2020八年级上册数学试卷
2020年八年级上学期数学第一次月考试卷及答案

2020年八年级上学期第一次月考数学试卷4分,共40分)1.如图1,在△中,点是延长线上一点,=40°,=120°,则等于()A.60°B.70°C.80°D.90°2.如果一个三角形的两边长分别为2和4,则第三边长可能是( )A.2 B.4 C.6 D.83.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x + y =().A.7 B.8 C.10 D.114.用直尺和圆规作一个角等于已知角的示意图2如下,则说明∠A′O′B′=∠AOB的依据是()A.SSS B.SAS C.ASA D.AAS图1 图2 图3 图45.如图3,一副分别含有30°和45°角的两个直角三角板,拼成如图,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( )A.15° B.25° C.30° D.10°6.过一个多边形的一个顶点的所有对角线把多边形分成6个三角形,则这个多边形的边数为( )A.5 B.6 C.7 D.87.如图4,已知点A、D、C、F在同一直线上,且AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加的一个条件是( )A.∠A=∠EDF B.∠B=∠E C.∠BCA=∠F D.BC∥EF8.如图5,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为( )A.1 B.2 C.3 D.49.如图6,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分为三个三角形,则S△ABO︰S△BCO︰S△CAO等于()A.1︰1︰1 B.1︰2︰3 C.2︰3︰4 D.3︰4︰5图5 图6 图7 图810.如图7,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是( )A.4cm B.6cm C.8cm D.9cm二、填空题(每小题4分,共24分)11.如图8,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理_________________.12.如果一个等腰三角形有两边长分别为4和9,那么这个等腰三角形的周长为__________.13.小明不慎将一块三角形的玻璃摔碎成如图9所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带_____.图9 图10 图11 图1214.如图10为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=________.15.如图11,已知∠B=46°,△ABC的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=_______.16.如图12,有一个直角三角形ABC,∠C=90°,AC=10,BC=5,一条线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AX上运动,问P点运动到______________位置时,才能使△ABC≌△QPA.年八年级上学期数学第一次月考答题卡二、填空题(本题共24分,每小题4分)11._________________ , 12._______________ , 13.________________ ,14.__________________ , 15._______________ , 16.________________ .三、解答题(共86分)17.(8分)一个多边形的外角和是内角和的,求这个多边形的边数.18.(8分)张峰同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语.其具体信息汇集如下.如图,AB∥OH∥CD,OB=OD,AC,BD相交于点O,OD⊥CD,垂足为D,已知AB=20米请根据上述信息求标语CD的长度.19.(8分)如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).20.(10分)如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF; (2)指出图中所有平行的线段,并说明理由.21.(10分)如图,CD⊥AB于点D,BE⊥AC于点E,△ABE≌△ACD,∠C=42°,AB=9,AD=6,G为AB延长线上一点.(1)求∠EBG的度数.(2)求CE的长.22.(10分)如图,△ABC中,∠ACB=90°,DC=AE,AE是BC边上的中线,过点C作CF⊥AE,垂足为点F,过点B作BD⊥BC交CF的延长线于点D.(1)求证:AC=CB; (2)若AC=12 cm,求BD的长.23.(10分)如图所示,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB交AB于点E,点F在AC上,BD=DF.求证:(1)CF=EB; (2)AB=AF+2EB.24.(10分)两个大小不同的等腰直角三角形三角板,如图①所示放置,图②是由它抽象出的几何图像,点B,C,E在同一条直线上,连接DC.(1)请找出图②中的全等三角形,并给予证明.(说明:结论中不得含有未标识的字母)(2)证明:DC⊥BE. 25.