数列求和公开课学案
《数列求和》优质课比赛说课教案及教学设计

数列求和教学设计一、学情分析和教法设计:1、学情分析:学生在前一阶段的复习,已经基本掌握了等差、等比数列这两类最基本的数列的定义、通项公式、求和公式,同时也掌握了与等差、等比数列相关的综合问题的一般解决方法,也学会了由数列的递推公式求数列的通项公式。
本节课作为一节复习课,将会根据不同的通项公式求出数列的和,并能运用通项分裂成差的两项进行相加抵消的方法求和,也用构造同类项利用错位相减法求差比数列的和,从而培养学生观察、分析、归纳、猜想的能力、逻辑思维能力以及演绎推理的能力。
2、教法设计:本节课设计的指导思想是:引导学生进行探索、讨论,分析、启发、总结。
先引出相应的知识点,然后分析解决的问题,在例题及变式中巩固相应方法,再从讨论中对求和方法的理解,更好地锻炼学生探索和解决问题的能力。
在教学过程中采取如下方法:先提出问题再让学生回答,调动学生的主动性和积极性,发挥其创造性;有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性;可以及时巩固所学内容,抓住重点,突破难点。
因此本节课采用学生主讲、教师点评的授课方式,既能充分发挥学生主观能动性,又能充分暴露学生认知过程中的错误,获取理想的教学效果.二、教学设计:1、教材的地位与作用:数列求和是数列的重要内容,是研究数列的一种方法。
对数列的内容的考查是近几年高考的热点内容之一,属于高考命题中常考常新的内容;化归思想是解决数学问题的基本思想,解题的过程实际上就是转化的过程。
2、教学目标:研究近几年的高考试卷,发现数列与不等式,三角函数,向量等知识的综合应用往往出现在高考中的最后两题,成为学生的丢分题,从而加强数列综合应用的教学显得尤为重要.根据学生的认知水平和数列求和在新课程理念的要求,确定教学目标如下:◆知识目标:①复习等差和等比数列的前n项和公式、回忆公式推导过程所用倒序想加和错位相减的思想方法,及用数列求和公式求和时,应弄清基本量中各基本量的值,特别是用等比数列求和公式求和时,应关注公比q是否为1;②记住一些常见结论便于用公式法对数列求和;③学会分析通项的结构并且对通项进行分拆;能运用拆并项求和思想方法解决非特殊数列求和问题。
数列求和的方法(学案)

数列求和的常见方法数列问题中蕴涵着丰富的数学思想方法,是高考用来考查考生对数学思想方法理解程度的良好素材,是历年高考的一大热点,在高考命题中,多以与不等式的证明或求解相结合的形式出现,一般数列的求和,主要是将其转化为等差数列或等比数列的求和问题,因此,我们有必要对数列求和的各种方法进行系统探讨。
一 、公式求和法通过分析判断并证明一个数列是等差数列或等比数列后,可直接利用等差、等比数列的求和公式求和,或者利用前n 个正整数和的计算公式等直接求和。
因此有必要熟练掌握一些常见的数列的前n 项和公式.正整数和公式有:()();213211+=++++n n n ()()();6121212222++=+++n n n n()().212132333⎥⎦⎤⎢⎣⎡+=+++n n n例1 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:【能力提升】公式法主要适用于等差、等比数列或可转化为等差、等比数列的数列的求和,一些综合性的数列求和的解答题最后往往就归结为一个等差数列或等比数列的求和问题. 二、分组求和法有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.形如:①{}n n b a +,其中{}{}⎩⎨⎧是等比数列;是等差数列;n n b a ②()()⎩⎨⎧∈=-==*Nk k n n g k n n f a n ,2,,12,例2 已知数列{}n a 的通项公式为,132-+=n a n n 求数列{}n a 的前n 项和.分析:该数列的通项是由一个等比数列{}n2与一个等差数列{}13-n 组成的,所以可将其转化为一个等比数列与一个等差数列进行分组求和.【能力提升】在求和时,一定要认真观察数列的通项公式,如果它能拆分成几项的和,而这些项分别构成等差数列或等比数列,那么我们就可以用此方法求和. 三、错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求和. 例3.(2010年全国高考宁夏卷17)设数列{}n a 满足21112,32n n n a a a -+=-= (1) 求数列{}n a 的通项公式; (2) 令n n b na =,求数列的前n 项和n S解:【能力提升】错位相减法适用于数列{}n n b a ,其中{}n a 是等差数列,{}n b 是等比数列.若等比数列{}n b 中公比q 未知,则需要对公比q 分11≠=q q 和两种情况进行分类讨论. 四、倒序相加法如果一个数列{}n a ,与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法.例4求证:n nn n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++【能力提升】倒序相加法来源于课本,是等差数列前项和公司推导时所运用的方法,它是一种重要的求和方法。
