数列求和教案

合集下载

中学数学数列求和教案

中学数学数列求和教案

中学数学数列求和教案一、教学目标1. 理解数列的基本概念,并能正确判断是否为等差数列或等比数列。

2. 掌握等差数列和等比数列的通项公式,并能正确计算相应的数值。

3. 理解数列的求和公式,并能运用求和公式计算数列的和值。

二、教学准备教师:备好黑板、粉笔,准备好习题和板书内容。

学生:纸、铅笔、计算器等。

三、教学过程1. 知识点引入教师向学生展示一些数字序列(如1, 3, 5, 7, 9...)并问学生如何判断它们是否为等差数列。

引导学生发现其中的规律,并引入等差数列的概念。

2. 等差数列的定义和性质教师将等差数列的定义和性质进行讲解,并帮助学生掌握等差数列的通项公式 an = a1 + (n-1)d。

3. 等差数列的求和公式教师引导学生思考如何求等差数列的和值,并引出等差数列的求和公式 Sn = n/2 (a1+an)。

4. 例题演练教师出示一个等差数列的例题,引导学生使用通项公式和求和公式计算数列的某一项和总和。

全班共同讨论,并解释结果的意义。

5. 等比数列的定义和性质教师将等比数列的定义和性质进行讲解,并帮助学生掌握等比数列的通项公式 an = a1 * r^(n-1)。

6. 等比数列的求和公式教师引导学生思考如何求等比数列的和值,并引出等比数列的求和公式 Sn = a1 * (1 - r^n) / (1 - r)。

7. 例题演练教师出示一个等比数列的例题,引导学生使用通项公式和求和公式计算数列的某一项和总和。

全班共同讨论,并解释结果的意义。

8. 综合练习教师布置一些综合性的练习题,让学生运用所学知识解答,并及时给予指导和纠正。

9. 课堂总结教师对本节课的重点内容进行总结,并强调数列求和在数学及现实生活中的应用价值。

四、巩固练习教师布置相关题目作为课后作业,要求学生用所学知识独立解答,并在下节课前交给教师检查。

五、教学拓展教师鼓励学生积极参与数学竞赛、参观数学实验室等拓展活动,加深对数列求和的理解和应用。

教学设计5:6.4 数列求和

教学设计5:6.4 数列求和

6.4 数列求和[知识回顾]一、公式法1.如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n 项和公式,注意等比数列公比q 的取值情况要分q =1或q ≠1.2.一些常见数列的前n 项和公式: (1)1+2+3+4+…+n =n (n +1)2;(2)1+3+5+7+…+2n -1= ; (3)2+4+6+8+…+2n = . 二、非等差、等比数列求和的常用方法 1.倒序相加法如果一个数列{a n },首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法,等差数列的前n 项和即是用此法推导的.2.分组转化求和法若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转化法,分别求和而后相加减.3.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,等比数列的前n 项和就是用此法推导的.4.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. 5.数列求和的方法(1)一般的数列求和,应从通项入手,若无通项,先求通项,然后通过对通项变形,转化为与特殊数列有关或具备某种方法适用特点的形式,从而选择合适的方法求和.(2)解决非等差、等比数列的求和,主要有两种思路:①转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相减来完成.②不能转化为等差或等比数列的数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和.[考点探究]考点一分组转化法求和典题导入[例1] 等比数列{a n }中,a 1,a 2,a 3分别是下表第一、二、三行中的某一个数,且a 1,a 2,a 3中的任何两个数不在下表的同一列.第一列 第二列 第三列 第一行 3 2 10 第二行 6 4 14 第三行9818(1)求数列{a n }的通项公式;(2)若数列{b n }满足:b n =a n +(-1)n ln a n ,求数列{b n }的前2n 项和S 2n .由题悟法分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组求和法求{a n }的前n 项和.(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.以题试法1.已知数列{x n }的首项x 1=3,通项x n =2n p +nq (n ∈N *,p ,q 为常数),且x 1,x 4,x 5成等差数列.求:(1)p ,q 的值;(2)数列{x n }前n 项和S n 的公式.考点二错位相减法求和典题导入[例2] 已知数列{a n }的前n 项和S n =kc n -k (其中c ,k 为常数),且a 2=4,a 6=8a 3. (1)求a n ;(2)求数列{na n }的前n 项和T n .由题悟法用错位相减法求和应注意:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n-qS n ”的表达式.(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.以题试法2.已知等比数列{a n }的前n 项和为S n ,且满足S n =3n +k . (1)求k 的值及数列{a n }的通项公式;(2)若数列{b n }满足a n +12=(4+k )a n b n ,求数列{b n }的前n 项和T n .