(12分)已知Rt△ABC≌Rt△ADE,其中∠ACB=∠AED=90°.(1)将这两个三角形按图①方式摆放,使点E落在AB上,DE的延长线交BC于点F.求证:BF+EF=DE;(2)改变△ADE的位置,使DE交BC的延长线于点F(如图②),则(1)中的结论还成立吗?若成立,加以证明;若不成立,写出此时BF、EF与DE之间的等量关系,并说明理由.2020年八年级上学期第一次月考数学试卷(答案)4分,共40分)1.如图,在△中,点是延长线上一点,=40°,=120°,则等于(C)A.60°B.70°C.80°D.90°2.如果一个三角形的两边长分别为2和4,则第三边长可能是( B )A.2 B.4 C.6 D.83.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x + y =( D).A.7 B.8 C.10 D.114.用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是(A)A.SSS B.SAS C.ASA D.AAS图1 图2 图3 图45.如图3,一副分别含有30°和45°角的两个直角三角板,拼成如图,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( A )A.15° B.25° C.30° D.10°6.过一个多边形的一个顶点的所有对角线把多边形分成6个三角形,则这个多边形的边数为( D )A.5 B.6 C.7 D.87.如图4,已知点A、D、C、F在同一直线上,且AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加的一个条件是( B )A.∠A=∠EDF B.∠B=∠E C.∠BCA=∠F D.BC∥EF8.如图5,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为( B )A.1 B.2 C.3 D.49.如图5,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分为三个三角形,则S△ABO︰S△BCO︰S△CAO等于(C)A.1︰1︰1 B.1︰2︰3 C.2︰3︰4 D.3︰4︰5图5 图6 图7 图810.如图6,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是( C )A.4cm B.6cm C.8cm D.9cm二、填空题(每小题4分,共24分)11.如图7,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是___三角形的稳定性_______.12.如果一个等腰三角形有两边长分别为4和9,那么这个等腰三角形的周长为____22______.13.小明不慎将一块三角形的玻璃摔碎成如图8所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带__②___.图8 图9 图10 图1114.如图10为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=___135°_____.15.如图11,已知∠B=46°,△ABC的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=____67°___.16.如图,有一个直角三角形ABC,∠C=90°,AC=10,BC=5,一条线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AX上运动,问P点运动到__AC的中点_位置时,才能使△ABC≌△QPA.三、解答题(共86分)17.(8分)一个多边形的外角和是内角和的,求这个多边形的边数.解:设这个多边形的边数为n,依题意得:(n﹣2)180°=360°,解得n=9.答:这个多边形的边数为9.18.(8分)张峰同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语.其具体信息汇集如下.如图,AB∥OH∥CD,OB=OD,AC,BD相交于点O,OD⊥CD,垂足为D,已知AB=20米请根据上述信息求标语CD的长度.解:∵ AB∥CD,∴∠ABO=∠CDO.(1分)又∵ OD⊥CD,∴∠CDO=90°.∴∠ABO=90°,即OB⊥AB.(3分)在△ABO与△CDO中,∴△ABO≌△CDO.(6分)∴ CD=AB=20米.(8分)(也可利用“AAS”证△ABO≌△CDO,其他过程相同).解析:根据AB∥OH∥CD,利用平行线的性质可知∠ABO=∠CDO(或者∠BAO=∠DCO).由题意可证明OD,OB分别是平行线AB与OH以及OH与CD之间的距离,故OD=OB,根据“ASA”或者“AAS”证明△ABO ≌△CDO,所以CD=AB,进而求出CD的长.19.(8分)如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).解:(1)如图所示:(2)DE∥AC∵DE平分∠BDC,∴∠BDE=∠BDC,∵∠ACD=∠A,∠ACD+∠A=∠BDC,∴∠A=∠BDC,∴∠A=∠BDE,∴DE∥AC.20.(10分)如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.(1)证明:∵ BF=EC,∴ BF+FC=EC+CF,即BC=EF.