裂项相消法求和(公开课)学案

姓名:___________ 班级:_____________数列求和(1)—— 裂项相消法目标:1 理解裂项相消法思想。
2 使用裂项相消法解决特殊数列求和问题。
3 在自学与探究中体验数学方法的形成过程。
一、复习巩固 1 公式求和法: 2 倒序相加法:二、自学讨论学习以下例题,完成填空。
(限时8分钟) 思考与讨论:什么数列可用裂项相消法求和? 如何裂项?你有好的方法吗?如何相消?你能发现其中的规律吗? 利用裂项相消法求和的一般步骤是什么?例一:n n S n n a 求已知,)1(1+=解:111)1(1+-=+=n n n n a nn n n a a a a a S +++++=∴-1321)1(1)1(1431321211++-++⨯+⨯+⨯=n n n n )111()111()4131()3121()211(+-+--++-+-+-=n n n n 1111+=+-=n nn 1+=∴n n S n裂项相消法求和的一般步骤:_________________________ _____________ ____________裂项: ○1你能证明111)1(1+-=+n n n n 吗?○2猜想:()21+n n =_____________________验证:=+-211n n ___________________ 结论:=+)2(1n n ____________________○3一般地; ()k n n +1=________________相消:怎么消?哪些项是不能消去的?变式训练:(1)()n 12S n n a n ,求已知+=(2)n n S n n a 求已知,)2(1+=三、增效练习(限时10分钟) 1、________,)12)(12(1=+-=n n S n n a 已知2、()()________32121751531=++++⨯+⨯n n3、已知()*56N n n a n ∈-=,13+=n n n a a b ,求n n b b b T +++= 214、已知数列{}n a 的各项如下:1,211+,3211++,…………,n++++ 3211。
高中数学数列的求和教案

高中数学数列的求和教案
一、教学目标
1. 知识与技能:了解数列的基本概念与性质,掌握等差数列、等比数列的求和公式,能够熟练计算数列的和。
2. 过程与方法:通过理论学习和实际练习,培养学生的数学思维能力和解决问题的方法。
3. 情感态度:培养学生对数学的兴趣,激发学生学习数学的积极性。
二、教学重点和难点
1. 等差数列、等比数列的求和公式的掌握和应用。
2. 解题方法的灵活应用和实际问题的转化。
三、教学内容
1. 数列的基本概念与性质
2. 等差数列的求和公式
3. 等比数列的求和公式
四、教学过程
1. 导入:通过提出一个生活中的实际问题,引出数列的概念和重要性。
2. 讲解:介绍数列的基本概念和性质,重点讲解等差数列、等比数列的求和公式。
3. 实例讲解:通过几个具体的例题,讲解如何应用求和公式计算数列的和。
4. 练习:学生独立或分组完成一些练习题,巩固所学知识。
5. 拓展:带领学生思考更复杂的数列求和问题,引导学生拓展思维。
6. 讲评:对学生的练习情况进行总结和讲评,指导学生做好巩固练习。
五、板书设计
1. 数列的概念与性质
2. 等差数列的求和公式
3. 等比数列的求和公式
六、教学反思
通过本节课的教学,学生能够较好地掌握数列求和的基本方法和技巧,但是在应用中还存在一定的困难,需要通过更多的实践和练习加以巩固。
下节课可以通过更复杂的案例实践来提高学生的解题能力。
数列求和教案

数列求和教案一、教学目标1.了解数列的概念和性质;2.掌握等差数列和等比数列的通项公式;3.掌握数列求和公式;4.能够应用数列求和公式解决实际问题。
二、教学重点1.等差数列和等比数列的通项公式;2.数列求和公式。
三、教学难点1.数列求和公式的应用。
四、教学过程1. 引入教师通过举例子引入数列的概念,让学生了解数列的定义和性质。
2. 等差数列和等比数列的通项公式2.1 等差数列的通项公式教师通过举例子引入等差数列的概念,让学生了解等差数列的定义和性质。