考点三裂项相消法求和典题导入[例3] 已知数列{a n }的前n 项和为S n ,a 1=1,S n =na n -n (n -1)(n ∈N *). (1)求数列{a n }的通项公式;(2)设b n =2a n a n +1,求数列{b n }的前n 项和T n .本例条件不变,若数列{b n }满足b n =1S n +n ,求数列{b n }的前n 项和T n .由题悟法利用裂项相消法求和应注意(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项;(2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n}是等差数列,则1a n a n+1=1d⎝⎛⎭⎫1a n-1a n+1,1a n a n+2=12d⎝⎛⎭⎫1a n-1a n+2.以题试法3.在等比数列{a n}中,a1>0,n∈N*,且a3-a2=8,又a1、a5的等比中项为16.(1)求数列{a n}的通项公式;(2)设b n=log4a n,数列{b n}的前n项和为S n,是否存在正整数k,使得1S1+1S2+1S3+…+1S n<k对任意n∈N*恒成立.若存在,求出正整数k的最小值;不存在,请说明理由.答案[知识回顾]一、公式法 2.(2)n 2 (3) n 2+n [例1][自主解答] (1)当a 1=3时,不合题意;当a 1=2时,当且仅当a 2=6,a 3=18时,符合题意; 当a 1=10时,不合题意.因此a 1=2,a 2=6,a 3=18.所以公比q =3,故a n =2·3n -1.(2)因为b n =a n +(-1)n ln a n =2·3n -1+(-1)n ln(2·3n -1)=2·3n -1+(-1)n (ln 2-ln 3)+(-1)n n ln 3,所以S 2n =b 1+b 2+…+b 2n =2(1+3+…+32n -1)+[-1+1-1+…+(-1)2n ](ln 2-ln 3)+[-1+2-3+…+(-1)2n 2n ]ln 3=2×1-32n1-3+n ln 3=32n +n ln 3-1. 1.解:(1)由x 1=3,得2p +q =3,又因为x 4=24p +4q , x 5=25p +5q ,且x 1+x 5=2x 4,得3+25p +5q =25p +8q , 解得p =1,q =1.(2)由(1),知x n =2n +n ,所以S n =(2+22+…+2n )+(1+2+…+n )=2n +1-2+n n +12.[例2][自主解答] (1)由S n =kc n -k ,得a n =S n -S n -1=kc n -kc n -1(n ≥2). 由a 2=4,a 6=8a 3 ,得kc (c -1)=4,kc 5(c -1)=8kc 2(c -1),解得⎩⎪⎨⎪⎧c =2,k =2,所以a 1=S 1=2,a n =kc n -kc n -1=2n (n ≥2), 于是a n =2n . (2)T n =∑i =1nia i =∑i =1ni ·2i ,即T n =2+2·22+3·23+4·24+…+n ·2n . T n =2T n -T n =-2-22-23-24-…-2n +n ·2n +1 =-2n +1+2+n ·2n +1=(n -1)2n +1+2. 2.解:(1)当n ≥2时,由a n =S n -S n -1=3n +k -3n -1-k =2·3n -1,得等比数列{a n }的公比q=3,首项为2.∴a 1=S 1=3+k =2,∴k =-1,∴数列{a n }的通项公式为a n =2·3n -1. (2)由a n +12=(4+k )a nb n ,可得b n =n2·3n -1, 即b n =32·n 3n .∵T n =32⎝⎛⎭⎫13+232+333+…+n 3n , ∴13T n =32⎝⎛⎭⎫132+233+334+…+n 3n +1, ∴23T n =32⎝⎛⎭⎫13+132+133+…+13n -n 3n +1, ∴T n =94⎝⎛⎭⎫12-12·3n -n 3n +1.[例3][自主解答] (1)∵S n =na n -n (n -1),当n ≥2时, S n -1=(n -1)·a n -1-(n -1)(n -2),∴a n =S n -S n -1=na n -n (n -1)-(n -1)a n -1+(n -1)·(n -2), 即a n -a n -1=2.∴数列{a n }是首项a 1=1,公差d =2的等差数列, 故a n =1+(n -1)·2=2n -1,n ∈N *. (2)由(1)知b n =2a n a n +1=22n -12n +1=12n -1-12n +1, 故T n =b 1+b 2+…+b n =⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+⎝⎛⎭⎫15-17+…+⎝⎛⎭⎫12n -1-12n +1=1-12n +1=2n2n +1.解:S n =na n -n (n -1)=n (2n -1)-n (n -1)=n 2. b n =1S n +n =1n 2+n =1nn +1=1n -1n +1, T n =⎝⎛⎭⎫11-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1n +1=1-1n +1=nn +1.3.解:(1)设数列{a n }的公比为q ,由题意可得a 3=16, ∵a 3-a 2=8,则a 2=8,∴q =2. ∴a n =2n +1.(2)∵b n =log 42n +1=n +12,∴S n =b 1+b 2+…+b n =nn +34. ∵1S n =4nn +3=43⎝⎛⎭⎫1n -1n +3, ∴1S 1+1S 2+1S 3+…+1S n=43⎝⎛⎭⎫11-14+12-15+13-16+…+1n -1n +3 =43⎝⎛⎭⎫1+12+13-1n +1-1n +2-1n +3<229, ∴存在正整数k 的最小值为3.。

