机械加工表面质量概述
机械加工表面加工质量

由于切屑的崩碎而在加工表面留下许多麻点,使表 面粗糙。
机械加工表面加工质量
(2)切削速度的影响 (3)进给量的影响
加工塑性材料时,切削速度对
表面粗糙度的影响(对积屑瘤和鳞 刺的影响)见如图4-41所示。
此外,切削速度越高,塑性变 形越不充分,表面粗糙度值越小
(1)磨削用量
▪ 砂轮的转速↑ →材料塑性变形↓ → 表面粗
糙度值↓ ;
▪磨削深度↑、工件速度↑ → 塑性变形↑ →表
面粗糙度值↑ ; 为提高磨削效率,通常在开始磨削时采
用较大的径向进给量,而在磨削后期采用较 小的径向进给量或无进给量磨削,以减小表 面粗糙度值。
机械加工表面加工质量
(2)工件材料
•太硬易使磨粒磨钝 →Ra ↑ ; •太软容易堵塞砂轮→Ra ↑ ; •韧性太大,热导率差会使磨
影响显微硬度因素
•塑变引起的冷硬
•金相组织变化引起 的硬度变化
表面物理力学 性能
影响残余应力因素
•冷塑性变形 •热塑性变形 •金相组织变化
影响金相组织变化 因素
•切削热
机械加工表面加工质量
1. 表面层的冷作硬化
(1) 表面层加工硬化的产生
定义:机械加工时,工件表面层金属受到 切削力的作用产生强烈的塑性变形,使晶 格扭曲,晶粒间产生剪切滑移,晶粒被拉 长、纤维化甚至碎化,从而使表面层的强 度和硬度增加,这种现象称为加工硬化, 又称冷作硬化和强化。
机械加工表面加工质量
三、表面层金相组织变化与磨削烧伤
1.表面层金相组织变化与磨削烧伤的产生
切削加工中,由于切削热的作用,在工件的加 工区及其邻近区域产生了一定的温升。
定义:磨削加工时,表面层有很高的温度,当 温度达到相变临界点时,表层金属就发生金相组织 变化,强度和硬度降低、产生残余应力、甚至出现 微观裂纹。这种现象称为磨削烧伤。
机械制造工艺学 第四节 机械加工表面质量

2)砂轮的粒度和砂轮的修整对表面粗糙度的影响
砂轮的粒度
磨粒间的距离
磨粒的大小
砂轮的粒度号越大, 磨粒和磨粒间离越小
砂轮的粒度号↑ ,参与磨削的磨粒↑ ,粗糙度↓ ;
修整砂轮时,纵向进给量对表面粗糙度的影响甚大; 纵向进给量↓ ,砂轮表面的等高性越好 ,粗糙度 ↓ ;
(2)金属表面层的塑性变形 在磨削过程中,由于磨粒大多具有很大的负前角,很不锋 利,所以大多数磨粒在磨削时只是对表面产生挤压作用而使表 面出现塑性变形,磨削时的高温更加剧了塑性变形,增大了表 面粗糙度值。
表面层的加工硬化对疲劳强度影响 适当的加工硬化能阻碍已有裂纹的继续扩大和新裂纹的产生,有助于 提高疲劳强度。但加工硬化程度过大,反而易产生裂纹,故加工硬化程度 应控制在一定范围内。
拉应力加剧疲劳裂纹的产生和扩展;
3.表面质量对零件耐腐蚀性的影响 表面粗糙 表面粗糙度值越大,越容易积聚腐蚀性物质; 度的影响 波谷越深,渗透与腐蚀作用越强烈。 零件的耐腐蚀性在很大程度上取决于表面粗糙度 表面残余应力对零件耐腐蚀性影响
(二)、表面层的残余应力 l、表面层残余应力及其产生的原因 表面层残余应力 外部载荷去除后,工件表面层及其与
基体材料的交界处仍残存的互相平衡的应力。
表面层残余应 力产生的原因
(1)冷态塑性变形引起的残余应力 (2)热态塑性变形引起的残余应力 (3)金相组织变化引起的残余应力
(1)冷态塑性变形引起的残余应力
其中: H——加工后表面层的显微硬度
H0——材料原有的显微硬度
(2)表面层金相组织变化
指的是加工中,由于切削热的作用引起表层金属金相组织 发生变化的现象。如磨削时常发生的磨削烧伤,大大降低表面 层的物理机械性能。 (3)表面层产生残余应力 指的是加工中,由于切削变形 和切削热的作用,工件表层及其基 体材料的交界处产生相互平衡的弹 性应力的现象。残余应力超过材料
3.1表面质量概述及表面粗糙度的影响因素

谢谢大家!
