成都市八年级上册半期数学考试卷解析

合集下载

八年级数学上册期中考试试卷分析

八年级数学上册期中考试试卷分析

八年级数学上册期中考试试卷分析一、成绩质量分析统计表一、试卷结构分析1.考试时间100分钟,试卷总量23题,试卷总分130分。

每个小题使用的时间大概是4到6分钟,容易题:中档题:难题的比为6:2:2.难度系数是0.75,学生在熟练掌握结论的基础上,大部分学生能有充足的时间思考,完成书写。

2.考查内容:本章试卷内容涵盖了《三角形》、《全等三角形》的全部内容,以及轴对称的部分重点内容,重点、难点分配合理。

本份试卷立足考查学生对一些基础知识点的应用,以及在做题过程中所形成的一些结论、规律的灵活应用,并渗透数学思想方法,较好的贯彻了《新课标》的评价依据,还保证了对《新课标》的主干内容的考查、外延和提升。

三、试卷的特点本卷的特点和亮点:关注了学生的推理能力、逻辑思维能力、探索创新能力,充分体现了课改的理念。

1.选择题分析:共10个选择题,分别考查了三角形三边之间的关系、三角形的内角和与外角和、折叠中的全等、整体求解带入计算、全等三角形的判定、角平分线的性质,其中第十个选择题学生出错率最高,本题涉及到结论(旁心)的直接运用,如果考试时再去推导结论,将会造成时间的紧促,最终做不完本张试卷。

选择题的难度分配与中考题型相符。

2.填空题中考查的亮点:角平分线性质的间接应用,一内一外角平分线的夹角的结论应用,正多边形的性质,多边形的内角和公式与外角和,其中最后一题彰显出应用知识点的综合性(截长补短、面积转化)失分率很高。

3.解答题考查的亮点:注重学生对几何语言的应用及逻辑推理能力提升的训练,如18题利用附加题激发学生的探索欲,分别从三角形的内角、外角之间的关系进行推理论证,注重数学知识点的关联化、一体化。

第19题融入数学思想---方程思想,让学生利用方程解决实际问题,注重能力的培养,最大的亮点和难度体现在最后一个试题中,学生要在认真读题的基础上,把条件体现在图形中,并通过量之间的相互转化,灵活运用“8和凹”字体现的规律,通过全等判定进行证明,做出本题的学生及少。

_四川省成都市龙泉驿区2020-2021学年八年级上学期期中数学试卷 解析版

_四川省成都市龙泉驿区2020-2021学年八年级上学期期中数学试卷  解析版

2020-2021学年四川省成都市龙泉驿区八年级(上)期中数学试卷A卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上).1.在下列实数中,无理数是()A.B.C.D.﹣12.下列式子中,属于最简二次根式的是()A.B.C.D.3.点M(3,﹣2)在()A.第一象限B.第二象限C.第三象限D.第四象限4.下列为勾股数的是()A.0.3,0.4,0.5B.5,12,13C.,,D.,2,5.在平面直角坐标系中,点P(3,4)关于y轴对称点的坐标为()A.(﹣3,4)B.(3,4)C.(3,﹣4)D.(﹣3,﹣4)6.的算术平方根是()A.±81B.±9C.9D.37.关于x、y的方程组的解为()A.B.C.D.8.在实数范围内,有意义,则x的取值范围是()A.x≥2B.x≥﹣2C.x<2D.x≤29.“阅读与人文滋养内心”,某校开展阅读经典活动.小明3天里阅读的总页数比小颖5天里阅读的总页数少6页,小颖平均每天阅读的页数比小明平均每天阅读的页数的2倍少10页,若小明、小颖平均每天分别阅读x页、y页,则下列方程组正确的是()A.B.C.D.10.如图,将一根长为20cm的筷子置于底面直径为5cm,高为12cm的圆柱形水杯中,筷子露在杯子外面的长度为()A.13cm B.8cm C.7cm D.15cm二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)。