数列求和公式教案

数列求和公式教案

数列求和公式教案教案标题:数列求和公式教案教案目标:1. 了解数列的概念和特点。

2. 掌握数列求和公式的推导和应用。

3. 培养学生的逻辑思维和数学推理能力。

教学重点:1. 数列求和公式的推导过程。

2. 数列求和公式的应用。

教学难点:1. 数列求和公式的推导过程。

2. 复杂数列求和公式的应用。

教学准备:1. 教师准备:白板、黑板笔、教材、多媒体课件。

2. 学生准备:课本、笔记工具。

教学过程:Step 1: 引入(5分钟)教师通过提问和示例引入数列的概念,引发学生对数列的兴趣,并与学生一起总结数列的特点。

Step 2: 数列求和公式的推导(15分钟)2.1 教师给出一些简单的数列,引导学生观察规律,并引导学生尝试推导数列求和公式。

2.2 教师给出数列求和公式的推导过程,逐步解释每个步骤的原因和意义。

2.3 学生进行小组合作,尝试推导其他数列的求和公式,并与全班分享他们的思路和答案。

Step 3: 数列求和公式的应用(20分钟)3.1 教师通过多个实际问题引导学生将数列求和公式应用于实际情境中。

3.2 学生进行个人或小组练习,解决与数列求和相关的问题。

3.3 学生展示他们的解决方法和答案,并与全班进行讨论和比较。

Step 4: 拓展与延伸(10分钟)4.1 教师提供一些复杂的数列求和问题,引导学生运用已学知识进行解决。

4.2 学生进行个人或小组探究,解决更具挑战性的数列求和问题。

4.3 学生展示他们的解决方法和答案,并与全班进行讨论和比较。

Step 5: 总结与评价(5分钟)教师与学生一起总结数列求和公式的推导过程和应用方法,并对学生的学习成果进行评价和反馈。

教学延伸:1. 学生可以尝试推导其他类型的数列求和公式,如等差数列、等比数列等。

2. 学生可以通过阅读相关数学文献或书籍,了解更多数列求和公式的应用领域。

教学资源:1. 教材:数学教材相关章节。

2. 多媒体课件:用于展示示例和推导过程等。

教学评价:1. 学生的课堂参与情况。

数列求和免费教案

数列求和免费教案

数列求和免费教案教案标题:数列求和免费教案教学目标:1. 学生能够理解数列的概念和性质。

2. 学生能够应用递推公式求解数列的前n项和。

3. 学生能够解决实际问题中与数列求和相关的计算。

教学准备:1. 教师准备白板、黑板笔、教学投影仪等教学工具。

2. 学生准备纸和笔。

教学过程:步骤一:导入(5分钟)教师通过提问引导学生回顾数列的概念,并与学生一起讨论数列的应用领域,如金融、物理等。

步骤二:概念讲解(10分钟)教师通过示例和图示解释数列的递推公式和通项公式,并与学生一起探讨数列的性质,如等差数列和等比数列的特点。

步骤三:数列求和方法介绍(10分钟)教师向学生介绍数列求和的常用方法,包括等差数列求和公式和等比数列求和公式,并通过实例演示求解数列的前n项和。

步骤四:练习与讨论(15分钟)教师提供一些练习题,要求学生独立解答,并在解答完成后进行讨论和答疑。

教师可以选择一些实际问题,让学生应用数列求和的方法解决问题。

步骤五:拓展应用(10分钟)教师引导学生思考更复杂的数列求和问题,如求解部分项和、求解无穷级数等,并与学生一起探讨解决方法。

步骤六:总结与归纳(5分钟)教师与学生一起总结数列求和的方法和应用,并提醒学生在实际问题中灵活运用数列求和的知识。