②表面层金属的残余应力的影响
拉伸残余应力将使耐疲劳强度下降;压缩残余应力则使耐疲劳强度提高。
3. 表面质量对耐蚀性的影响 (1)表面粗糙度的影响 表面粗糙度值越大,加工表面与气体、液体接触的面积越大,腐蚀物 质越容易沉积于凹坑中,耐蚀性能就越差。 (2)表面层金属力学物理性质的影响 零件表面层有残余压应力时,能够阻止表面裂纹的进一步扩大,有利 于提高零件表面抵抗腐蚀的能力。 4. 表面质量对零件配合质量的影响 (1) 对于间隙配合表面 原有间隙将因急剧的初期磨损而改变,表面粗糙度越大,变化量就 越大,从而影响配合的稳定性。 (2) 对于过盈配合表面 表面粗糙度越大,两表面相配合时表面凸峰易被挤掉,这会使过盈量 减少,影响配合的可靠性。
(4)表面缺陷 加工表面上出现的缺陷,如砂眼、气孔、裂痕等。
2.表面层金属的力学物理性能和化学性能 由于机械加工中力因素和热因素的综合作用,加工表面层金属的力 学物理性能和化学性能将发生一定的变化,主要反映在以下几方面: (1)表面层金属的冷作硬化
机械加工过程中,工件表面层金属都会有一定程度的冷作硬化,使 表面层金属的显微硬度有所提高。
3.2 影响加工表面粗糙度的工艺因素及其改进措施
3.2.1 切削加工表面粗糙度 其值主要取决于切削残留面积的高度。影响切削残留面积高度的因素 主要有:刀尖圆弧半径r、主偏角kr、副偏角kr’及进给量f等。 车削、刨削时残留面积高 度的计算示意图如图3。其中图 a 是用尖刀切削的情况,切削 残留面积的高度为:
3.2.2 磨削加工后的表面粗糙度 1.几何因素的影响 单纯从几何因素考虑,可以认为:在单位面积上刻痕越多,即通过单位 面积的磨粒数越多,刻痕的等高性越好,则磨削表面的粗糙度值越小。 (1)磨削用量对表面粗糙度值的影响 砂轮的速度越高、工件速度越低、砂轮的纵向进给减小,工件表面的 每个部位被砂轮重复磨削的次数增加,被磨表面的粗糙度值将减小。
机械加工表面质量

2.表面层物理 力学、化学性能
(1)表面粗糙度 (2)表面波度 (3)纹理方向 (4)伤痕——表面上一些个别位置 上出现的缺陷
(1)表面层加工硬化(冷作硬化)。 (2)表面层金相组织变化。
(3)表面层产生残余应力。
第一节 加工表面质量及其对使用性能的影响
第一节 加工表面质量及其对使用性能的影响
影响表层残余应力的因素
三、表层金属的残余应力——拉应力或者压应力
(一)残余应力产生的原因 1)冷塑性变形——使表层产生压缩残余应力,里层产生拉伸 残余应力。
原因:加工表面受刀具或砂轮磨粒的挤压和摩擦,产生拉伸塑性变形 ,此 时里层金属处于弹性变形状态,切削后里层金属趋于弹性恢复,但受 到已产生塑性变形的表层金属牵制
第三章 机械加工表面质量
本章学习主要要解决的问题 1. 机械加工表面质量的含义 2. 为什么要控制机械加工表面质量? 3. 哪些因素会影响表面质量? 4. 怎样提高表面质量?