然后,教师介绍等差数列的通项公式:a n=a1+(n−1)d其中,a n表示等差数列的第n项,a1表示等差数列的第一项,d表示等差数列的公差。
2.2 等比数列的通项公式教师通过举例子引入等比数列的概念,让学生了解等比数列的定义和性质。
然后,教师介绍等比数列的通项公式:a n=a1q n−1其中,a n表示等比数列的第n项,a1表示等比数列的第一项,q表示等比数列的公比。
3. 数列求和公式3.1 等差数列的求和公式教师介绍等差数列的求和公式:S n=n2(a1+a n)其中,S n表示等差数列的前n项和。
3.2 等比数列的求和公式教师介绍等比数列的求和公式:S n=a1(q n−1) q−1其中,S n表示等比数列的前n项和。
4. 应用教师通过例题让学生掌握数列求和公式的应用。
五、教学总结教师对本节课的内容进行总结,强调数列求和公式的重要性和应用。
六、作业1.完成课堂练习;2.完成课后作业。
七、教学反思本节课的教学重点是数列求和公式的应用,但是由于时间有限,只能介绍一些基本的应用,没有涉及到更复杂的应用。
下次教学中,应该加强对数列求和公式的应用讲解,让学生更好地掌握数列求和公式的应用。
数列求和导学案

《数列求和》导学案【学习目标】1.掌握等差数列、等比数列的前n 项和公式.2.掌握一般数列求和的几种常见的方法.【课前导学】一、公式法1.直接利用等差数列、等比数列的前n 项公式求和(1)等差数列的前n 项和公式n S =____________=____________ . (其中1a 为首项,d 为公差)(2)等比数列的前n 项和公式当1q =时,n S =______;当1q ≠时,n S =____________=____________.(其中1a 为首项,q 为公比)2.一些常见数列的前n 项和(1)123n +++⋅⋅⋅+=________________;(2)246n ++++=________________; (3)13521n ++++-=________________.二、几种数列求和的常用方法1.分组求和法:若一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和而后相加减.2.裂项相消法:把数列的通项拆成__________,在求和时中间的一些项可以相互抵消,从而求得其和.常用的裂项公式:(1)1n (n +1)=________________; (2)1(2n -1)(2n +1)=________________; (3)1n +n +1=________________;(引例)某大楼共有12层,有11人在第1层上了电梯,他们分别要去第2至第12层,每层1人.因特殊原因,电梯只允许停1次,只可使1人如愿到达,其余10人都要步行到达所去的楼层.假设这10位乘客的初始“不满意度”均为0,乘客每向下步行1层的“不满意度”增量为1,每向上步行层的“不满意度”增量为2,10人的“不满意度”之和记为S ,则S 的最小值是( )【合作探究】首先独立思考探究,然后合作交流展示.一 分组转化法求和1.2.若数列{an}的通项公式为an=2n+2n-1,则数列{an}的前n 项和Sn=_______.已知数列:1,则其前n 项和Sn=_______.(2)已知①求数列{an}的前10项和S10;②求数列{an}的前2k 项和S2k.二 裂项相消法求和10111112310_______.2482+++⋯+=n 1111111(1),(1),,(1),,224242-+++⋯+++⋯+⋯n n 25n 1 n a 2 n +⎧⎪=⎨⎪⎩变式【知能巩固】当堂达标练习1.求和n+++++++++++321132112111.2.数列121,341,581,7161,…,(2n -1)+n 21的前n 项之和为S n ,则S n 等于( ) (A)n 2+1-n 21 (B)2n 2-n +1-n 21 (C)n 2+1-121-n (D)n 2-n +1-n 21 4.已知函数4()42xx f x =+,则122013()()()201420142014S f f f =++= 5.求和11357(1)(21)n n S n -=-+-++--=6.已知:等差数列{}n a 中前n 项和为n S ,前6项和为36,最后6项和为180(6)n >,则n S ={}1S (2)n n n a a n n n =+已知数列中,求数列的前项和【课堂小结】【课后反思】。
数列求和导学案1

数列求和导学案一、 学习目标:1、 巩固等差数列、等比数列的求和公式。
2、 掌握数列求和的几种常用方法,并能利用它们解决一些数列的求和问题。