(3分)又AB=DE,AC=DF,∴△ABC≌△DEF.(5分)(2)AB∥DE,AC∥DF.(7分)理由:∵△ABC≌△DEF,∴∠ABC=∠DEF,∠ACB=∠DFE,∴ AB∥DE,AC∥DF. (10分)21.(10分)如图,CD⊥AB于点D,BE⊥AC于点E,△ABE≌△ACD,∠C=42°,AB=9,AD=6,G为AB延长线上一点.(1)求∠EBG的度数.(2)求CE的长.解:(1)∆ABE≅∆ACD∴∠EBA=∠C=42°(3分)∠EBG=0180—∠EBA=138°.(5分)(2) ∆ABE≅∆ACD∴AC=AB=9 AE=AD=6 .(8分)∴EC=AC-AE=9-6=3 . (10分)22.(10分)如图,△ABC中,∠ACB=90°,DC=AE,AE是BC边上的中线,过点C作CF⊥AE,垂足为点F,过点B作BD⊥BC交CF的延长线于点D.(1)求证:AC=CB;(2)若AC=12 cm,求BD的长.(1)证明:∵AF⊥DC,∴∠ACF+∠FAC=90°,∵∠ACF+∠FCB=90°,∴∠EAC=∠FCB,在△DBC和△ECA,⎩⎪⎨⎪⎧∠DBC=∠ACB=90°∠DCB=∠CAEDC=AE,∴△DBC≌△ECA(AAS),∴BC=AC(2)解:∵E是AC的中点,∴EC =12BC =12AC=12×12 cm=6 cm,又∵△DBC≌△ECA,∴BD=CE,∴BD=6 cm23.(10分)如图所示,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB交AB于点E,点F在AC上,BD=DF.求证:(1)CF=EB; (2)AB=AF+2EB.证明:(1)∵ AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴ DE=DC.又∵ BD=DF,∴ Rt△CDF≌Rt△EDB(HL),∴ CF=EB.(2)∵ AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴△ADC≌△ADE,∴ AC=AE,∴ AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.24.(10分)两个大小不同的等腰直角三角形三角板,如图①所示放置,图②是由它抽象出的几何图像,点B,C,E在同一条直线上,连接DC.(1)请找出图②中的全等三角形,并给予证明.(说明:结论中不得含有未标识的字母)(2)证明:DC⊥BE.解:(1)△ABE≌△ACD,证明:∵AB=AC,AE=AD,∠BAC=∠EAD=90°,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD,∴△ABE≌△ACD(2)由△ABE≌△ACD得∠ACD=∠ABE=45°,又∵∠ACB=45°,∴∠BCD=∠ACB+∠ACD=90°,∴DC⊥BE 25.(12分)已知Rt△ABC≌Rt△ADE,其中∠ACB=∠AED=90°.(1)将这两个三角形按图①方式摆放,使点E落在AB上,DE的延长线交BC于点F.求证:BF+EF=DE;(2)改变△ADE的位置,使DE交BC的延长线于点F(如图②),则(1)中的结论还成立吗?若成立,加以证明;若不成立,写出此时BF、EF与DE之间的等量关系,并说明理由.证明:(1)如图①,连接AF,∵Rt△ABC≌Rt△ADE,∴AC=AE,BC=DE,∵∠ACB=∠AEF=90°,AF=AF,∴Rt△ACF≌Rt△AEF, (4分)∴CF=EF,∴BF+EF=BF+CF=BC,∴BF+EF=DE; (6分)(2)如图②,(1)中的结论不成立,有DE=BF﹣EF,(8分)理由是:连接AF,∵Rt△ABC≌Rt△ADE,∴AC=AE,BC=DE,∵∠E=∠ACF=90°,AF=AF,∴Rt△ACF≌Rt△AEF, (12分)∴CF=EF,∴DE=BC=BF﹣FC=BF﹣EF,即DE=BF﹣EF. (14分)。
2020年八年级数学上期中试卷附答案

2020年八年级数学上期中试卷附答案一、选择题1.已知一个等腰三角形一内角的度数为80o ,则这个等腰三角形顶角的度数为( ) A .100o B .80o C .50o 或80o D .20o 或80o2.下列分式中,最简分式是( )A .B .C .D . 3.如图,三角形ABC 中,D 为BC 上的一点,且S △ABD =S △ADC ,则AD 为( )A .高B .角平分线C .中线D .不能确定 4.要使分式13a +有意义,则a 的取值应满足( ) A .3a =- B .3a ≠- C .3a >- D .3a ≠5.将多项式241x +加上一个单项式后,使它能成为另一个整式的完全平方,下列添加单项式错误的是( )A .4xB .4x -4C .4x 4D .4x -6.如图,直线123l l l 、、表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A .一处B .二处C .三处D .四处7.如果(x +1)(2x +m )的乘积中不含x 的一次项,则m 的值为( )A .2B .-2C .0.5D .-0.58.已知x+y=5,xy=6,则x 2+y 2的值是( )A .1B .13C .17D .259.如图,有三种规格的卡片共9张,其中边长为a 的正方形卡片4张,边长为b 的正方形卡片1张,长,宽分别为a ,b 的长方形卡片4张.