第三章 机械加工表面质量
第一节 加工表面质量及其对使用性能的影响
一、机械加工表面质量的含义
1.表面的几何特征
2)热塑性变形——表层产生拉伸残余应力,里层产生压缩残 余应力。
原因:切削和磨削过程中,表层的温度比里层高,表层的热膨胀较大;加 工后零件冷却至室温时,表层金属体积的收缩受到里层的牵制。
影响表层残余应力的因素
3)相变引起的体积变化 金相组织的变化引起表层金属的比容增大,则表层金属将产生 压缩残余应力,而里层金属产生拉伸残余应力; 金相组织的变化引起表层金属的比容减小,则表层金属产生拉 伸残余应力,而里层金属产生压缩残余应力 。
• 提高砂轮速度,降低工件转速,减小纵向进给速度——增大单位面 积的磨粒数
表面质量概念机械加工表面质量是指零件在机械加工后表面层

2.加工表面质量对零件使用性能的影响
(1)表面质量对零件耐磨性的影响 (2)表面质量对零件疲劳强度的影响 (3)表面质量对零件耐腐蚀性的影响 (4)表面质量对配合性质的影响 (5)表面质量对零件的使用性能其他
方面的影响
(1)表面质量对零件耐磨性的影响
磨损过程的基本规律: 零件的磨损可分为三个阶段,如图1-17所示。 第Ⅰ阶段:(初期磨损阶段)由于摩擦副开始工作时,两个零件
④伤痕 在加工表面的一些个别位置上 出现的缺陷。
在加工表面的一些个别位置上出现的缺 陷。它们大多是随机分布的,例如砂眼、 气孔、裂痕和划痕等。
(2)表面层物理、化学和力学性能
●表面层加工硬化(冷作硬化)。 ●表面层金相组织变化及由此引起的表层金
属强度、硬度、塑性及耐腐蚀性的变化。 ●表面层产生残余应力或造成原有残余应力
表面层的加工硬化对耐磨性的影响
表面层的加工硬化,一般能提高耐磨性0.5~l 倍。这是因为加工硬化提高了表面层的强度, 减少了表面进一步塑性变形和咬焊的可能。但 过度的加工硬化会使金属组织疏松,甚至出现 疲劳裂纹和产生剥落现象,从而使耐磨性下降。 所以零件的表面硬化层必须控制在一定的范围 之内。
表面互相接触,一开始只是在两表面波峰接触,当零件受力时, 波峰接触部分将产生很大的压强,因此磨损非常显著。 第Ⅱ阶段:经过初期磨损后,实际接触面积增大,磨损变缓,进 入磨损的第Ⅱ阶段,即正常磨损阶段。这一阶段零件的耐磨性最 好,持续的时间也较长。 第Ⅲ阶段:由于波峰被磨平,表面粗糙度参数值变得非常小,不 利于润滑油的储存,且使接触表面之间的分子亲和力增大,甚至 发生分子粘合,使摩擦阻力增大,从而进入磨损的第Ⅲ阶段,即 急剧磨损阶段。
机械加工表面质量

机械加工表面质量1. 简介机械加工表面质量是机械制造过程中一个重要的质量指标,其直接影响着制品的外观和性能,特别是在涉及到接触表面的机械零件中。
机械加工表面质量的好坏会直接影响到摩擦、磨损、润滑和密封等方面的性能。
因此,对于机械加工表面质量的控制和评估非常重要。
2. 常见的机械加工表面缺陷机械加工表面质量的主要缺陷包括以下几种:2.1 粗糙度粗糙度是表面峰谷的高低起伏程度的度量,它直接影响到接触面的摩擦性能和润滑性能。
通常,粗糙度越小,表面质量越好。
2.2 铁锈机械加工过程中,如果没有采取适当的防护措施,金属表面容易受到空气中的氧气和水蒸气的腐蚀而产生铁锈。
铁锈不仅会损坏表面的光洁度,还会降低金属的强度和耐腐蚀性能。
2.3 划痕和切削工艺痕迹在机械加工过程中,操作不当或切削刀具磨损会导致表面出现划痕和切削工艺痕迹。
这些痕迹会影响零件的密封性能和外观质量。
2.4 焊接瑕疵在焊接过程中,不完全熔化、气孔、裂纹等问题容易导致焊接瑕疵。
焊接瑕疵不仅会降低表面质量,还会影响焊接接头的强度和密封性能。