二、 知识梳理:1、等差数列通项公式 , 等差数列前n 项和公式 ;2、等比数列通项公式 , 等比数列前n 项和公式。
三、典型例题:1、倒序相加法例1、求和: 89sin 3sin 2sin 1sin 2222+++=n s2、裂项相消法例2、求数列)1(1,,431,321,211+⨯⨯⨯n n 的前n 项和。
【变式1】已知数列{n a }的通项公式为21,n a n =-求数列{11n n a a +⋅}的前n 项和。
【变式2】求和:)13()23(11071741411+⨯-++⨯+⨯+⨯=n n s n3、分组求和法 例3、求和:n n s n 2)12(654321--++-+-+-=【变式1】求和:n n n s 21)12(815413211-++++=4、错位相减法例4、 求和:n n n s 223222132⨯++⨯+⨯+⨯=四、 方法小结:1、倒序相加法:数列中与首末两项等距离的两项之和等于首末两项之和,求和时可把正着写与倒着写的两个和式相加,就得到一个常数列的和。
2、裂项相消法:将数列的每一项拆成两项或若干项,并使它们在相加时除了首尾各有一项或少数几项外,其余各项都能前后正负相消,进而求出数列的前n 项和。
3、分组求和法:{}n a ,{}n b 是等差数列或等比数列,求数列{}n n b a ±的前n 项和。
4、错位相减法:{}n a 是等差数列,{}n b 是等比数列,求数列{}n n b a ⋅的前n 项和。
5、并项求和法:相邻两项或几项的和是同一常数或有规律可循时。
思考题:1. 求数列1222221,,221,21,1-+++++++n 前n 项的和。
2.求和:22222212979899100-++-+-= n s。
《数列求和》教学设计

第四章数列《数列求和》教学设计1.理解一些常见数列的求和方法.2.会求一些常见数列的前n项和.教学重点:常见数列的求和方法.教学难点:错位相减法求一类数列的和.PPT课件.【新课导入】问题1:等差数列的前n项和公式是什么?设计意图:通过回顾等差数列的前n项和公式,温故知新.问题2:等比数列的前n项和公式是什么?师生活动:学生回顾公式并回答.预设的答案:设计意图:通过回顾公式,引入新课.问题3:如果一个数列既不是等差数列也不是等比数列,如何求它的前n项和呢?常见数列的求和方法有哪些?设计意图:通过该问题,引起学生思考既不是等差数列也不是等比数列的特殊数列求和.【探究新知】知识点一 错位相减法一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{b n }的公比,然后作差求解. 数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法.知识点二 裂项相消法这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的.知识点三 分组求和法对于求数列的和,其中为等差或等比数列,可考虑用拆项分组法求和.知识点四 倒序相加法这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个.知识点五 并项求和法奇偶并项求和的基本思路:有些数列单独看求和困难,但相邻项结合后会变成熟悉的等差数列、等比数列求和.但当求前n 项和而n 是奇数还是偶数不确定时,往往需要讨论. 并项求和一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如类型,可采用两项合并求解.【巩固练习】例1 已知数列{a n }的通项公式为a n =(3n +2)·2n ,求该数列前n 项和S n . 师生活动:学生分组讨论,教师讲解. 预设的答案:S n =5×2+8×22+11×23+14×24+…+(3n -1)·2n -1+(3n +2)·2n ……① 2S n =5×22+8×23+11×24+14×25+…+(3n -1)·2n +(3n +2)·2n +1……② ①-②得:-S n =5×2+3×22+3×23+3×24+…+3·2n -1+3·2n -(3n +2)·2n +1 =10+3(22+23+24+…+2n -1+2n )-(3n +2)·2n +1=10+3(2n +1-4)-(3n +2)·2n +1q {}n n a b ±{}{},n n a b 1()n a a +(1)()nn a f n =-=3·2n +1-(3n +2)·2n +1-2 =(1-3n )·2n +1-2故S n =(3n -1)·2n +1+2. 设计意图:通过该题让学生理解乘公比错位相减法的应用及步骤.发展学生数学抽象、数学运算、数学建模的核心素养.