步骤七:作业布置(5分钟)教师布置相关的作业,要求学生练习数列求和的应用,并在下节课前完成。

教学延伸:1. 学生可以通过编写程序来计算数列的前n项和,进一步巩固数列求和的概念和方法。

2. 学生可以研究更复杂的数列求和问题,如级数求和、递归数列求和等,拓展数列求和的应用领域。

教学评估:1. 教师通过课堂练习和讨论,观察学生对数列求和的理解和应用能力。

2. 教师可以布置作业来评估学生的数列求和能力,并及时给予反馈。

教学反思:教师可以根据学生的学习情况和反馈,调整教学方法和内容,以提高学生对数列求和的理解和应用能力。

《数列求和》教学设计

《数列求和》教学设计

《数列求和》教学设计一、教学目标1.知识目标学生能够理解数列求和的基本概念,掌握常用的数列求和公式,能够熟练应用求和公式解决实际问题。

2.能力目标学生能够运用数学思维和方法,分析问题,提出合理的求和方法,并能灵活运用求和公式解决实际问题。

3.情感目标学生能够树立积极的学习态度,发现数列求和的有趣之处,提高数学思维能力和解决问题的能力。

二、教学重点和难点1.教学重点(1)数列求和的基本概念和常用的求和公式;(2)运用求和公式解决实际问题。

2.教学难点(1)问题分析和求解的过程;(2)运用数列求和解决实际问题。

三、教学过程设计1.导入新课(10分钟)(1)向学生提问:“在做加法运算的时候,我们经常会遇到从1开始的连续整数相加的问题,你们知道如何快速求和吗?”(2)引导学生思考,并提示“等差数列”的概念。

(3)分享一个有趣的问题:“小明和小红相约去打篮球,每天他们都会增加一个篮球的练习量,小明从第一天开始每天练习一个篮球,小红从第一天开始每天练习两个篮球,问他们练习30天后总共练习了多少个篮球?”(4)引导学生思考解决问题的方法。

2.板书设计(5分钟)根据导入新课的内容,板书“等差数列”和“数列求和”的概念。

3.概念讲解(20分钟)(1)对等差数列的概念进行详细讲解和举例。

(2)引入数列求和的概念,并通过具体的例子让学生理解求和的含义。

(3)介绍数学家高斯的求和故事,引出等差数列求和公式。

4.基本求和公式(20分钟)(1)教师讲解等差数列求和的基本公式S_n=(a_1+a_n)*n/2,并通过例题进行演练。

(2)介绍等差数列求和公式的推导过程,并通过几个简单例子进行说明。

5.应用题训练(25分钟)(1)学生分组进行应用题训练,训练内容包括常见的等差数列求和问题和实际生活中的应用问题。

(2)学生在小组内共同讨论,解决问题,并由小组代表上台分享解题思路和解题过程。

6.拓展练习(15分钟)(1)给出一些拓展练习,要求学生在规定时间内完成,并进行答案的交流和讨论。

数列求和的七种方法|数列求和教案

数列求和的七种方法|数列求和教案

数列求和是知识掌握的重点,下面是为大家带来的数列求和教案,希望能帮助到大家!数列求和教案篇一汉滨高中李安锋教学目标:知识目标①复习等差和等比数列的前n项和公式、回忆公式推导过程所用倒序想加和错位相减的思想方法,及用数列求和公式求和时,应弄清基本量中各基本量的值,特别是用等比数列求和公式求和时,应关注公比q是否为1;②记住一些常见结论便于用公式法对数列求和;③学会分析通项的结构并且对通项进行分拆;能运用拆并项求和思想方法解决非特殊数列求和问题。