2.5 水渍机械加工过程中,如果不对工件进行适当的清洗,可能会在表面留下水渍。
水渍不仅会降低表面的光洁度,还会影响涂层的附着力和防腐性能。
3. 表面质量评估为了评估机械加工表面质量,常见的方法包括目测评估和仪器测量两种。
3.1 目测评估目测评估是通过肉眼观察和触摸来对表面质量进行评估。
一般来说,表面光洁度、缺陷的数量和大小以及表面的平整程度可以通过目测进行初步评估,但是目测评估存在主观性较强,缺乏量化数据的问题。
3.2 仪器测量仪器测量可以通过使用专业的测量仪器来获取表面质量的精确数据。
常用的仪器包括三坐标测量仪、表面粗糙度测量仪等。
这些仪器可以对表面的粗糙度、平整度、峰谷高度等参数进行测量,并生成相应的数据报告。
4. 改善机械加工表面质量的方法为了改善机械加工表面质量,可以采取以下几种方法:4.1 选择合适的切削刀具和工艺参数在机械加工中,选择合适的切削刀具和工艺参数是提高表面质量的关键。
机械加工表面质量

第三章机械加工表面质量第一节概述评价零件是否合格的质量指标除了机械加工精度外,还有机械加工表面质量。
机械加工表面质量是指零件经过机械加工后的表面层状态。
探讨和研究机械加工表面,掌握机械加工过程中各种工艺因素对表面质量的影响规律,对于保证和提高产品的质量具有十分重要的意义。
一机械加工表面质量的含义机械加工表面质量又称为表面完整性,其含义包括两个方面的内容:1.表面层的几何形状特征表面层的几何形状特征如图3-1所示,主要由以下几部分组成:⑴表面粗糙度它是指加工表面上较小间距和峰谷所组成的微观几何形状特征,即加工表面的微观几何形状误差,其评定参数主要有轮廓算术平均偏差R a或轮廓微观不平度十点平均高度R z;⑵表面波度它是介于宏观形状误差与微观表面粗糙度之间的周期性形状误差,它主要是由机械加工过程中低频振动引起的,应作为工艺缺陷设法消除。
⑶表面加工纹理它是指表面切削加工刀纹的形状和方向,取决于表面形成过程中所采用的机加工方法及其切削运动的规律。
⑷伤痕它是指在加工表面个别位置上出现的缺陷,如砂眼、气孔、裂痕、划痕等,它们大多随机分布。
2.表面层的物理力学性能表面层的物理力学性能主要指以下三个方面的内容:⑴表面层的加工冷作硬化;⑵表面层金相组织的变化;⑶表面层的残余应力。
二表面质量对零件使用性能的影响1.表面质量对零件耐磨性的影响零件的耐磨性是零件的一项重要性能指标,当摩擦副的材料、润滑条件和加工精度确定之后,零件的表面质量对耐磨性将起着关键性的作用。
由于零件表面存在着表面粗糙度,当两个零件的表面开始接触时,接触部分集中在其波峰的顶部,因此实际接触面积远远小于名义接触面积,并且表面粗糙度越大,实际接触面积越小。
在外力作用下,波峰接触部分将产生很大的压应力。
当两个零件作相对运动时,开始阶段由于接触面积小、压应力大,在接触处的波峰会产生较大的弹性变形、塑性变形及剪切变形,波峰很快被磨平,即使有润滑油存在,也会因为接触点处压应力过大,油膜被破坏而形成干摩擦,导致零件接触表面的磨损加剧。
第七节 机械加工表面质量

3 表面层的残余应力
• 由于切削力和热的综合作用,表面层金属晶格 会发生不同程度的塑性变形或产生金相组织变 化,使表面层产生残余应力。
(三)表面质量的内容
表面粗糙度 表面微观几何 形状特征 表面波度
零件表面质量
表面物理力学 性能的变化 表面层冷作硬化 表面层残余应力 表面层金相组织的变化
二、表面质量对零件使用性能的影响
1.影响切削加工后表面粗糙度的因素
(c)刀尖圆弧半径
• 刀尖圆弧半径增加,从几何因素来看会减小表 面粗糙度值。但会增加切削过程中的挤压,塑 性变形增大,使表面粗糙度值增加。 •