11.如图,一根树在离地面6米处断裂,树的顶部落在离底部8米处,树折断之前有米.12.点P(m﹣2,3)在第一象限且到x轴和y轴的距离相等,则m=.13.若+(4﹣y)2=0,那么y x=.14.直角三角形OAB中,∠ABO=90°,OB=2,AB=1,将△OAB如图放置,以O为圆心,OA为半径画弧,交数轴于点C,则点C表示的数为.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.计算:(1)﹣+3;(2)(4﹣3)÷+2×;(3)﹣|﹣3|;(4)(﹣)(+)﹣(2﹣2)2.16.解下列二元一次方程组:(1);(2).17.若方程组的解满足x=y,求k的值.18.《孙子算经》是中国古代重要的数学著作,共三卷,卷上叙述了算筹记数的纵横相间制度和筹算乘除法,卷中举例说明筹算分数算法和筹算开平方法,卷下对后世的影响最深,其中卷下记载这样一道经典的问题:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”意思是:鸡和兔关在一个笼子里,从上面看,有35个头;从下面看,有94只脚,问笼中各有多少只鸡和多少只兔.19.甲、乙同时解方程组,由于甲看错了方程①中m的值,得到方程组的解,乙看错了方程②中n的值,得到方程组的解为,请你求出原来的方程组的解.20.八年级(2)班的小明和小亮同学学了“勾股定理”之后,为了测得图中风筝的高度CE,他们进行了如下操作:①测得BD的长为15米(注:BD⊥CE);②根据手中剩余线的长度计算出风筝线BC的长为25米;③牵线放风筝的小明身高1.6米.(1)求风筝的高度CE.(2)过点D作DH⊥BC,垂足为H,求BH、DH.B卷二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.若方程(a﹣4)x|a|﹣3+3y=1是关于x,y的二元一次方程,则a的值为.22.已知点A(7,0),B(0,m),且直线AB与坐标轴围成的三角形面积等于28,则m的值是.23.如图:点A表示的数为.24.如图,在△ABC中,AC=BC=4,∠ACB=90°,D是BC边的中点,E是AB边上一动点,则EC+ED的最小值是.25.如图,在平面直角坐标系中,四边形ABOC是正方形,点A的坐标为(1,1),弧AA1是以点B为圆心,BA为半径的圆弧;弧A1A2是以点O为圆心,OA2为半径的圆弧;弧A2A3是以点C为圆心,CA2为半径的圆弧;弧A3A4是以点A为圆心,AA3为半径的圆弧,继续以点B,O,C,A为圆心,按上述作法得到的曲线AA1A2A3A4A5…,称为正方形的“渐开线”,则点A2021的坐标是.五、解答题(共3个小题,共30分,答案写在答题卡上)26.阅读下列材料,然后回答问题.在进行二次根式运算时,形如一样的式子,我们可以将其进一步化简:==,以上这种化简的步骤叫做分母有理化.(1)请用上述的方法化简;(2)利用上面的解法,化简:+++…+.(3)比较大小﹣与﹣(提示:分子有理化).27.如图所示,一个无盖四棱柱容器,其底面是一个边长为3cm的正方形,高为20cm.现有一根彩带,从底面A点开始缠绕四棱柱,刚好缠绕4周到达B点(假设彩带完美贴合四棱柱).(1)请问彩带的长度是多少?(2)如图所示,一只蚂蚁在容器外A点发现容器的内部距离顶部2cm处有一滴蜂蜜,它想以最短的路程到达C处.请问蚂蚁走的最短路程是多少呢?(注:以上两问均要画出平面展开示意图,再解答)28.2019年是中华人民共和国成立70周年,全国多地用灯光秀为祖国庆祝生日.据悉,四川省内某城市灯光秀共使用照明灯和投射灯共50万个,共花费1005万元.已知照明灯的售价为每个9元,投射灯的售价为每个120元,请用方程或方程组的相关知识解决下列问题:(1)该城市灯光秀使用照明灯和投射灯各多少个?(2)某栋楼宇原计划安装照明灯1000,投射灯50个.后因楼宇本身的设计,实际安装时投射灯比计划多安装了20%,照明灯的数量不变.卖灯的商家为祖国70华诞而让利,把照明灯和投射灯售价分别降低了m%,m%,实际上这栋楼宇照明灯和投射灯的总价为13536元,请求出m的值.2020-2021学年四川省成都市龙泉驿区八年级(上)期中数学试卷参考答案与试题解析一.选择题(共10小题)1.在下列实数中,无理数是()A.B.C.D.﹣1【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A.是分数,属于有理数;B.=2,是整数,属于有理数;C.是无理数;D.﹣1是整数,属于有理数;故选:C.2.下列式子中,属于最简二次根式的是()A.B.C.D.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;B、=6,被开方数含能开得尽方的因数=,故B不符合题意;C、=2,被开方数含能开得尽方的因数=,故C不符合题意;D、=,被开方数含分母,故D不符合题意;故选:A.3.点M(3,﹣2)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答.【解答】解:点M(3,﹣2)在第四象限.故选:D.4.下列为勾股数的是()A.0.3,0.4,0.5B.5,12,13C.,,D.,2,【分析】利用勾股定数的定义进行解答即可.【解答】解:A、0.3,0.4,0.5不是正整数,故此选项不合题意;B、52+122=132,都是正整数,故此选项符合题意;C、,,不是正整数,故此选项不合题意;D、,2,不是正整数,故此选项不合题意;故选:B.5.在平面直角坐标系中,点P(3,4)关于y轴对称点的坐标为()A.(﹣3,4)B.(3,4)C.(3,﹣4)D.(﹣3,﹣4)【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【解答】解:点P(3,4)关于y轴对称点的坐标为(﹣3,4),故选:A.6.的算术平方根是()A.±81B.±9C.9D.3【分析】首先求出的结果,然后利用算术平方根的定义即可解决问题.【解答】解:∵=9,而9的算术平方根是3,∴的算术平方根是3.故选:D.7.关于x、y的方程组的解为()A.B.C.D.【分析】先把两方程相加可求出x,然后利用代入法求y,从而得到方程组的解.【解答】解:,①+②得3x=12,解得x=4,把x=4代入①得4+y=3,解得y=﹣1,所以方程组的解为.故选:B.8.在实数范围内,有意义,则x的取值范围是()A.x≥2B.x≥﹣2C.x<2D.x≤2【分析】根据二次根式有意义的条件,被开方数为非负数,列不等式求x的取值范围.【解答】解:在实数范围内,有意义,∴2﹣x≥0,解得x≤2.故选:D.9.“阅读与人文滋养内心”,某校开展阅读经典活动.小明3天里阅读的总页数比小颖5天里阅读的总页数少6页,小颖平均每天阅读的页数比小明平均每天阅读的页数的2倍少10页,若小明、小颖平均每天分别阅读x页、y页,则下列方程组正确的是()A.B.C.D.【分析】设小明平均每天分别阅读x页、小颖平均每天阅读y页,则由题意可列出方程组.【解答】解:设小明平均每天分别阅读x页、小颖平均每天阅读y页,由题意得:,故选:C.10.如图,将一根长为20cm的筷子置于底面直径为5cm,高为12cm的圆柱形水杯中,筷子露在杯子外面的长度为()A.13cm B.8cm C.7cm D.15cm【分析】根据题意直接利用勾股定理得出杯子内的筷子长度,进而得出答案.【解答】解:由题意可得:杯子内的筷子长度为:=13,则筷子露在杯子外面的筷子长度为:20﹣13=7(cm).故选:C.二.填空题(共4小题)11.如图,一根树在离地面6米处断裂,树的顶部落在离底部8米处,树折断之前有16米.【分析】根据勾股定理,计算树的折断部分是10米,则折断前树的高度是10+6=16米.【解答】解:因为AB=6米,AC=8米,根据勾股定理得BC=(米),于是折断前树的高度是10+6=16(米).故答案为:16.12.点P(m﹣2,3)在第一象限且到x轴和y轴的距离相等,则m=5.【分析】直接利用第一象限内点的坐标特点得出答案.【解答】解:∵点P(m﹣2,3)在第一象限且到x轴和y轴的距离相等,∴m﹣2=3,解得:m=5.故答案为:5.13.若+(4﹣y)2=0,那么y x=16.【分析】利用非负数的性质得出x,y的值,代入计算即可得出答案.【解答】解:∵+(4﹣y)2=0,∴x﹣2=0,4﹣y=0,解得:x=2,y=4,则y x=42=16.故答案为:16.14.直角三角形OAB中,∠ABO=90°,OB=2,AB=1,将△OAB如图放置,以O为圆心,OA为半径画弧,交数轴于点C,则点C表示的数为.【分析】根据勾股定理求出OA的长,再得出OC的长,进而确定点C所表示数的绝对值,即可得出点C所表示的数.【解答】解:在Rt△OAB中,∠ABO=90°,OB=2,AB=1,由勾股定理得,OA==,又∵OA=OC,∴OC=,∴点C所表示的数为,故答案为:.三.解答题(共5小题)15.计算:(1)﹣+3;(2)(4﹣3)÷+2×;(3)﹣|﹣3|;(4)(﹣)(+)﹣(2﹣2)2.【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)根据二次根式的除法法则和乘法法则运算;(3)利用二次根式的性质和绝对值的意义计算;(4)利用平方差公式和完全平方公式计算.