易错点剖析:用错位相减法求和应注意的问题:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n −qS n ”的表达式;(3)两式相减时最后一项因为没有对应项不要忘记变号;(4)对相减后的和式的结构要认识清楚,中间是n -1项的和;(5)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.例2 已知等差数列为递增数列,且满足,.(1)求数列的通项公式; (2)令,为数列的前n 项和,求.师生活动:学生分析题意,完成(1);师生一起完成(2).预设的答案:(1)由题意知,或为递增数列,,故数列的通项公式为(2). 设计意图:通过该题让学生理解裂项相消法的应用及相消规则.发展学生数学抽象、数学运算、数学建模的核心素养.方法总结:等差数列中相邻两项积的倒数构成的数列求和用裂项相消法;常见的通项分解(裂项)有: (1) [一般] {}n a 12a =222435a a a +={}n a *1()(1)(1)n n n b n N a a =∈+-n S {}n b n S 222(22)(23)(24)d d d +++=+23440d d ∴--=2d ∴=23d =-{}n a 2d ∴={}n a 2.n a n =1111()(21)(21)22121n b n n n n ==-+--+11111111[(1)()()...()]2335572121n S n n ∴=-+-+-++--+11(1)221n =-+21nn =+111(1)1n a n n n n ==-++1111()()n a n n k k n n k==-++(2)(3) (4)(5)例3 求和:.师生活动:学生分组讨论,派代表发言;教师完善.预设的答案:原式. 设计意图:通过该问题让学生理解分组求和法,让学生会求一类可转化为等差数列和等比数列的求和的数列求和问题.发展学生数学抽象、数学运算、数学建模的核心素养.方法总结:分组分解求和的基本思路:通过分解每一项重新组合,化归为等差数列和等比数列求和.例4求和 师生活动:学生独立完成,教师完善.预设的答案:设 ①②①+②得,所以.设计意图:通过该题让学生理解倒序相加法.发展学生数学抽象、数学运算、数学建模的核心素养.方法总结:如果一个数列距离首末两项的和相等,就可以采用倒序相加法. 例5求和12-22+32-42+…+992-1002.师生活动:学生分组讨论,派代表板演,教师完善.预设的答案:12-22+32-42+…+992-1002=(12-22)+(32-42)+…+(992-1002)1111()(21)(21)22121n n n n =--+-+2(2)1111()(21)(21)22121n n a n n n n ==+--+-+1111[](1)(2)2(1)(1)(2)n a n n n n n n n ==--++++n a ==()()()12235435235n n ----⨯+-⨯+⋅⋅⋅+-⨯()()122462353535n n ---=+++⋅⋅⋅+-⨯+⨯+⋅⋅⋅+⨯()()()1215152233152154nn n n nn -----+=-⨯=+---︒++︒+︒+︒89sin 3sin 2sin 1sin 2222 ︒++︒+︒+︒=89sin 3sin 2sin 1sin 2222T ︒++︒+︒+︒=1sin 87sin 88sin 89sin 2222 T ︒++︒+︒+︒=89cos 3cos 2cos 1cos 2222 T 289T =44.5T ==(1-2)(1+2)+(3-4)(3+4)+…+(99-100)(99+100)=-(1+2+3+4+…+99+100)=-5 050.设计意图:通过该题让学生理解并项求和法.发展学生数学抽象、数学运算、数学建模的核心素养.方法总结:通常数列中的项是正负交替或奇偶项各有规律的,往往采用并项求和法.【课堂总结】1.板书设计:2.总结概括:师生活动:学生总结,老师适当补充.设计意图:通过总结,让学生进一步巩固本节所学内容,提高概括能力.3.课堂作业:目标检测题【目标检测设计】 1.已知若等比数列满足则( )A .B .1010C .2019D .2020 设计意图:进一步巩固错位相减法.本题综合考查函数与数列相关性质,需要发现题中所给条件蕴含的倒数关系,寻找规律进而求出答案. 2.求数列的前n 项和. 设计意图:进一步巩固错位相减法.该数列为两个数列的积,其中为等差数列,为等比数列,故可考虑用错位相减法求和. 3.求数列前n 项的和.设计意图:让学生进一步巩固裂项相消法. 参考答案: 1.D等比数列满足即2020故选D. 2.