数的等比数列,a1=2, a3=a2+4.
数列求和常用的方法
1.公式法 (1)等差数列{an}的前
n
项和公式:Sn=nnaa1+ 12+nann2-,1d.
(2)等比数列{an}的前n项和Sn:①当q=1时,Sn=__n_a_1_;
a11-qn
a1-anq
②当 q≠1 时,Sn=____1_-__q___=____1_-__q__.
2.分组求和法 把一个数列分成几个可以直接求和的数列. 3.错位相减法 适用于一个等差数列和等比数列对应项相乘构成的数列求 和. 4.裂项相消法 有时把一个数列的通项公式分成两项差的形式,相加过程消 去中间项,只剩有限项再求和.
解析:(1)P1(-1,0),an=n-2,bn=2n-2. (2)f(n)=n2- n-2, 2,n为 n为奇偶数数,. 假设存在符合条件. ①若 k 为偶数,则 k+5 为奇数. 有 f(k+5)=k+3,f(k)=2k-2. 如果 f(k+5)=2f(k)-2,则 k+3=4k-6⇒k=3 与 k 为偶数矛 盾.故不符(舍去). ②若 k 为奇数,则 k+5 为偶数, 有 f(k+5)=2k+8,f(k)=k-2. ∴2k+8=2(k-2)-2 这样的 k 也不存在. 综上所述:不存在符合条件的 k.

高中阶段最全的数列求和(10种)省公开课获奖课件说课比赛一等奖课件

高中阶段最全的数列求和(10种)省公开课获奖课件说课比赛一等奖课件

4.处理非等差、等比数列旳求和,主要有两种思绪
(1)转化旳思想,即将一般数列设法转化为等差或等比 数列,这一思想措施往往经过通项分解或错位相减来完 毕.
(2)不能转化为等差或等比数列旳数列,往往经过裂项 相消法、错位相减法、倒序相加法等来求和.
5.“错位相减”、“裂项相消”等是数列求和最主要 旳措施.是高考要点考察旳内容,应熟练掌握.
(其中d=an+1-an).
常见旳拆项公式有:
1. 1 1 1 n(n 1) n n 1
2. 1 1 ( 1 1 ) n(n k) k n n k
3.
1
1( 1 1 )
(2n 1)(2n 1) 2 2n 1 2n 1
4. 1 1 ( a b) a b ab
5.
1
1[ 1
1
]
即数列an的周期是 4,
a4=-1 又 a3 2 ,
故 a1+a2 +a3 +a4 =2 , a2009 a45021 a1 ,
a1+a2 +a3 +a4 +.......+a2009 502(a1+a2 +a3 +a4 ) a2009 1003
练习:
已知在数列 an
中,
a1
2

an1
(3)求数列1,3+4,5+6+7,7+8+9+10, …,前n项和Sn.
例1:求和:
1. 4 6 8 ……+(2n+2)
2.
11 1 1 2 22 23
1 2n
3. x x2 xn
10看通项,是什么数列,用哪个公式; 20注意项数
例2、已知lg(xy) 2

第20讲 数列的求和PPT课件

第20讲 数列的求和PPT课件

【典例分析】
【典例分析】
考点五 分组求和
有时,可将原数列分解成若干个可用公式法求和的新数列进行分 别求解.
【典例分析】
【典例分析】
考点一 公式法
【典例分析】
【典例分析】
考点二 裂项相消法 将数列的每一项分解成两项的差,逐一累加相消.
【典例分析】
【典例分析】
【典例分析】
考点三 错位相减法
【典例分析】【典例分析】来自【典例分析】考点四 倒序相加法
如等差数列前n项和公式的推导就是使用的该法,有时关于组合 数的求和问题,也常用倒序相加法.
第一部分 基础知识串讲
4.2 数列的求和
数列的求和问题是高中数学中的一个非常重要的知识点,也是各大高校 自主招生试题中经常涉及的内容.由于数列的形式多种多样、种类繁多, 除一般外表形式较为简单的实数数列以外,还有三角函数数列、反三角 函数数列、组合数列、复数数列等.因此,其求和方法也是灵活多样、纷 繁多变的.本节我们介绍几种数列求和的基本方法.