(d)刃倾角
• 增大刃倾角,对降低表面粗糙度有利。因为刃 倾角增大,实际工作前角也随之增大,切削过 程中的金属塑性变形程度随之下降,这会显著 地减轻工艺系统的振动,从而使加工表面的粗 糙度下降。
2.影响磨削加工后表面粗糙度的因素
(4)砂轮材料
• 砂轮材料可分为氧化物系(刚玉)、碳 化物系(碳化硅、碳化硼)和高硬磨料 系(人造金刚石、立方氮化硼)。 • 氧化物系:适于磨削钢类零件 • 碳化物系:磨削铸铁、硬质合金等材料
• 高硬磨料:可获得极小的表面粗糙度值, 但加工成本很高。
2.影响磨削加工后表面粗糙度的因素
(5)砂轮的修整
• 修整工具有单颗粒金刚石笔和金刚石滚轮,也 可用白口铸铁或砂轮来修整,以单颗粒金刚石 笔修整的质量为最好。 • 修整砂轮的纵向进给量愈小,磨削的表面粗糙 度值愈小。
2.影响磨削加工后表面粗糙度的因素
(6)砂轮速度
• 砂轮速度越高,就有可能使表层金属塑性变形 的传播速度大于切削速度,工件材料来不及变 形,致使表层金属的塑性变形减小,磨削表面 的粗糙度值将明显减小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. 对零件耐腐蚀性能的影响
零件的表面粗糙度对耐腐蚀性也有影响,当零件在潮湿的空气中或在腐蚀性 介质中工作时。会发生化学腐蚀或电化学腐蚀。由于粗糙表面的凹谷处容易积聚 腐蚀性介质而发生化学腐蚀,或在两种材料表面粗糙度的凸峰间容易产生电化学 作用而引起电化学腐蚀。腐蚀过程会从波谷底部向材料深处扩展。所以。减少表 面粗糙度可以提高零件的耐腐蚀性。
发生不同程度的金相组织的变化。
二、表面质量对零件使用性能的影响
1. 对零件耐磨性的影响
表面越粗糙,配合表面间的实际有效接触面积越小,单位面积压力增大,表面 易磨损。但过于光滑的表面却不利于润滑油的贮存,还会增加两表面的分子吸附作 用,磨损也会加剧。在一定载荷情况下,摩擦副表面有一最佳粗糙度,过大或过小 的粗糙度会使初期磨损量增大,使总的耐磨时间缩短,如下图所示。
4. 对零件配合性质的影响
在间隙配合中,如果配合表面粗糙度较大,则在初期磨损阶段磨损量就大, 造成零件的尺寸发生变化,使配合间隙增大,改变了配合性质。在过盈配合中, 如果配合表面粗糙,则装配后表面的波峰产生塑性变形,从而使有效过盈量减小 ,减弱了过盈配合的结合强度。因此,在设计零件时,对于配合精度要求高的零 件应该规定较小的表面粗糙度。
5. 对零件接触刚度的影响
表面粗糙度对零件的接触刚度有很大的影响,表面粗糙度越小,则接触刚度 越高。
另外,表面粗糙度对零件间的密封性和摩擦系数也有很大的影响,粗糙度小 则密封性好,摩擦系数小;反之则密封性差,摩擦系数大。
第二节 机械加工后的表面粗糙度
一、切削加工后的表面粗糙度
切削加工后工件表面粗糙度产生的因素主要有三方面,即:几何因素、物理 因素和加工中工艺系统的振动。
机械加工表面质量概述
2020年4月21日星期二
第八章 目录
★第一节 机械加工表面 质量概述
★第二节 机械加工后的 表面粗糙度
★第三节 机械加工后表 面层物理机械性能
★第四节 控制加工表面 质量的工艺途径
☆ 一 表面质量的含义 ☆ 二 表面质量对零件使用性能的影响 ☆ 一 切削加工后的表面质量 ☆ 二 磨削加工后的表面质量 ☆ 一 机械加工后表面层的冷作硬化 ☆ 二 机械加工后表面层金相组织的变化 ☆ 三 机械加工后表面层的残余应力 ☆ 一 减小残余拉应力的途径 ☆ 二 采用冷压表面强化工艺 ☆ 三 采用精密和光整加工