能力目标培养学生用联系和变化的观点,结合转化的思想来分析问题和解决问题的能力。

情感目标培养学生用数学的观点看问题,从而帮助他们用科学的态度认识世界. 教学重点与难点教学重点等差等比数列求和及特殊数列求和的常用方法教学难点分析具体数列的求和方法及实际求解过程.教学方法、手段通过设问、启发、当堂训练的教学程序,采用启发式讲解、互动式讨论、反馈式评价的授课方式,培养学生的自学能力和分析与解决问题的能力,借助幻灯片辅助教学,达到增加课堂容量、提高课堂效率的目的,营造生动活泼的课堂教学氛围. 学法指导为了发挥学生的主观能动性,提高学生的综合能力,确定了三种学法(1)自主性学习法,(2)探究性学习法,(3)巩固反馈法,教学过程(一)情景导入复习回顾:等差数列和等比数列的前n项和公式?n(a1?an)n(n?1)?na1?d 等差数列求和公式Sn?22(q?1)?na1? 等比数列求和公式Sna1(1?qn)a1?anq ?(q?1)?1?q?1?q 教师引导学生回忆数列几种常见的求和方法?①公式法②分组求和法③裂项相消法④错位相减法(充分发挥学生学习的能动性,以学生为主体,展开课堂教学)(二)自学指导若已知一个数列的通项,如何对其前n项求和?①an?3n ②an?3n?2n?1 ③an?n(n?1)④an?1 ⑤an?n?3n n(n?1)(通过学生对几种常见的求和方法的归纳、总结,结合具体的实例、简单回忆各方法的应用背景.把遗忘的知识点形成了一个完整的知识体系)巩固检测题(1) a?a2?a3?an?________(2) 1+3+5+?+(2n+1)=(3)12?22?32n2?(复习等差与等比数列的求和公式:(1)中易忘讨论公比是否为1(2)中易错项数(3)与(4)是为用公式法求和作铺垫.)(三)例题展示例设Sn=1-3+5-7+9++101 求Sn分析: 拆并项求和思路? Sn=(1-3)+(5-7)+(9-11)+(97-99)+101=?Sn=1+(-3+5)+(-7+9)+(-11+13)+(-99+101)=? Sn=(1+5++101)-(3+7++99)=意图通过一题多解,开阔学生的思维.,分析①②③培养学生的拆项求和与并项求和的意识, 比较分析①②思考应留下。

数列求和教案

数列求和教案

数列求和教案教案: 数列求和教学目标:- 理解数列的概念和性质- 学会使用不同的方法求解数列的和- 培养学生的逻辑思维和问题解决能力教学准备:- PowerPoint演示文稿- 白板和黑板- 教学素材: 包含不同类型数列的练习题教学过程:步骤1: 引入数列的概念- 使用PowerPoint演示文稿引入数列的概念,解释数列的定义和性质。