第四节 数列求和 课件(共48张PPT)

第四节 数列求和 课件(共48张PPT)


1 n+3
)=
1 2
56-n+1 2-n+1 3. 答案:1256-n+1 2-n+1 3
考点1 分组转化法求和 [例1] (2020·焦作模拟)已知{an}为等差数列,且 a2=3,{an}前4项的和为16,数列{bn}满足b1=4,b4= 88,且数列{bn-an}为等比数列. (1)求数列{an}和{bn-an}的通项公式; (2
an=n(n1+k)型
[例2] (2020·中山七校联考)已知数列{an}为公差 不为0的等差数列,满足a1=5,且a2,a9,a30成等比数列.
(1)求{an}的通项公式; (2)若数列{bn}满足bn+1-bn=an(n∈N*),且b1=
3,求数列b1n的前n项和Tn.
1.裂项时常用的三种变形.
(1)n(n1+1)=n1-n+1 1.
(2)n(n1+2)=12n1-n+1 2.
(3)(2n-1)1(2n+1)=122n1-1-2n1+1.
(4)
1 n+
n+1=
n+1-
n.
2.应用裂项相消法时,应注意消项的规律具有对称 性,即前面剩第几项则后面剩倒数第几项.
3.在应用错位相减法求和时,若等比数列的公比为 参数,应分公比等于1和不等于1两种情况求解.
) B. 2 020-1
C. 2 021-1 D. 2 021+1
解析:由f(4)=2,可得4α=2,解得α=12,
则f(x)= x.
所以an=
1 f(n+1)+f(n)

1 n+1+
= n
n+1 -
n,
所以S2 020=a1+a2+a3+…+a2 020=( 2 - 1 )+ ( 3- 2)+( 4- 3)+…+( 2 021- 2 020)=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.裂项相消法:把数列的通项拆成两项之 差,即数列的每一项都可按此法拆成两 项之差,在求和时一些正负项相互抵消, 于是前n项的和变成首尾若干少数项之和, 这一求和方法称 为裂项相消法.
5.倒序相加法:如果一个数列 an ,与首末 两项等距的两项之和等于首末两项之和, 可采用把正着写与倒着写的两个和式相加, 有公因式可提,并且剩余的项的和可求出来, 这一求和的方法称为倒序相加法。
课堂诊断
1 1 1 1 . 数 列 , , , „ , 2· 5 5· 8 8· 11 1 ,„的前 n 项和为( B ) (3n-1)· (3n+2) n n A. B. 3n+2 6n+4 n+1 3n C. D. 6n+4 n+2
2 -1 2.已知数列{an}的通项公式是 an= n , 2 321 其前 n 项和 Sn= ,则项数 n 等于( D ) 64 A.13 B.10 C.9 D.6
1 2 n 变式、求和: S n 2 n a a a
【解析】 (1)a=1 时,Sn=1+2+„+n= n(n+1) ; 2 1 2 3 n (2)a≠1 时,Sn= + 2+ 3+„+ n① a a a a n-1 1 1 2 n S n + n+1② n= 2+ 3+„+ a a a a a 由①-②得
1 1 1- n 2 2 1 =2 n- =2n-1- + 1 2n 1-2 1 =2n-2+ n-1. 2