【解答】解:(1)原式=﹣+=;(2)原式=4﹣3+2=4﹣3+4=4+;(3)原式=5+﹣3=2+;(4)原式=17﹣5﹣(4﹣8+8)=12﹣12+8=8.16.解下列二元一次方程组:(1);(2).【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用代入消元法求出解即可.【解答】解:,①×3+②,5m=20,解得m=4,把m=4代入①,4﹣n=2,解得n=2,∴原方程组的解是;(2),由①可得x+1=6y③,将③代入②得,12y﹣y=11,解得y=1,将y=1代入①得,x+1=6,解得x=5,∴原方程组的解是.17.若方程组的解满足x=y,求k的值.【分析】先把x=y代入第一个方程求出y=1,然后把x=y=1代入第二个方程课求出k.【解答】解:,把x=y代入①得7y=7,解得y=1,把x=y=1代入②得k+k﹣3=1,解得k=2.18.《孙子算经》是中国古代重要的数学著作,共三卷,卷上叙述了算筹记数的纵横相间制度和筹算乘除法,卷中举例说明筹算分数算法和筹算开平方法,卷下对后世的影响最深,其中卷下记载这样一道经典的问题:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”意思是:鸡和兔关在一个笼子里,从上面看,有35个头;从下面看,有94只脚,问笼中各有多少只鸡和多少只兔.【分析】本题可设鸡有x只,兔有y只,因“今有雉(鸡)兔同笼,上有三十五头,下有九十四足.”,所以有,解之得鸡的只数,兔的只数.【解答】解:设鸡有x只,兔有y只,根据题意得有,解之,得,即有鸡23只,兔12只.19.甲、乙同时解方程组,由于甲看错了方程①中m的值,得到方程组的解,乙看错了方程②中n的值,得到方程组的解为,请你求出原来的方程组的解.【分析】把代入方程组第二个方程求出n的值,把代入第一个方程求出m 的值,确定出原方程组,再求解即可.【解答】解:把代入②得:2+n=3,即n=1;把代入①得:﹣5m+4=﹣6,即m=2,故方程组为,①﹣②得:3y=﹣9,即y=﹣3,把y=﹣3代入①得:x=0.则方程组的解为.20.八年级(2)班的小明和小亮同学学了“勾股定理”之后,为了测得图中风筝的高度CE,他们进行了如下操作:①测得BD的长为15米(注:BD⊥CE);②根据手中剩余线的长度计算出风筝线BC的长为25米;③牵线放风筝的小明身高1.6米.(1)求风筝的高度CE.(2)过点D作DH⊥BC,垂足为H,求BH、DH.【分析】(1)利用勾股定理求出CD的长,再加上DE的长度,即可求出CE的高度;(2)根据直角三角形的性质即可得到结论.【解答】解:(1)在Rt△CDB中,由勾股定理,得(米).所以CE=CD+DE=20+1.6=21.6(米);(2)由得,在Rt△BHD中,.B卷一.填空题(共5小题)21.若方程(a﹣4)x|a|﹣3+3y=1是关于x,y的二元一次方程,则a的值为﹣4.【分析】根据二元一次方程的定义得出a﹣4≠0且|a|﹣3=1,求出即可.【解答】解:∵方程(a﹣4)x|a|﹣3+3y=1是关于x、y的二元一次方程,∴a﹣4≠0且|a|﹣3=1,解得:a=﹣4,故答案为:﹣4.22.已知点A(7,0),B(0,m),且直线AB与坐标轴围成的三角形面积等于28,则m的值是±8.【分析】由点A,B的坐标可得出OA,OB的长,利用三角形的面积公式结合直线AB与坐标轴围成的三角形面积等于28,即可得出关于m的一元一次方程,解之即可得出m的值.【解答】解:∵点A(7,0),B(0,m),∴OA=7,OB=|m|,∴S△OAB=OA•OB,∴×7|m|=28,解得:m=±8.故答案为:±8.23.如图:点A表示的数为﹣﹣1.【分析】根据勾股定理即可得点A表示的数.【解答】解:根据勾股定理,得=,=,∴点A表示的数为:﹣﹣1.故答案为:﹣﹣1.24.如图,在△ABC中,AC=BC=4,∠ACB=90°,D是BC边的中点,E是AB边上一动点,则EC+ED的最小值是2.【分析】过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB 于E,连接C′B,首先确定DC′=DE+EC′=DE+CE的值最小,然后根据勾股定理计算.【解答】解:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于E,连接CE,连接BC',此时DE+CE=DE+EC′=DC′的值最小.由对称性可知∠C′BE=∠CBE=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=2,∵D是BC边的中点,∴BD=1,根据勾股定理可得:DC′===2,故EC+ED的最小值是2.故答案为:2.25.如图,在平面直角坐标系中,四边形ABOC是正方形,点A的坐标为(1,1),弧AA1是以点B为圆心,BA为半径的圆弧;弧A1A2是以点O为圆心,OA2为半径的圆弧;弧A2A3是以点C为圆心,CA2为半径的圆弧;弧A3A4是以点A为圆心,AA3为半径的圆弧,继续以点B,O,C,A为圆心,按上述作法得到的曲线AA1A2A3A4A5…,称为正方形的“渐开线”,则点A2021的坐标是(2022,0).【分析】】根据题意分别写出A1…A8的坐标,得出规律,根据规律解答即可.【解答】解:A(1,1),由题意得,A1(2,0),A2(0,﹣2),A3(﹣3,1),A4(1,5),A5(6,0),A6(0,﹣6),A7(﹣7,1),A8(1,9)…,∴A4n(1,4n+1),A4n+1(4n+2,0),A4n+2(0,﹣(4n+2)),A4n+3(﹣(4n+3),1).∵2021=505×4+1,∴A2021的坐标为(2022,0).故答案为:(2022,0).二.解答题(共3小题)26.阅读下列材料,然后回答问题.在进行二次根式运算时,形如一样的式子,我们可以将其进一步化简:==,以上这种化简的步骤叫做分母有理化.(1)请用上述的方法化简;(2)利用上面的解法,化简:+++…+.(3)比较大小﹣与﹣(提示:分子有理化).【分析】(1)把分子分母都乘以(+),然后利用平方差公式计算;(2)先分母有理化,然后合并即可;(3)先分子有理化得到﹣=,﹣=,然后比较与的大小即可.【解答】解:(1)原式==+;(2)原式=3(﹣1)+3(﹣)+…+3(﹣)=3(﹣1+﹣+…+﹣)=3(﹣1)=3(10﹣1)=27;(3)∵﹣=,﹣=,而<,∴﹣<﹣.27.如图所示,一个无盖四棱柱容器,其底面是一个边长为3cm的正方形,高为20cm.现有一根彩带,从底面A点开始缠绕四棱柱,刚好缠绕4周到达B点(假设彩带完美贴合四棱柱).(1)请问彩带的长度是多少?(2)如图所示,一只蚂蚁在容器外A点发现容器的内部距离顶部2cm处有一滴蜂蜜,它想以最短的路程到达C处.请问蚂蚁走的最短路程是多少呢?(注:以上两问均要画出平面展开示意图,再解答)【分析】(1)如果从点A开始缠绕四棱柱,刚好缠绕4周到达点B,相当于直角三角形的两条直角边分别是12和5,再根据勾股定理求出斜边长即可;(2)求四棱柱中两点之间的最短路径,最直接的作法,就是将四棱柱展开,然后利用两点之间线段最短解答.【解答】解:(1)如图,将长方体的侧面沿AB展开,取A′B′的四等分点C、D、E,取AB的四等分点C′、D′、E′,连接B′E′,D′E,C′D,AC,则AC+C′D+D′E+E′B′=4AC为所求的最短细线长,∵AC2=AA′2+A′C2,AC==13,∴AC+C′D+D′E+E′B′=4AC=52,答:彩带的长度是52cm;(2)如图,将四棱柱展开,找到C的对称点C′,连接AC′,则AC′即为蚂蚁走的最段路程,在直角△AMC中,AM=6cm,MC′=20+(20﹣18)=22cm,由勾股定理得:AC′2=AM2+MC′2=62+222=520,则AC′=2cm,答:蚂蚁走的最短路程是2cm.28.2019年是中华人民共和国成立70周年,全国多地用灯光秀为祖国庆祝生日.据悉,四川省内某城市灯光秀共使用照明灯和投射灯共50万个,共花费1005万元.已知照明灯的售价为每个9元,投射灯的售价为每个120元,请用方程或方程组的相关知识解决下列问题:(1)该城市灯光秀使用照明灯和投射灯各多少个?(2)某栋楼宇原计划安装照明灯1000,投射灯50个.后因楼宇本身的设计,实际安装时投射灯比计划多安装了20%,照明灯的数量不变.卖灯的商家为祖国70华诞而让利,把照明灯和投射灯售价分别降低了m%,m%,实际上这栋楼宇照明灯和投射灯的总价为13536元,请求出m的值.【分析】(1)设该城市灯光秀使用照明灯x万个,投射灯y万个,根据“该城市灯光秀共使用照明灯和投射灯共50万个,共花费1005万元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总价=单价×数量,即可得出关于m的一元一次方程,解之即可得出结论.【解答】解:(1)设该城市灯光秀使用照明灯x万个,投射灯y万个,依题意,得:,解得:.答:该城市灯光秀使用照明灯45万个,投射灯5万个.(2)依题意,得:9(1﹣m%)×1000+120(1﹣m%)×50×(1+20%)=13536,解得:m=20.答:m的值为20.。