强调数列的和是指数列中所有数字的总和。

步骤2: 简单数列的求和方法- 介绍最简单的等差数列的求和方法。

例如: 1, 2, 3, 4, 5... 求和公式为(n+1) / 2 * n。

- 示范一些简单数列的求和过程,并要求学生跟随计算。

步骤3: 不等差数列的求和方法- 介绍不等差数列的求和方法。

例如: 1, 3, 5, 7, 9... 这种数列无法使用简单的求和公式,需要使用其他方法求解。

- 解释如何找到数列中的规律,然后利用规律进行计算。

例如,这个数列每一项都比前一项大2,因此可以通过求得数列中最后一项的值来计算总和。

- 示范一些不等差数列的求和过程,并要求学生跟随计算。

步骤4: 特殊数列的求和方法- 介绍一些特殊数列的求和方法,如等比数列、斐波那契数列等。

- 解释如何找到数列中的规律,然后利用规律进行计算。

示范一些特殊数列的求和过程,并要求学生跟随计算。

步骤5: 练习题- 给学生分发一些练习题,让他们在课堂上解答。

包括简单数列、不等差数列和特殊数列。

- 强调要注意问题的难度和解题思维的不同。

步骤6: 总结和反思- 总结本节课所学内容,强调数列求和的重要性和实际应用。

- 让学生回顾他们所学的方法,以及解决问题时遇到的困难和挑战。

教学拓展:- 引导学生探索其他数列求和的方法,如数学归纳法、求和公式的推导等。

- 鼓励学生独立思考和解决问题的能力,让他们自己提出一些数列求和问题并解答。

评估方法:- 观察学生在课堂上解答练习题的过程,并提供相关反馈和指导。

- 让学生完成一份小测验,检验他们对数列求和的理解程度。

数列求和教案

数列求和教案

数列求和教案一、教学目标1.了解数列的概念和性质;2.掌握等差数列和等比数列的通项公式;3.掌握数列求和公式;4.能够应用数列求和公式解决实际问题。

二、教学重点1.等差数列和等比数列的通项公式;2.数列求和公式。

三、教学难点1.数列求和公式的应用。

四、教学过程1. 引入教师通过举例子引入数列的概念,让学生了解数列的定义和性质。

2. 等差数列和等比数列的通项公式2.1 等差数列的通项公式教师通过举例子引入等差数列的概念,让学生了解等差数列的定义和性质。

然后,教师介绍等差数列的通项公式:a n=a1+(n−1)d其中,a n表示等差数列的第n项,a1表示等差数列的第一项,d表示等差数列的公差。

2.2 等比数列的通项公式教师通过举例子引入等比数列的概念,让学生了解等比数列的定义和性质。

然后,教师介绍等比数列的通项公式:a n=a1q n−1其中,a n表示等比数列的第n项,a1表示等比数列的第一项,q表示等比数列的公比。

3. 数列求和公式3.1 等差数列的求和公式教师介绍等差数列的求和公式:S n=n2(a1+a n)其中,S n表示等差数列的前n项和。

3.2 等比数列的求和公式教师介绍等比数列的求和公式:S n=a1(q n−1) q−1其中,S n表示等比数列的前n项和。

4. 应用教师通过例题让学生掌握数列求和公式的应用。

五、教学总结教师对本节课的内容进行总结,强调数列求和公式的重要性和应用。

六、作业1.完成课堂练习;2.完成课后作业。

七、教学反思本节课的教学重点是数列求和公式的应用,但是由于时间有限,只能介绍一些基本的应用,没有涉及到更复杂的应用。

下次教学中,应该加强对数列求和公式的应用讲解,让学生更好地掌握数列求和公式的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:数列求和班级姓名:
一:学习目标数列求和的常用. Nhomakorabea二:课前预习
1、已知数列 为等差数列, ,则
2、已知数列 ,则它的前n项和为_________________
3、数列 的前n项和为_________________
4、
5、数列 ,则它的前n项和为_____________
6、已知函数 的值为____
三:课堂研讨
例1、若 对一切正整数n都成立,求正整数 的最小值.
例2、等比数列{ }的前n项和为 ,( ),点 均在函数 且 均为常数)的图象上.
(1)求r的值;(2)当b=2时,记 求数列 的前 项和
例3、数列
(Ⅰ)求 并求数列 的通项公式;
(Ⅱ)
设 , , ,求使 的所有 的值,并说明理由
备注
课堂检测——数列求和姓名:
2.数列 前10项的和为.
3.数列 的通项 ,其前n项和为Sn,则S30=.
4、 ,(其中 , 是不为0的常数,且 )
5、已知数列 的前n项和为 ,且
(1)求
(2)求
1.已知等差数列 的前n项和为 ,则数列 的前100项和为.
2.若 ,则 .
3.化简: .
4.数列 的通项公式 ,前n项和为Sn,则 .
5.已知数列 的首项 ,通项 ( 为常数),且 成等差数列,求:(Ⅰ) 的值;(Ⅱ)数列 的前 项的和 的公式。
课外作业——数列求和姓名:
1.在等比数列{an}中,a1= ,a4=-4,则公比q=; .
相关文档
最新文档