①, ②, 22()(),1f x x x=∈+R {}n a 120201,a a =122020()()()f a f a f a +++=201922n n ⎧⎫⎨⎬⎩⎭n S {}n 12n ⎧⎫⎨⎬⎩⎭()()32121n n ⎧⎫⎪⎪⎨⎬-+⎪⎪⎩⎭22()(),1f x x x =∈+R 22222122()11122211f x f x x x x x x⎛⎫∴+=+ ⎪+⎝⎭⎛⎫+ ⎪⎝⎭=+=++{}n a 120201,a a =120202019220201...1,a a a a a a ∴====()()()()()()120202019202012...2f a f a f a f a f a f a ∴+=+==+=122020()()()f a f a f a +++=231123122222n n n n n S --=+++⋅⋅⋅++234111*********n n n n nS +-=+++⋅⋅⋅++①-②得, . 3.∵, .23411111112222222n n n n S +=++++⋅⋅⋅+-1111221212n n n +⎛⎫- ⎪⎝⎭=--111,22n n n +=--11222n n nnS -∴=--()()3311212122121n a n n n n ⎛⎫==-⎪-+-+⎝⎭3111111131311233557212122121n S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=-+-+-+⋅⋅⋅+-=-= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列求和专题
学习目标:①掌握数列求和的三种方法:公式法、分组求和法及错位相减法; ②能正确运用等差与等比数列求和公式求和;
③能把一般数列转化成特殊数列求和.
【课前预习区】
1等差数列的前n 项和为_____________________________________________________
2等比数列的前n 项和为_____________________________________________________
题型一 公式法求和
1求=-++++12531n _________________________________________
2求=++++n 2421 ____________________________________________
3若,0≠a 则=++++n
a a a a 32_________________________________
【课堂交流区】
1.公式法求和小结:
题型二 分组求和
例1 若n a n n +=2,求数列}{n a 的前n 项和n S .
方法小结:
变式练习:
1.若,0≠a 且1≠a 则___________543215
432=-+-+-+-+-a a a a a
2.求和__________)432()434()432(21=⨯-++⨯-+⨯-n n
题型三 错位相减法
例2 求和:n n n S 333323132⋅++⋅+⋅+⋅=
方法小结:
变式1. 若n n n a 2⋅=,求数列}{n a 的前n 项和n S .
例3 n n n a 3)12(-=若,求数列}{n a 的前n 项和n S .
变式2 若n n n a 2)12(-=,求数列}{n a 的前n 项和n S .
【课堂小结】
【课后巩固区】
1. 数列1,a ,2a ,3a ,…,1n a -,…的前n 项和为( ) A. 11n a a -- B. 111n a a
+-- C. 2
11n a a +-- D. 以上都不对 2.数列 ,16
14,813,412,21
1前n 项的和为 ( ) A .2212n n n ++ B .12212+++-n n n
C .2212n n n ++-
D . 22121n n n -+-+ 3.已知数列{a n }的通项为,2
1......81412111-+++++
=n n a 求数列{a n }的前n 项和S n..
4.求等差数列8,4,0,- 4,...... 的前20项的和.
5.求数列
⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n 前n 项的和.
6.求和12321-++++n nx
x x .
7.求和:()()()()123235
435635235n n S n ----=-⨯+-⨯+-⨯++-⨯
8.数列}{n a 的前n 项和为n S ,)(2,111++∈==N n S a a n n .
(1)求数列}{n a 的通项n a ;
(2)求数列}{n na 的前前n 项和n T .。