思维升华:要求和,先弄清通项(长什么 样用什么样的方法)!
错位相减法
例3、数列 {an }中a1 3,已知点(an , an 1)在 直线y x 2上, ( 1 )求数列 {an }的通项公式; (2)若bn an 3 , 求数列 {bn }的前n项的和Tn .
祝愿同学们学业有成,前途似锦!
细心、用心是制胜的法宝!
数列求和(一)
高三数学组 鲁云霞
循 环 教 研 、 实 证 推 进 研 讨 课
--
考 1. 熟练掌握等差、等比数列的前n项和公式. 纲 2.能利用等差、等比数列的前n项和公式 点 击 及其性质求一些特殊数列的和。
热 ቤተ መጻሕፍቲ ባይዱ 提 示
1.多以选择题或填空题的形式 考查等差、等比数列的前n项和. 2.以考查等差、等比数列的前n项和为主, 同时考查分组求和法、错位相减法、 裂项相消法、倒序相加法等常用方法.
1 1 1 1 1 n (1-a)Sn=a+ 2+ 3+„+an- n+1 a a a 1 1 (1 - n) a a n = - n+1, 1 a 1-a n a(a -1)-n(a-1) ∴Sn= . n 2 a (a-1) 综 上 所 述 , Sn
n(n+1) 2 n a(a -1)-n(a-1) n 2 a (a-1)
1 1 1 1 3. ( ) (2n 1)(2n 1) 2 2n 1 2n 1
1 1 1 1 4. [ ] n(n 1)(n 2) 2 n(n 1) (n 1)(n 2)
1 5. ( n k n) n nk k
1
利用裂项相消法求和时,应注意: ①将通项公式裂项后,有时候需要 调整前面的系数,使裂开的两项之 差和系数之积与原通项公式相等. ②抵消后并不一定只剩下第一项和 最后一项,也有可能前面剩两项, 后面也剩两项,
n
3.数列{(-1) · n}的前 2 010 项的和 S2 为( D ) A.-2 010 B.-1 005 C.2 010 D.1 005
n
010
4、已知数列 {an }满足:a1 2t , t 2an 1t an 1an 0, n 2, n N ,
2
(其中t为常数,且t 0) 1 ( 1 )求证:数列 { }为等差数列; an t (2)求数列 {an }的通项公式;
sn
a1(1-q ) a1-anq 1-q 1 - q =__________=_________
(其中
n
a1 为首项,q为公比)
例1.: 求和
1. 1+2+3+……+n 答案: Sn=n(n+1)/2 2. 2+4+8+……+2n 答案: Sn=2n+1-2
方法:直接求和法
找漏洞,辨错因
方法:分组转化求和法
【思考】 用裂项相消法求数列前n项和
的前提是什么?
【提示】 裂项相消法的前提是将数列的每一项 拆成二项或多项,使数列中的项出现 有规律的抵消项,进而达到求和的目的。
常见的拆项公式有:
1 1 1 1. n(n 1) n n 1
1 1 1 1 2. ( ) n( n k ) k n n k
an (3)设bn , 求数列{bn }的前n项和S n . 2 (n 1)
反思小结:
1.公式法:直接利用等差等比数列的求和公式 2.分组转化法:有一类数列,既不是等差数列, 也不是等比数列,若将这类数列适当拆开,可 分为几个等差、等比或常见的数列,然后分别 求和,再将其合并即可. 3.错位相减法:如果一个数列的各项是由 一个等差数列与一个等比数列对应项乘积 组成,此时求和可采用错位相减法.
n
1.一般地,如果数列{an}是等差 数列,{bn}是等比数列,求数列{an· bn}的前 n 项和时,可采用错位相减法. 2.用乘公比错位相减法求和时,应注意 (1)要善于识别题目类型,特别是等比数列 公比为负数的情形; (2)在写出“Sn”与“qSn”的表达式时应特 别注意将两式“错项对齐”以便下一步准 确写出“Sn-qSn”的表达式.
——基础知识梳理 —— 1、等差数列的前n项和公式:
s
(其中 a1为首项,d为公差) 2、等比数列的前n项和公式: na1 当q=1时, =__________ n
n(n-1) n(a1+an) na + d 1 = ________________ . 2 n =____________ 2
s
当q≠1时,

(a=1) . (a≠1)
利用错位相减法求和时,转化为等比 数列求和.若公比是个参数(字母), 则应先对参数加以讨论,一般情况下 分等于1和不等于1两种情况分别求和.
题型三、裂项相消法
1 2 n 例4、在数列 {an }中,an , n 1 n 1 n 1 2 又bn , 求数列{bn }的前n项和。 an an 1
1 1 1 1 例2、求数列 2 、 4 、 6 、 8 、 的前 n项和 S n . 4 8 16 32
【思路点拨】 先求通项 →转化为几个容易求和的数列形式 →分别求和 →得结论
解:
1 1 1 1 sn 2 4 6 (2n n1 ) 4 8 16 2 1 1 1 (2 4 6 2n) ( n 1 ) 4 8 2 1 1 n [1 ( ) ] 4 2 n(n 1) 1 1 2 1 1 n 1 2 n n ( ) 2 2
练习:试卷78页夯基释疑T3
Answer:C
变式:78页跟踪训练1
解析: 和式中的第 k 项为:
1 1-2k 1 1 1 1 1- k ak=1+2+4+„+ k-1= = 2 2 1 2 1- 2
Sn=a1 +a2 +a3 +……. +an
n个 1 1 1 =2 1+1+„+1 - + 2+„+ n 2 2 2
相关文档
最新文档