最新成都市八年级上册半期数学考试卷

最新成都市八年级上册半期数学考试卷

成都市八年级上册半期数学考试卷考试范围(1勾股章,2实数章,3方程组章,4位置坐标章,5一次函数章)A 卷100分一选择题(3分x10=30分)1、如图所示为一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②,…,依此类推,若正方形①的面积为64,则正方形⑤的面积为( )A2 B4 C8 D162、如图,在Rt ABC ∆中, 090ACB ∠=,AB=4.分别以AC,BC 为直径作半圆,面积分别记为12,S S ,则12S S +的值等于( )A 2πB 3πC 4πD 8π3、方程x +2y =5的非负整数解有 ( ) A.3组 B.2组 C.1 组 D.0组4、一质点P 从距原点1个单位的M 点处向原点方向跳动,第一次跳动到OM 的中点3M 处,第二次从3M 跳到3OM 的中点2M 处,第三次从点2M 跳到2OM 的中点1M 处,如此不断跳动下去,则第n 次跳动后,该质点到原点O 的距离为( ).A.12nB.112n - C.112n +⎛⎫⎪⎝⎭D. 12n5、若定义新运算:(,)(+1f a b a =,-b), (,)(g m n m =,n-2) 则[(2,3)]f g -=( ) A(2,-3) B(2,-5) C (3,5) D(3,-5)6、今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t (分钟),所走的路程为s(米),s与t之间的函数关系如图所示.下列说法错误的是().A: 小明中途休息用了20分钟B: 小明休息前爬山的平均速度为每分钟70米C: 小明在上述过程中所走的路程为6600米D: 小明休息前爬山的平均速度大于休息后爬山的平均速度7、一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x,十位数字为y,所列方程组正确的是().A.818x yxy yx+=⎧⎨+=⎩ B.8101810x yx y x y+=⎧⎨++=+⎩ C.81018x yx y xy+=⎧⎨++=⎩ D.810()x yx y xy+=⎧⎨+=⎩8、若方程组2371x yax by+=⎧⎨-=⎩与方程组7453ax byx y+=⎧⎨-=⎩有相同的解,则a,b的值为( )A、a=2, b=1B、a=2, b=3C、a=2.5, b=1D、a=4, b=-5,9、如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是()A(0,0) B(0,1) C(0,2) D(0,3)10、勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=900 ,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为().A90 B100 C110 D121二填空题(4分x4=16分)11、已知2)0=,则24)的值是____________12、三个同学对问题“若方程组111222a xb y ca xb y c+=⎧⎨+=⎩的解是34xy=⎧⎨=⎩,求方程组111223a x2b y5c3a x2b y5c+=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是____________13、已知一次函数y=kx+b,k从2,﹣3中随机取一个值,b从1,﹣1,﹣2中随机取一个值,求该一次函数的图象经过二、三、四象限的概率____________.14、在平面直角坐标系中,已知点A(1,0)和点B(0,,点C在坐标平面内.若以A,B,C为顶点构成的三角形是等腰三角形,且底角为300,则满足条件的点C有_______个.三计算题解方程15、(每小题5分共10分)(1)、计算:÷(2) 、解方程①24(1)25x-=16解方程组(每小题5分共10分)①275322344y xx y zx z=-⎧⎪++=⎨⎪-=⎩. ②22(1)2(2)+x yx-=-⎧⎨-⎩(y-1)=5四解答题17、(8分)为了参加2015年中海国际铁人三项(游泳、自行车、长跑)系列赛业余组的比赛,李明针对自行车和长跑项目进行专项训练.某次训练中,李明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟.求自行车路段和长跑路段的长度.18、(8分)一名考生步行前往考场,5分钟走了总路程的16,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图所示(假定总路程为1,出租车匀速),则他到达考场所花的时间比一直步行提前了多少分钟?19、(8分)(2014秋•泾阳县期末)如图,将长方形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD于点E.(1)试判断△BDE的形状,并说明理由;(2)若AB=4,AD=8,求△BDE的面积.20、(10分)某文具商店销售功能相同的A 、B 两种品牌的计算器,购买2个A 品牌和3个B 品牌的计算器共需156元;购买3个A 品牌和1个B 品牌的计算器共需122元. (1)求这两种品牌计算器的单价.(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A 品牌计算器按原价的八折销售,B 品牌计算器5个以上超出部分按原价的七折销售,设购买x 个A 品牌的计算器需要1y 元,购买x 个B 品牌的计算器需要2y 元,分别求出1y 、2y 关于X 的函数关系式.(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.B 组(50分)五填空题(每小题4分共20分)21、己知224250a b a b +--+=,2+=____________22、在△ABC 中,BC=a,AC=b,AB=c,设c 为最长边,当a 2+b 2=c 2时,△ABC 是直角三角形;当a 2+b 2≠c 2时,利用代数式a 2+b 2和c 2的大小关系,探究△ABC 的形状(按角分类).(1)当△ABC 三边分别为6、8、9时,△ABC 为 三角形;当△ABC 三边分别为6、8、11时,△ABC 为 三角形.(2)猜想,当a 2+b 2 c 2时,△ABC 为锐角三角形;当a 2+b 2 c 2时,△ABC 为钝角三角形. (3)判断当a=2,b=4时,△ABC 的形状,并求出对应的c 的取值范围.23、小丽想用一块面积为4002cm 的正方形纸片,沿着边的方向裁出一块面积为3002cm 的长方形纸片,使它的长宽之比为3:2.不知道能否裁出来(填能、不能),理由是长要______________,24、已知实数x,y,z满足9x y z =+++,则xyz 的值=______,25、,某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y (元)与印刷份数x (份)之间的关系如图所示.(1)填空:甲种收费的函数关系式是_____ ;乙种收费的函数关系式是_____ .(2)该校某年级每次需印制100---450(含100和450)份学案,① 当印制___份至___份时选_____较合算; ② 当印制___份至___份时选_____都一样; ③当印制___份至___份时选_____较合算;26、(9分)如图,点N 是△ABC 的边BC 延长线上的一点, ∠CAN=2∠BAC ,过点A 作AC 的垂线交CN 于点P. (1)若∠APC=300, 求证:AB=AP; (2)若AP=8,BP=16,求AC 的长;(3)若点P 在BC 的延长线上运动, ∠APB 的平分线交AB 于点M.你认为∠AMP 的大小是否发生变化?若变化,请说明理由;若不变化,求出∠AMP 的大小.27、(10分)已知一次函数y=2x-4的图象与x 轴、y 轴分别相交于点A 、B,点P 在该函数的图象上,P 到X 轴、Y 轴的距离分别为1d 、2d .(1)当P 为线段AB 的中点时,求1d +2d 的值.(2)直接写出1d +2d 的范围,并求当1d +2d =3时点p 的坐标.28、(11分)如图,已知一次函数y kx b =+的图象经过A(-2,-1),B(1,3)两点,并且交x 轴于点C,交y 轴于点D. (1)求该一次函数的解析式;(2)求△AOB 的面积S ; (3)求证:∠AOB=1350.适应于成都市中考要求的八年级上册半期数学考试卷答案考试范围(1勾股章,2实数章,3方程组章,4位置坐标章,5一次函数章)A卷100分一选择题(3分x10=30分)1、B2、A3、A4、D5、C6、C7、B8、B9、D 10、C二填空题(4分x4=16分)11、3612、510xy=⎧⎨=⎩13、1314、6三计算题解方程15、(每小题5分共10分) (1)、(2) 、172x=232x=-16解方程组(每小题5分共10分)①2312xyz⎧⎪=⎪=-⎨⎪⎪=⎩②42xy=⎧⎨=⎩四解答题17、自行车路段长度为3千米,长跑路段长度为2千米18 20分钟( 有1263y x =-得6分)19、(8分)(2014秋•泾阳县期末)如图,将长方形ABCD 沿着对角线BD 折叠,使点C 落在C′处,BC′ 交AD 于点E .(1)试判断△BDE 的形状,并说明理由;(2)若AB=4,AD=8,求△BDE 的面积.解:(1)△BDE 是等腰三角形.由折叠可知,∠CBD=∠EBD,∵AD ∥BC,∴∠CBD=∠EDB,∴∠EBD=∠EDB,∴BE=DE,即△BDE 是等腰三角形;(2)设DE=x,则BE=x,AE=8﹣x,在Rt △ABE 中,由勾股定理得:AB 2+AE 2=BE 2即42+(8﹣x )2=x 2,解得:x=5, 所以S △BDE =DE×AB=×5×4=10.20、(10分)某文具商店销售功能相同的A 、B 两种品牌的计算器,购买2个A 品牌和3个B 品牌的计算器共需156元;购买3个A 品牌和1个B 品牌的计算器共需122元. (1)求这两种品牌计算器的单价.(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A 品牌计算器按原价的八折销售,B 品牌计算器5个以上超出部分按原价的七折销售,设购买x 个A 品牌的计算器需要1y 元,购买x 个B 品牌的计算器需要2y 元,分别求出1y 、2y 关于X 的函数关系式.(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.(1)故A 类品牌计算器的单价为30元,B 类品牌计算器的单价为32元 (2)(3)若购买计算器的数量超过5 ,①当时,即,解得:,故时,购买A 品牌的计算器更合算.②当时,即,解得:,购买计算器的数量为30个,购买A 品牌的计算器和购买B 品牌的计算器花费相同.③当时,即,化简可得:,解得:,购买计算器的数量超过30个,购买B 品牌的计算器更合算.B 组(50分)五填空题(每小题4分共20分)21、12+22、解:(1)锐角;钝角. (2)>;<.(3)①当4≤c < 2 时,这个三角形是锐角三角形;②当c=2时,这个三角形是直角三角形;③当 2<c <6时,这个三角形是钝角三角形..23、不能,长要>24、12025、(1)填空:甲种收费的函数关系式是_0.16y x =+甲_ ;乙种收费的函数关系式是_0.12y x=乙_ .(2)该校某年级每次需印制100---450(含100和450)份学案,① 当印制_0__份至_300_份时选_乙_较合算; ② 当印制_300___份时选_甲、乙__都一样; ③当印制_300__份至__450_份时选__甲___较合算;26、(9分)如图,点N 是△ABC 的边BC 延长线上的一点, ∠CAN=2∠BAC ,过点A 作AC 的垂线交CN 于点P. (1)若∠APC=300, 求证:AB=AP; (2)若AP=8,BP=16,求AC 的长;(3)若点P 在BC 的延长线上运动, ∠APB 的平分线交AB 于点M.你认为∠AMP 的大小是否发生变化?若变化,请说明理由;若不变化,求出∠AMP 的大小.(2)设ac=x,在Rt ACP ∆中,由勾股定理建立方程得2228(16)x x +=-计算得出x=6, 所以AC=6;(3)的大小不发生变化,理由如下:,,27、(10分)已知一次函数y=2x-4的图象与x 轴、y 轴分别相交于点A 、B,点P 在该函数的图象上,P 到X 轴、Y 轴的距离分别为1d 、2d .(1)当P 为线段AB 的中点时,求1d +2d 的值.(2)直接写出1d +2d 的范围,并求当1d +2d =3时点p 的坐标.(1)P(1,-2) 1d +2d =3(2)的范围为.因为点P 在一次函数的图象上,故设点,所以.由题当时,根据可分析, 即当时,,此时解得,所以根据点,得点.当时,同理,,解得,所以根据点,得点.当时,,解得,即不符合,故此时不存在点P.综上所述,当时点P 的坐标为点、.28、(11分)如图,已知一次函数y kx b =+的图象经过A(-2,-1),B(1,3)两点,并且交x 轴于点C,交y 轴于点D. (1)求该一次函数的解析式;(2)求△AOB 的面积S ; (3)求证:∠AOB=1350.(1)4533y x =+ (2)S=52(3)取点A 关于原点的对称点,则问题转化为求证.由勾股定理可得,,,,∵,∴△EOB 是等腰直角三角形.∴. ∴.。