表面粗糙度大(特别是在零件上应力集中区的粗糙度大)将大大降低零件的疲 劳强度,如下图所示。
对于不同的材料,表面粗糙度对疲劳强度的影响程度也不同,这是因为不同的 材料对应力集中的敏感程度不同。
适当的硬作硬化可提高零件的疲劳强度,但硬化过度,则容易在零件表面产生 微裂纹,造成疲劳扩展,反而降低疲劳强度。
第八章 机械加工表面质量
一台机器在正常的使用过程中,其零件的工作性能会逐渐变坏,甚至出现突 然损坏而失效。究其原因往往不是因为强度不够或刚度不足,大多数是由于磨损 、腐蚀或疲劳破坏所致。而磨损、腐蚀和疲劳破坏都是发生在零件的表面,或是 从零件表面开始的。因此,加工表面质量将直接影响到零件的工作性能,尤其是 它的可靠性和使用寿命。因此,表面质量问题越来越受到各方面的重视。
在最外层生成氧化膜或其他化合物,并吸收、渗进了气体粒子,故称为吸附 层。
在加工过程中由切削力造成的表面塑性变形区称为压缩区,厚度约在几十至 几百微米内,随加工方法的不同而变化。其上部为纤维层,它由被加工材料与刀 具间的摩擦力造成。
另外切削热也会使表面层产生各种变化,如使材料产生相变以及晶粒大小发 生变化等。所以表面层的物理机械性能不同于基体,它包括如下三方面。
1. 几何因素 切削加工中由于进给运动的存在,在被加工表面上不可避免地要留下未曾切 削的残留面积,如图所示。该残余面积中峰谷间的高度差H越大,所获得的表面 将越粗糙。刀具给定后,高度差H理论上可通过计算求得。当不考虑刀具圆弧时 (用尖刀时):
L/H>1000时属于宏观几何形状偏差,即形状误差,属于加工精度的研究范 畴。
L/H<50属于微观几何形状偏差,称为表面粗糙度。
L/H=50~1000,则称为表面波度。表面粗糙度和表面波度都属于加工表面 质量范畴。
(1)表面粗糙度 它是指加工表面的微观几何形状误差,国家标准规定:表面粗糙度用在一定
(1)表面层的冷作硬化 工件在机械加工过程中,表面层金属产生了强烈的塑性变形,使表面层的强
度和硬度都高于加工前,这种现象称为表面冷作硬化。
(2)表面层的残余应力 在切削或磨削加工过程中,由于切削变形和切削热的影响,加工表面层会产
生残余应力。
(3)表面层的金相组织变化 机械加工特别是磨削加工中,工件表面在切削热产生的高温的作用下,常会
第一节 机械加工表面质量概述
一、表面质量的含义
任何机械加工所得的表面,实际上不可能是理想的光滑表面,总是存在一定 的微观几何形状偏差。表面层材料在加工时受切削力、切削热等的影响,也会使 原有的物理机械性能发生变化。因此,所谓机械加工表面质量就是指表面几何形 状和物理机械性能这两方面。
1. 表面层的几何形状 加工后的表面几何形状.总是以“峰”、“谷”交替出现的形式偏离其理想的光 滑表面的,如图所示。其偏差又有宏观、微观之分,一般以波距(峰与峰或谷与 谷间的距离)L和波高(峰、谷间的高度)H的比值加以区别。
长度内(称为基本长度)轮廓的算术平均偏差值Ra或十点平均高度Rz作为评定指 标。
(2)表面波度 它是介于宏观几何形状与微观几何形状误差(粗糙度)之间的周期性几何形
状误差。表面波度通常是由于加工过程中工艺系统的低频振动造成的。
2. 表面层的物理机械性能 表面层的材料在加工时会产生物理、机械和化学性质的变化,上图所示为加 工表面层沿深度的变化。
粗糙度的轮廓形状和加工纹路方向也与零件的耐磨性有关,如下图所示。
表面层的冷作硬化可提高零件的耐磨性,但硬化过度,则由于表面层与基体金 属的硬度相差过大,造成表面层金属的剥落,使磨损加剧。
当表面层金属的金相组织发生变化时,其物理机械性能也会发生相应的变化, 从而影响零件的耐磨性。
2. 对零件疲劳强度的影响