八年级上期半期考试数学试题及答案解析

八年级上期半期考试数学试题及答案解析

八年级上期半期考试数 学 试 卷(全卷共五个大题,满分150分,考试时间120分钟)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将每小题的答案直接填在下面的表格中. 题号 1 2 3 4 5 6 7 8 9 10 答案1.下列实数中,无理数是( ) A .25-B .πC .9D .2- 2.下面图形中,是中心对称图形的是( )3.如图,在55⨯方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是( )A .先向下平移3格,再向右平移1格B .先向下平移2格,再向右平移1格C .先向下平移2格,再向右平移2格D .先向下平移3格,再向右平移2格4.下列计算正确的是( )A .632=⨯B .532=+C .248=D .224=-5.如图以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A 处,则点A 表示的数是( )A .211B .2C .3 D .4.1-11 A2 第5题图6.如图,在直角梯形ABCD 中,AD//BC ,CB ⊥AB ,△CBD 是等边三角形,若BC=2,则AB 的长为( )A .2B .1C .32D .3第6题图7.若两个连续的整数b a ,满足b a <<13,则ab1A .121 B .61 C .201 D .无法确定8.如图,在菱形ABCD 中,∠ABC=60°对角线AC 长为6,则菱形ABCD 的面积为( )A .36B .18C .318D .3369.下面各图都是用全等的等边三角形拼成的一组图形,第①个图形中有1个等腰梯形,第②个图形中有4个等腰梯形,……依此类推,则第6个图形中有( )个等腰梯形.图① 图② 图③A .16B .26C .36D .5610.如图,在口ABCD 中,点E 在边AD 上,以BE 为折痕,将△ABE 向上翻折,点A 正好落在CD 上的点F 处,若△FDE 的周长为12,△FCB 的周长为28,则FC 的长为( )A .9.5B .9C .8.5D .8二、填空题:(本大题6个小题,每小题411.==-x x 则,27)2(3.……O DCBAD D CBA第16题图12.比较大小:23 5213.下列四边形中:①等腰梯形,②正方形,③矩形,④菱形,⑤平行四边形.对角线一定相等的是 .(填序号) 14.实数b a ,在数轴上的位置如图所示,则()a b a ++2的化简结果为 .15.如图,一种电子游戏,电子屏幕上有一个正六边形ABCDEF ,点P 沿直线AB 从右向左移动,当出现点P 与正六边形六个顶点中的至少两个顶点距离相等时,就会出现警报,则直线AB 上会发出警报的点P 有 个.16.如图,正方形ABCD 的对角线AC 、BD 相交于点O ,∠CAB 的平分线交BD 于点E ,交BC 于点F .若OE=1,则正方形ABCD 的面积=__________. 三、解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.17.计算:380(2)π--21()2-+99(1)--2--18.如图,已知AB =AC =10cm ,DE ∥AC ,DF ∥AB ,求DE+DF 的长.第15题图OFED CBAFE DCBAFE D CPBA19.在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,ABC △的三个顶点都在格点上(每个小方格的顶点叫格点).(1)△ABC 经平移后点A 的对应点为点B ,画出△ABC 经此平移后得到的△A 1B 1C 1(2)画出ABC △绕点O 顺时针旋转90°后得到的△A 2B 2C 2.20.如图,在梯形ABCD 中,AD ∥BC ,AB =CD ,∠B =60°,AD =10,BC =18.求梯形ABCD的周长.D CB A四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤. 21.化简: (1)122154+⨯ (2)()()()131381672-++÷-22.如图,在△ABC 中,D 是BC 边上一点,E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于点F ,且AF=BD ,连接BF . (1)求证:D 是BC 的中点; (2)如果AB=AC ,试判断四边形AFBD 的形状,并证明你的结论.FE D CB A23.计算:(1)已知9-x 与2)62(+-x y 互为相反数,求22y x +的平方根.(2)已知433+-+-=x x y ,求xy y y x y 3168232-++--的值.24.如图,在□ ABCD 中,对角线BD ⊥AB ,G 为BD 延长线上一点且△CBG 为等边三角形,∠BCD 、∠ABD 的角平分线相交于点E ,连接CE 交BD 于点F ,连接GE . (1)若CG 的长为8,求□ ABCD 的面积; (2)求证:CE=BE+GE .G F ED CBANM图2OF ED C BA五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.25.已知,矩形ABCD 中,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O . (1)如图1,连接AF 、CE .求证:四边形AFCE 为菱形.(2)若AB=4cm ,∠ACB=30°,如图2,垂直于BC 的直线l 从线段CD 所在的位置出发,沿直线AD 的方向向左以每秒1 cm 的速度匀速运动(直线l 到达A 点时停止运动),运动过程中,直线l 交折线AEC 于点M ,交折线AFC 于点N ;设运动时间为t 秒,△CMN 的面积为y 平方厘米,求y 与t 的关系式.图1OF EDCBA备用图O F EDCBA26.已知∠GOH=90°,A 、C 分别是OG 、OH 上的点,且OA=OC=4,以OA 为边长作正方形OABC . (1)E 是边OC 上一点,作∠AEF=90°使EF 交正方形的外角平分线CF 于点F (如图1),求证:EF=AE .(2)现将正方形OABC 绕O 点顺时针旋转,当A 点第一次落在∠GOH 的角平分线OP 上时停止旋转;旋转过程中,AB 边交OP 于点M ,BC 边交OH 于点N (如图2), ①旋转过程中,当MN 和AC 平行时,求正方形OABC 旋转的度数;②设△MBN 的周长为p ,在正方形OABC 的旋转过程中,p 值是否有变化?请证明你的结论.HGFB CEOAPN MHGBCOA备用图PNMHGBCOA图1 图2八年级上期半期考试数 学 答 案一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将每小题的答案直接填在下面的表格中.二、填空题:(本大题6个小题,每小题4分,共24分),请将每小题的正确答案填在下列三、解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.17.解:原式=2-1+4-(-1)-2 ……4分 =4 ……5分 18.解:∵DE//AC DF//AB∴四边形AEDF 为平行四边形∴AE =DF ……2分 ∵AB =AC∴C B ∠=∠ ∵DE//AC ∴∠1=∠C∴EB =DE ……5分 ∴DE+DF =AE+BE =AB =10cm ……6分s19.20.解:对D 作DE//AB,交BC 于点E ……1分∵AD//BE ∴DE//AB∴四边形ABED 为平行四边形 ∴AD =BE =10 AB =DE∴CE =BC -BE =18-10=8 ……3分在梯形ABCD 中AB =CD ∴∠B =∠C =600∴DE =EC =DC =8 ∴AB =DC =8∴C 梯ABCD =AB+BC+CD+AD=8+10+8+18=44……6分四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤. 21.化简:(1(231-=……4分=331-……4分=……5分=5 ……5分22.证明:(1)∵AF//BC∴∠1=∠2∵E 是AD 的中点 ∴AE =DE在∆AEF 和∆DEC 中1234AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩AEF DEC ∴∆≅∆ ……3分∴AF =CD∵AF =BD ∴BD =CD即D 是BC 中点 ……5分 四边形AFBD 为矩形,理由如下: (2)∵AB =AC∵D 为BC 中点 ∴AD ⊥BC∴∠5=900……7分F EDCBADCBAE∵AF//BCAF=BC∴四边形AFBD为平行四边形……9分∵∠5=900∴四边形AFBD为矩形……10分232y-2x+6)互为相反数20=(y-2x+6)20,(26)0y x≥-+≥20,(26)0y x=-+=∴90926012x xy x y-==⎧⎧⎨⎨-+==⎩⎩解得…….3分∴x2+y2=92+122=225∴==即:x2+y2的平方根为15±……5分(2)解:∵3030 30xxx-≥⎧∴-=⎨-≥⎩∴x=3, y=4 ……2分当x=3,y=4时2468y x-=-=-……5分24.解:(1)∵为正三角形∴CG=CB=BG=8∵在□ABCD中,CD//AB BD⊥AB∴BD⊥CD,∴∠1=900∵CG=CB∴CD为∆CBG中线0011603022DCB GCB∠==⨯=∴GD=BD=21BD=4 (3)分在Rt∆CDG中,CD==4分∴S□ABCD=CD•BD=4=……5分GFEDCBAM(2)在CE 上截取EM =BE ,连接BM ……6分∵CE 平分DCB ∠∴00112301522DCB ∠=∠=⨯= ∵BE 平分ABD ∠∴00113904522ABD ∠=∠=⨯=在∆CBE 中,004180260EBC ∠=-∠-∠= ……7分 ∵BE =EM∴∆EBM 为等边∆ ∴BE =BM35∠=∠在∆BEG 和∆BMC 中35BE BM BG BC =⎧⎪∠=∠⎨⎪=⎩∴∆BEG ≅和∆BMC 中 ……9分 ∴EG =CM∴EG+BE =EM+CM即CE =EG+BE ……10分 五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤. 25.证明:(1)在矩形ABCD 中,AD//BC ∴21∠=∠∵EF 为AC 的垂直平分线 ∴AE =EC ,AO =OC 在∆AOE 和∆COF 中1234AO OC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴∆AOE ≅∆COF 中 ……2分 ∴AE =CF∴AD//BC∴四边形AFCE 为平行四边形 ∵AE =EC∴四边形AFCE 为菱形 ……4分 (2)∵AB =4,0302=∠∴在矩形ABCD 中,∠FCE =∠FAE =2∠2=600在矩形ABCD 中,∠BAD =900,∠B =900图1OF ED CBANM图2OF EDCBA∴∠5=∠BAD-∠FAE =300在Rt ∆ABF 中,AF 2-BF 2=AB 23BF 2=16BF=3AF=CF=3∴当03t <≤ 时 y=12CN MN •=2122t •=……6分t <≤ 114222y CN MN t t =•=•= ……8分t <≤ 12y MN CG =•1(12)2t =•262t t =-+……10分 26.证明:(1)在OA 上取一点G ,使OG =OE ……1分在正方形ABCO 中,OA =OC ,∠O =900∵OG =OE ,∴∠1=450∴OA-OG =OC-OE , ∴∠2=1800-∠1=1350∴AG =EC∵CF 平分∠BCH∴∠3=450∴∠ECF =1800-∠3=1350GF BA 图1OF EDCBAMN图1OF EDCBAMNG M∴∠2=∠ECF∵AE ⊥EF , ∴∠AEF =900∴∠AEO+∠5=900在Rt ∆AGE 和∆ECF 中⎪⎩⎪⎨⎧∠=∠=∠=∠ECF EC AG 254∴∆AGE ≌∆ECF∴AE =EF ……4分 (2)在正方形AOCB 中,AB =BC =OA =OC∠6=∠7=450 ∠OAB =∠OCB =900∵MN//AC∴∠6=∠8,∠7=∠9 ∴∠8=∠9 ∴BM =BN∴AB-BM =BC-BN ∴AM =CN在OAM ∆和OCN ∆中⎪⎩⎪⎨⎧=∠=∠=CN AM OCN OAM OA OC∴OAM ∆≌OCN ∆ ∴∠10=∠11 ∵OP 平分∠GOH∴∠12=450∴∠10+∠11=450∠11=22.50即旋转角为22.50……8分 (3)P 值无变化,理由如下延长BA 交OG 于点E 在AOE ∆和CON ∆中⎪⎩⎪⎨⎧∠=∠=∠=∠OCN EAO OCOA 31 ∴AOE ∆≌CON ∆ ∴OE =ON在EOM ∆和NOM ∆中⎪⎩⎪⎨⎧=∠=∠=OM OM MON EOM ON OE PNMHGBCOA备用图PNMHGBC OA图2E∴EOM ∆≌NOM ∆中 ∴ME =MN∴P =MB+BN+MN =MB+AM+BN+CN=AB+BC =8 ……12分。

四川成都2018-2019学度初二上半期重点数学试题含解析

四川成都2018-2019学度初二上半期重点数学试题含解析

四川成都2018-2019学度初二上半期重点数学试题含解析八年级数学A 卷〔共100分〕一、选择题〔每题3分,共30分〕1、以下实数中,无理数是()A 、31B 、16 CD2、以下各式正确旳选项是()A、3+= B3= C 、532=+ D2=±3旳值在〔〕A 、2到3之间B 、3到4之间C 、4到5之间D 、5到6之间 4、如图,点A 〔﹣2,1〕到y 轴旳距离为〔〕A 、﹣2B 、1C 、2D 、55、在平面直角坐标系中,点A 坐标为〔4,5〕,点A 向左平移5个单位长度到点A 1,那么点A 1旳坐标是〔〕A 、〔-1,5〕B 、〔0,5〕C 、〔9,5〕D 、〔-1,0〕6、点A 〔3,2〕,AC ⊥x 轴,垂足为C ,那么C 点旳坐标为〔〕A 、〔0,0〕B 、〔0,2〕C 、〔3,0〕D 、〔0,3〕7、点A (-3,y 1)和B (-2,y 2)都在直线y =121--x 上,那么y 1,y 2旳大小关系是〔〕 A 、y 1>y 2B 、y 1<y 2C 、y 1=y 2D 、大小不确定8、如图,直角三角形三边向外作正方形,字母A 所代表旳正方形旳面积为()A 、4B 、8C 、16D 、649、如图,以数轴旳单位长线段为边作一个正方形,以数轴旳原点为旋转中心,将过原点旳对角线顺时针旋转,使对角线旳另一端点落在数轴正半轴旳点A 处,那么点A 表示旳数是〔〕A 、211B 、2C 、3D 、1.410、满足以下条件旳△ABC ,不是直角三角形旳是〔〕A 、∠A ∶∠B ∶∠C=5∶12∶13 B 、a ∶b ∶c =3∶4∶5C 、∠C=∠A -∠BD 、b 2=a 2-c 24题图 8题图二、填空题〔每题4分,共16分〕11、比较大小:﹏﹏﹏﹏﹏﹏;64旳平方根是、12、使式子2+x 有意义旳x 旳取值范围是、13、4a +1旳算术平方根是3,那么a -10旳立方根是﹏﹏﹏﹏﹏﹏、;14、如下图,圆柱形玻璃容器,高8cm ,底面周长为30cm ,在外侧下底旳点A处有一只蚂蚁,与蚂蚁相对旳圆柱形容器旳上口外侧旳点B 处有食物,蚂蚁要吃到食物所走旳最短路线长度是cm 、三、解答题〔共22分〕15、计算〔每题4分,共12分〕 (1)2328-+(2)423250-+(3)21)1+-16、〔每题5分,共10分〕〔1〕y y y =+12,而y 1与x +1成正比例,y 2与x 2成正比例,同时x =1时,2=y ;x =0时,2=y ,求y 与x 旳函数关系式、 〔2〕如图,直线32+=x y 与x 轴相交于点A ,与y 轴相交于点B.⑴求A 、B 两点旳坐标;⑵过B 点作直线BP 与x 轴相交于P ,且使AP=2OA ,求ΔBOP 旳面积.四、解答题:(共32分〕17、〔8分〕在平面直角坐标系中,每个小正方形网格旳边长为单位1,格点三角形〔顶点是网格线旳交点旳三角形〕ABC 如下图.〔1〕请写出点A ,C 旳坐标;〔2〕请作出三角形ABC 关于y 轴对称旳三角形A 1B 1C 1;〔3〕求△ABC 中AB 边上旳高、18、〔6分〕一个正数旳两个平方根分别是3x -2和5x +6,求那个数、19、〔8分〕b a ,2690b b -+=,〔1〕求b a ,旳值;〔2〕假设b a ,为△ABC旳两边,第三边c =,求△ABC 旳面积、20.〔10分〕如图,将矩形纸片ABCD 中,AB =6,BC =9,沿EF 折叠,使点B 落在DC 边上点P 处,点A 落在点Q 处,AD 与PQ 相交于点H 、〔1〕〔3分〕如图1,当点P 为边DC 旳中点时,求EC 旳长;〔2〕〔5分〕如图2,当∠CPE =30°,求EC 、AF 旳长;〔3〕〔2分〕如图2,在〔2〕条件下,求四边形EPHF 旳值、14题图B卷一、填空题〔每题4分,共20分〕21、假设将等腰直角三角形AOB按如下图放置,斜边OB与x轴重合,OB=4,那么点A关于原点对称旳点旳坐标为、22、在三角形纸片ABC中,∠ABC=90°,AB=9,BC=12。

八年级数学上册半期试卷(附答案和解释)

八年级数学上册半期试卷(附答案和解释)

2019年八年级数学上册半期试卷(附答案和解释)距离期中考试越来越近了,半学期即将结束,各位同学们都进入了紧张的复习阶段,对于初二学习的复习,在背诵一些课本知识点的同时还需要做一些练习题,一起来看一下这篇2019年八年级数学上册半期试卷吧!一、选择题(每小题3分,共30分)1.(2019秋阳泉校级期中)下列图案是轴对称图形的有( )A.(1)(3)B.(1)(2)C.(2)(4)D.(2)(3)考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:(1)不是轴对称图形,(2)是轴对称图形,(3)是轴对称图形,(4)不是轴对称图形.2.(2019春东阳市期末)平面内点A(﹣1,2)和点B(﹣1,6)的对称轴是( )A.x轴B.y轴C.直线y=4D.直线x=﹣1考点:坐标与图形变化-对称.分析:观察两坐标的特点,发现横坐标相同,所以对称轴为平行与x轴的直线,即y=纵坐标的平均数.解答:解:∵点A(﹣1,2)和点B(﹣1,6)对称,3.(2019秋博野县期末)下列各组图形中,是全等形的是( )A.两个含60角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形考点:全等图形.分析:综合运用判定方法判断.做题时根据已知条件,结合全等的判定方法逐一验证.解答:解:A、两个含60角的直角三角形,缺少对应边相等,所以不是全等形;B、腰对应相等的两个等腰直角三角形,符合AAS或ASA,或SAS,是全等形;C、边长为3和4的两个等腰三角形有可能是3,3,4或4,4,3不一定全等对应关系不明确不一定全等;D、一个钝角相等的两个等腰三角形.缺少对应边相等,不是全等形.4.(2019秋昆山市校级期末)已知等腰三角形的一个外角等于100,则它的顶角是( )A.80B.20C.80或20D.不能确定考点:等腰三角形的性质.专题:分类讨论.分析:此外角可能是顶角的外角,也可能是底角的外角,需要分情况考虑,再结合三角形的内角和为180,可求出顶角的度数.解答:解:①若100是顶角的外角,则顶角=180﹣100=80 ②若100是底角的外角,则底角=180﹣100=80,那么顶角=180﹣280=20.5.(2019泰山区模拟)已知,Rt△ABC中,C=90,AD平分BAC 交BC于D,若BC=32,且BD:CD=9:7,则D到AB的距离为( )A.18B.16C.14D.12考点:角平分线的性质.分析:首先由线段的比求得CD=16,然后利用角平分线的性质可得D到边AB的距离等于CD的长.解答:解:∵BC=32,BD:DC=9:76.(2019秋广水市校级期中)一个多边形内角和是1080,则这个多边形的对角线条数为( )A.26B.24C.22D.20考点:多边形内角与外角;多边形的对角线.分析:先根据多边形的内角和公式求出边数,然后根据对角线的条数的公式进行计算即可求解.解答:解:设多边形的边数是n,则(n﹣2)180=1080,7.(2019襄阳)以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三角形的个数是( )A.1个B.2个C.3个D.4个考点:三角形三边关系.分析:从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.解答:解:首先可以组合为13,10,5;13,10,7;13,5,7;10,5,7.再根据三角形的三边关系,发现其中的13,5,7不符合,则可以画出的三角形有3个.8.(2019秋天津期末)如图,A=15,AB=BC=CD=DE=EF,则DEF 等于( )A.90B.75C.70D.60考点:等腰三角形的性质;三角形内角和定理;三角形的外角性质.分析:根据已知条件,利用等腰三角形的性质及三角形的内角和外角之间的关系进行计算.解答:解:∵AB=BC=CD=DE=EF,A=15,BCA=A=15,CBD=BDC=BCA+A=15+15=30,BCD=180﹣(CBD+BDC)=180﹣60=120,ECD=CED=180﹣BCD﹣BCA=180﹣120﹣15=45,CDE=180﹣(ECD+CED)=180﹣90=90,EDF=EFD=180﹣CDE﹣BDC=180﹣90﹣30=60,(1)三角形的外角等于与它不相邻的两个内角和;(2)三角形的内角和是180度.求角的度数常常要用到三角形的内角和是180这一隐含的条件.9.(2019秋曲阜市期末)如图,DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为( )厘米.A.16B.28C.26D.18考点:线段垂直平分线的性质.专题:计算题.分析:利用线段垂直平分线的性质得AE=CE,再等量代换即可求得三角形的周长.解答:解:∵DE是△ABC中AC边的垂直平分线10.(2019张家界)把一个正方形三次对折后沿虚线剪下,如图所示,则所得的图形是( )A. B. C. D.考点:剪纸问题.专题:操作型.分析:把一个正方形的纸片向上对折,向右对折,向右下方对折,从上部剪去一个等腰直角三角形,展开,看得到的图形为选项中的哪个即可.解答:解:从折叠的图形中剪去8个等腰直角三角形,易得将从正方形纸片中剪去4个小正方形,故选C.二、填空题(每题3分,共24分)11.(2019秋渝北区期末)从商场试衣镜中看到某件名牌服装标签上的后5位编码是:则该编码实际上是 BA629 .考点:镜面对称.专题:操作型.分析:根据镜面对称的性质,在平面镜中的像与现实中的事物恰好左右颠倒,且关于镜面对称,分析可得答案.解答:解:根据在平面镜中的像与现实中的事物恰好左右颠倒,12.(2019春泰山区期末)等腰三角形一腰上的高与另一腰的夹角为30,则它的顶角为 60或120 .考点:等腰三角形的性质.专题:计算题;分类讨论.分析:等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.解答:解:当高在三角形内部时,顶角是12013.(2019秋阳泉校级期中)在平面直角坐标系内点P(﹣3,2a+b)与点Q(a﹣b,﹣1)关于y轴对称,则a+b的值为 .考点:关于x轴、y轴对称的点的坐标.分析:根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得,解出a、b的值,进而可得a+b的值.解答:解:∵点P(﹣3,2a+b)与点Q(a﹣b,﹣1)关于y轴对称,14.(2019秋兴化市校级期末)已知等腰三角形的两边长分别为4cm和7cm,则这个三角形的周长为 15cm或18cm .考点:等腰三角形的性质.分析:根据等腰三角形的性质,分两种情况:①当腰长为4cm 时,②当腰长为7cm时,解答出即可.解答:解:根据题意,①当腰长为4cm时,周长=4+4+7=15(cm);15.(2019春金台区期末)如图,△ABC中,A=40,B=72,CE 平分ACB,CDAB于D,DFCE,则CDF= 74 度.考点:三角形内角和定理.分析:利用三角形的内角和外角之间的关系计算.解答:解:∵A=40,B=72,ACB=68,∵CE平分ACB,CDAB于D,BCE=34,BCD=90﹣72=18,16.(2019绵阳)如图,在△ABC中,BC=5cm,BP、CP分别是ABC和ACB的角平分线,且PD∥AB,PE∥AC,则△PDE的周长是 5 cm.考点:等腰三角形的判定与性质;平行线的性质.分析:分别利用角平分线的性质和平行线的判定,求得△DBP 和△ECP为等腰三角形,由等腰三角形的性质得BD=PD,CE=PE,那么△PDE的周长就转化为BC边的长,即为5cm. 解答:解:∵BP、CP分别是ABC和ACB的角平分线,ABP=PBD,ACP=PCE,∵PD∥AB,PE∥AC,ABP=BPD,ACP=CPE,PBD=BPD,PCE=CPE,BD=PD,CE=PE,2019年八年级数学上册半期试卷就分享到这里,希望以上内容对您有所帮助!。

新版八年级上册数学半期考试试卷及答案

新版八年级上册数学半期考试试卷及答案

学校年学年度人教版新版第一学期八年级数学半期考试试卷年级班级姓名:_______________班级:_______________考号:_______________题号一、选择题二、填空题三、简答题总分得分一、选择题评卷人得分每题4分,共40分1、如果三角形的两边分别为3和5,那么这个三角形的周长可能是A.15 B.16 C.8 D.72、如图,已知△ABC是等腰直角三角形,∠A=90°,BD是∠ABC的平分线,DE⊥BC于E,若BC=10cm,则△DEC 的周长为A.8cm B.10cm C.12cm D.14cm3、如图所示,AD平分,,连结BD、CD并延长分别交AC、AB于F、E点,则此图中全等三角形的对数为A.2对 B.3对 C.4对 D.5对4、下列命题不正确的是A.全等三角形的对应高、对应中线、对应角的平分线相等B.有两个角和其中一个角的平分线对应相等的两个三角形全等C.有两条边和其中一边上的中线对应相等的两个三角形全等D.有两条边和其中一边上的高对应相等的两个三角形全等5、如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为A.15° B.20° C.25° D.30°6、如图,在△ABC中,∠ACB=9O°,AC=BC,BE⊥CE于D,DE=4cm,AD=6 cm,则BE的长是A.2cm B.1.5 cm C.1 cm D.3 cm7、如图,如果直线是多边形ABCDE的对称轴,其中∠A=120°,∠C=110°,那么∠CDE的度数等于A.40° B.60° C.70° D.80°8、如图,把图①中的经过一定的变换得到图②中的,如果图①中上点的坐标为,那么这个点在图②中的对应点的坐标为A .B .C .D .9、下列图形中,是轴对称图形但不是中心对称图形的是A.正三角形 B.菱形 C.直角梯形 D.正六边形10、如图,由4个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点;在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形不包含△ABC本身共有A.1个 B.2个 C.3个 D.4个二、填空题评卷人得分每题4分,共40分11、△ABC中,若∠A:∠B:∠C=1:2:7,则△ABC 的形状是 ;12、如图,AD是△ABC的中线,CE是△ACD的中线,S△ABE=3cm2,则S△ABC= ___________.13、如图:已知BE、CF是△ABC的角平分线,BE、CF相交于D,若∠A=500,则∠BDC等于__________;14、如图,在△ABC中,∠C=90°,AD平分∠CAB;DE⊥AB于E,若AC=8,则AE=________.15、如图所示,在△ABC中,∠A=90°,DE⊥BC,BD平分∠ABC,AD=6cm,BC=15cm,△BDC的面积为___________cm2.16、如图:AB⊥BC,CD⊥BC,垂足分别为B,C,AB=BC,E为BC的中点,且AE⊥BD于F,若CD=4cm,则AB的长度为__________;17、如图,将平行四边形ABCD折叠,使得折叠后点落在边上的处,点落在边上的处,是折痕,第17题若,则度.18、如图,在△ABC 中,DE 是AC 的垂直平分线,AE =3 cm,△ABD 的周长为13 cm,则△ABC 的周长为_________cm.19、一辆汽车的牌号在水中的倒影如图所示,则这辆汽车的牌号应为 ; 20、已知等腰△ABC,以底边BC 所在直线为x 轴,以底边BC 的垂直平分线为y 轴,建立直角坐标系,若B 点坐标为﹣2,0,则C 点坐标为三、简答题 共70分21、.如图,已知在△ABC 中,∠B 与∠C 的平分线交于点P .9分1当∠A =70°时,求∠BPC 的度数;2当∠A =112°时,求∠BPC 的度数;3当∠A =时,求∠BPC 的度数.22、如图所示,已知AE 与CE 分别是∠BAC,∠ACD 的平分线,且∠1+∠2=∠AEC .10分1请问:直线AE 与CE 互相垂直吗 若互相垂直,给予证明;若不互相垂直,说明理由;2试确定直线AB,CD 的位置关系并说明理由.23、10分如图,BE 、CF 分别是△ABC 的边AC 、AB 上的高,且BP=AC,CQ=AB .求证:1AP=AQ ;2AP ⊥AQ .24、10分如图,△ABC 的两条高AD 、BE 相交于点H ,且AD =BD ,试说明下列结论成立的理由;1∠DBH =∠DAC ;2△BDH ≌△ADC .25、如图,∠XOY 内有一点P ,试在射线OX 上找出一点M ,在射线OY 上找出一点N ,使PM +MN +NP 最短. 6分26、作图题不写作图步骤,保留作图痕迹6分. 已知:如图,求作点P ,使点P 到A 、B 两点的距离相等,且P 到∠MON 两边的距离也相等.27、在平面直角坐标系中,9分A -1,5,B -2,1,C -4,3 评卷人得分 第18题1在图中作出△ABC关于Y轴的对称图形△A1B1C12写出点A1,B1,C1的坐标3求出△ABC的面积28、如图,中,,垂直平分,为垂足交于.10分1若,求的度数2若,的周长是,求的周长.参考答案一、选择题1、A2、B3、C4、D5、D6、A7、D8、C9、C二、填空题11、钝角三角形或不等边三角形12、12cm213、115°14、815、4516、8cm17、5018、19 解析:∵DE是AC的垂直平分线,∴,.又∵△ABD的周长,∴,即,∴△ABC的周长cm.19、WI790620、2,0 .三、简答题21、解:1∵ BP和CP分别是∠B与∠C的平分线,∴∠1=∠2,∠3=∠4. ∴∠2+∠4=180°-∠A=90°-∠A,∴∠BPC =90°+∠A.∴当∠A=70°时,∠BPC =90°+35°=125°.2当∠A=112°时,∠BPC=90°+56°=146°.3当∠A=时,∠BPC=90°+.22、考点:平行线的判定;垂线;三角形内角和定理.1根据:∠1+∠2+∠AEC=180°和∠1+∠2=∠AEC推出∠AEC=90°,根据垂直定义推出即可;2根据角平分线得出2∠1=∠BAC,2∠2=∠DCA,求出∠BAC+∠DCA=2×90°=180°,根据平行线的判定推出即可.解答:1AE⊥CE,证明:∵∠1+∠2+∠AEC=180°,∠1+∠2=∠AEC,∴2∠AEC=180°,∴∠AEC=90°,∴AE⊥CE.2解:AB∥CD,理由是:∵AE与CE分别是∠BAC,∠ACD的平分线,∴2∠1=∠BAC,2∠2=∠DCA,∵∠1+∠2=∠AEC=90°,∴∠BAC+∠DCA=2×90°=180°,∴AB∥CD.点评:本题考查了平行线的性质,角平分线定义,垂直定义,三角形的内角和定理的应用,主要考查学生的推理能力.23、解答:证明:1∵AC⊥BE,AB⊥QC,∴∠BFP=∠CEP=90°,∴∠BAC+∠FCA=90°,∠ABP+∠BAC=90°∴∠FCA=∠ABP,在△QAC的△APB中,,∴△QAC≌△APBSAS,∴AP=AQ;2∵△QAC≌△APB,∴∠AQF=∠PAF,又AB⊥QC,∴∠QFA=90°,∴∠FQA+∠FAQ=90°,∴∠FQA+∠PAF=90°,即∠PAQ=90°,∴AP⊥AQ.24、解:1∵AD⊥BC,∴∠ADC=∠ADB=90°.∵BE⊥AC,∴∠BEA=∠BEC=90°.∴∠DBH+∠C=90°,∠DAC+∠C=90°,∴∠DBH=∠DAC.2∵∠DBH=∠DAC已证,∠BDH=∠CDA=90°已证,AD=BD已知,∴△BDH≌△ADC ASA.25、解:如图所示,分别以直线OX、OY为对称轴,作点P的对称点与, 连接,分别交OX于点M,交OY于点N,则PM+MN+NP最短.26、27、1图略………………………….4分2A11,5 B12,1 C14,3 …………………………..8分3S=5 …………………………..10分28、1∠EBC=27°226。

八年级上册期中考试数学试卷分析

八年级上册期中考试数学试卷分析

八年级上册期中考试数学试卷分析一、试卷特点今年期中数学试卷,结构稳定,考查内容、方法、设问方式都是考生熟悉和常见的。

整套试题考查全等三角形、轴对称和一次函数的内容,并考查考生各方面的数学能力。

本套试卷从整体上来看难易程度适中,但知识覆盖面比较全面,几乎包括所有的内容,每章的重点内容特别突出。

本次试卷题型多种多样,灵活多变。

但试卷稳定中有所提高,题目的书写量大,计算量大,且知识点较多。

二、试题分析和学生做题情况分析1、单项选择题:看似简单的问题,要做对却需要足够的细心,含盖的知识面广。

主要考察了学生对基础知识的运用,但很多学生都掌握不好,在做题时不能灵活的运用所学的知识解决问题,导致得分较低,以后要注意基础知识的掌握和灵活应用。

如第5,8题考查了函数的增减性和一次函数的解析式与图象的关系,学生出错率较高。

2、填空:第18题是结合实际生活确定函数解析式,学生做的不好。

第17题主要考察了实际生活中的轴对称,但学生在做题时方法不准确,导致失分。

3、解答题:第20题考察了学生运用待定系数法解决问题的能力,学生做的相对比较好,但是还是有一些学生在确定k、b上面出错。

第26(1)题学生审题不清,导致第1题失分。

第23题较难,考察了学生如何利用一次函数交点来解决实际生活中的相遇问题,难度较大。

在以后的教学中,要注意综合知识运用能力的培养,让学生养成良好的学习习惯。

试卷的较难试题基本集中在解答题的最后两题,尤其是第25题及第26题。

而在选择中也出现了有一点难度的试题,这种控制绝对难度、位置难度的方法保证了试卷的总体难度。

三、针对试卷中的情况,本备课组进行了认真的反思,打算在下阶段的工作中作以下改进:1、立足课本,加强基础知识的巩固,让学生在理解的基础上掌握概念的本质,并能灵活运用。

对基础相对较差的学生,耐心指导他们将知识内容落实到位,让其每节课都有一点收获,真正将补差工作落到实处。

重视对基础知识的精讲多练,让学生在动手的过程中巩固知识,提高能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

适应于成都市中考要求的八年级上册半期数学考试卷考试范围(1勾股章,2实数章,3方程组章,4位置坐标章,5一次函数章)A 卷100分一选择题(3分x10=30分)1、如图所示为一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②,…,依此类推,若正方形①的面积为64,则正方形⑤的面积为( )A2 B4 C8 D162、如图,在Rt ABC ∆中, 090ACB ∠=,AB=4.分别以AC,BC 为直径作半圆,面积分别记为12,S S ,则12S S +的值等于( )A 2πB 3πC 4πD 8π3、方程x +2y =5的非负整数解有 ( ) A.3组 B.2组 C.1 组 D.0组4、一质点P 从距原点1个单位的M 点处向原点方向跳动,第一次跳动到OM 的中点3M 处,第二次从3M 跳到3OM 的中点2M 处,第三次从点2M 跳到2OM 的中点1M 处,如此不断跳动下去,则第n 次跳动后,该质点到原点O 的距离为( )。

A.12nB.112n - C. 112n +⎛⎫⎪⎝⎭D.12n5、若定义新运算:(,)(+1f a b a =,-b), (,)(g m n m =,n-2) 则[(2,3)]f g -=( ) A(2,-3) B(2,-5) C (3,5) D(3,-5)6、今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间。

设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示。

下列说法错误的是()。

A: 小明中途休息用了20分钟B: 小明休息前爬山的平均速度为每分钟70米C: 小明在上述过程中所走的路程为6600米D: 小明休息前爬山的平均速度大于休息后爬山的平均速度7、一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数。

设个位数字为x,十位数字为y,所列方程组正确的是()。

A.818x yxy yx+=⎧⎨+=⎩B.8101810x yx y x y+=⎧⎨++=+⎩C.81018x yx y xy+=⎧⎨++=⎩D.810()x yx y xy+=⎧⎨+=⎩8、若方程组2371x yax by+=⎧⎨-=⎩与方程组7453ax byx y+=⎧⎨-=⎩有相同的解,则a,b的值为( )A、a=2, b=1B、a=2, b=3C、a=2.5, b=1D、a=4, b=-5,9、如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是()A(0,0) B(0,1) C(0,2) D(0,3)10、勾股定理是几何中的一个重要定理。

在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载。

如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理。

图2是由图1放入矩形内得到的,∠BAC=900 ,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为()。

A90 B100 C110 D121二填空题(4分x4=16分)11、已知2)0=,则24)的值是____________12、三个同学对问题“若方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,求方程组111223a x 2b y 5c 3a x 2b y 5c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是____________13、已知一次函数y=kx+b ,k 从2,﹣3中随机取一个值,b 从1,﹣1,﹣2中随机取一个值,求该一次函数的图象经过二、三、四象限的概率____________。

14、在平面直角坐标系中,已知点A(1,0)和点B(0,),点C 在坐标平面内.若以A,B,C 为顶点构成的三角形是等腰三角形,且底角为300,则满足条件的点C 有_______个. 三计算题解方程15、(每小题5分共10分)(1) 、计算:÷ (2) 、解方程①24(1)25x -=16解方程组(每小题5分共10分)① 275322344y x x y z x z =-⎧⎪++=⎨⎪-=⎩. ② 22(1)2(2)+x y x -=-⎧⎨-⎩(y-1)=5四解答题17、(8分)为了参加2015年中海国际铁人三项(游泳、自行车、长跑)系列赛业余组的比赛,李明针对自行车和长跑项目进行专项训练。

某次训练中,李明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟。

求自行车路段和长跑路段的长度。

18、(8分)一名考生步行前往考场,5分钟走了总路程的16,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图所示(假定总路程为1,出租车匀速),则他到达考场所花的时间比一直步行提前了多少分钟?19、(8分)(2014秋•泾阳县期末)如图,将长方形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD 于点E.(1)试判断△BDE的形状,并说明理由;(2)若AB=4,AD=8,求△BDE的面积.20、(10分)某文具商店销售功能相同的A 、B 两种品牌的计算器,购买2个A 品牌和3个B 品牌的计算器共需156元;购买3个A 品牌和1个B 品牌的计算器共需122元。

(1)求这两种品牌计算器的单价。

(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A 品牌计算器按原价的八折销售,B 品牌计算器5个以上超出部分按原价的七折销售,设购买x 个A 品牌的计算器需要1y 元,购买x 个B 品牌的计算器需要2y 元,分别求出1y 、2y 关于X 的函数关系式。

(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由。

B 组(50分)五填空题(每小题4分共20分) 21、己知224250a ba b +--+=,2+=____________22、在△ABC 中,BC=a ,AC=b ,AB=c ,设c 为最长边,当a 2+b 2=c 2时,△ABC 是直角三角形;当a 2+b 2≠c 2时,利用代数式a 2+b 2和c 2的大小关系,探究△ABC 的形状(按角分类).(1)当△ABC 三边分别为6、8、9时,△ABC 为 三角形;当△ABC 三边分别为6、8、11时,△ABC 为 三角形.(2)猜想,当a 2+b 2 c 2时,△ABC 为锐角三角形;当a 2+b 2 c 2时,△ABC 为钝角三角形. (3)判断当a=2,b=4时,△ABC 的形状,并求出对应的c 的取值范围.23、小丽想用一块面积为4002cm 的正方形纸片,沿着边的方向裁出一块面积为3002cm 的长方形纸片,使它的长宽之比为3:2.不知道能否裁出来 (填能、不能),理由是长要______________,24、已知实数x,y,z 满足9x y z =+++,则xyz 的值=______,25、,某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要。

两种印刷方式的费用y (元)与印刷份数x (份)之间的关系如图所示。

(1)填空:甲种收费的函数关系式是_____ ;乙种收费的函数关系式是_____ 。

(2)该校某年级每次需印制100---450(含100和450)份学案,① 当印制___份至___份时选_____较合算; ② 当印制___份至___份时选_____都一样; ③当印制___份至___份时选_____较合算;26、(9分)如图,点N 是△ABC 的边BC 延长线上的一点, ∠CAN=2∠BAC ,过点A 作AC 的垂线交CN 于点P. (1)若∠A PC=300, 求证:AB=AP; (2)若AP=8,BP=16,求AC 的长;(3)若点P 在BC 的延长线上运动, ∠APB 的平分线交AB 于点M.你认为∠AMP 的大小是否发生变化?若变化,请说明理由;若不变化,求出∠AMP 的大小.27、(10分)已知一次函数y=2x-4的图象与x 轴、y 轴分别相交于点A 、B ,点P 在该函数的图象上,P 到X 轴、Y 轴的距离分别为1d 、2d 。

(1)当P 为线段AB 的中点时,求1d +2d 的值。

(2)直接写出1d +2d 的范围,并求当1d +2d =3时点p 的坐标。

28、(11分)如图,已知一次函数y kx b =+的图象经过A(-2,-1),B(1,3)两点,并且交x 轴于点C ,交y 轴于点D. (1)求该一次函数的解析式;(2)求△AOB 的面积S ; (3)求证:∠AOB=1350.适应于成都市中考要求的八年级上册半期数学考试卷答案考试范围(1勾股章,2实数章,3方程组章,4位置坐标章,5一次函数章)A卷100分一选择题(3分x10=30分)1、B2、A3、A4、D5、C6、C7、B8、B9、D 10、C二填空题(4分x4=16分)11、3612、510xy=⎧⎨=⎩13、14、6三计算题解方程15、(每小题5分共10分) (1)、(2) 、16解方程组(每小题5分共10分)①②42xy=⎧⎨=⎩四解答题17、自行车路段长度为3千米,长跑路段长度为2千米1820分钟(有1263y x=-得6分)19、(8分)(2014秋•泾阳县期末)如图,将长方形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD 于点E.(1)试判断△BDE的形状,并说明理由;(2)若AB=4,AD=8,求△BDE的面积.解:(1)△BDE 是等腰三角形.由折叠可知,∠CBD=∠EBD ,∵AD ∥BC ,∴∠CBD=∠EDB ,∴∠EBD=∠ED B ,∴BE=DE ,即△BDE 是等腰三角形;(2)设DE=x ,则BE=x ,AE=8﹣x ,在Rt △ABE 中,由勾股定理得:A B 2+AE 2=BE 2即42+(8﹣x )2=x 2,解得:x=5, 所以S △BDE =DE×AB=×5×4=10.20、(10分)某文具商店销售功能相同的A 、B 两种品牌的计算器,购买2个A 品牌和3个B 品牌的计算器共需156元;购买3个A 品牌和1个B 品牌的计算器共需122元。

相关文档
最新文档