现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为( )A .2a+bB .4a+bC .a+2bD .a+3b10.如图所示,在平行四边形ABCD 中,分别以AB 、AD 为边作等边△ABE 和等边△ADF,分别连接CE ,CF 和EF ,则下列结论,一定成立的个数是( )①△CDF≌△EBC;②△CEF 是等边三角形;③∠CDF=∠EAF;④CE∥DFA .1B .2C .3D .4 11.2012201253()(2)135-⨯-=( ) A .1-B .1C .0D .1997 12.若x 2+mxy+4y 2是完全平方式,则常数m 的值为( )A .4B .﹣4C .±4 D .以上结果都不对 二、填空题13.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC 与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M ,绕中点M 转动上面的三角尺ABC ,使其直角顶点C 恰好落在三角尺A′B′C′的斜边A′B′上.当∠A =30°,AC =10时,两直角顶点C ,C′间的距离是_____.14.已知:x 2-8x-3=0,则(x-1)(x-3)(x-5)(x-7)的值是_______。
2020年新人教版八年级上册期中数学试卷含答案

八年级(上)期中数学试卷一、细心选一选(本大题有10个小题,每小题3分共30分)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.△ABC中BC边上的高作法正确的是()A.B.C.D.3.已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.124.下列判断中错误的是()A.有两角和其中一个角的对边对应相等的两个三角形全等B.有一边相等的两个等边三角形全等C.有两边和一角对应相等的两个三角形全等D.有两边和其中一边上的中线对应相等的两个三角形全等5.三角形中,若一个角等于其他两个角的差,则这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形6.如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.250°C.180°D.140°7.如图,O是△ABC的∠ABC,∠ACB的平分线的交点,OD∥AB交BC于D,OE∥AC交BC 于E,若△ODE的周长为10厘米,那么BC的长为()A.8cm B.9cm C.10cm D.11cm8.附加题:下图是由九个等边三角形组成的一个六边形,当最小的等边三角形边长为2cm时,这个六边形的周长为()cm.A.30 B.40 C.50 D.609.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,下列结论中正确的是()A.AB﹣AD>CB﹣CDB.AB﹣AD=CB﹣CDC.AB﹣AD<CB﹣CDD.AB﹣AD与CB﹣CD的大小关系不确定10.如图,已知四边形ABCD中,对角线BD平分∠ABC,∠ACB=72°,∠ABC=50°,并且∠BAD+∠CAD=180°,那么∠ADC的度数为()A.62°B.65°C.68°D.70°二、精心填一填(本大题有6个小题,每小题3分,共18分)11.若正n边形的每个内角都等于150°,则n=______,其内角和为______.12.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是______.13.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是______.14.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC 于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为______cm.15.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是______.16.△ABC为等边三角形,在平面内找一点P,使△PAB,△PBC,△PAC均为等腰三角形,则这样的点P的个数为______.三、认真解一解(共72分)17.如图,点F、C在BE上,BF=CE,AB=DE,∠B=∠E.求证:∠A=∠D.18.如图,在△ABC中,∠C=∠ABC=2∠A,BD⊥AC于D,求∠DBC的度数.19.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0),C(﹣1,0).(1)将△ABC向右平移5个单位,再向下平移4个单位得△A1B1C1,图中画出△A1B1C1,平移后点A的对应点A1的坐标是______.(2)将△ABC沿x轴翻折△A2BC,图中画出△A2BC,翻折后点A对应点A2坐标是______.(3)将△ABC向左平移2个单位,则△ABC扫过的面积为______.20.已知:如图,在△ABC中,点D是BC的中点,过点D作直线交AB,CA的延长线于点E,F.当BE=CF时,求证:AE=AF.21.如图,在平面直角坐标系中,点A在第二象限且纵坐标为1,点B在x轴的负半轴上,AB=AO,∠ABO=30°,直线MN经过原点O,点A关于直线MN的对称点A1在x轴的正半轴上,点B关于直线MN的对称点为B1.(1)求∠AOM的度数.(2)已知30°,60°,90°的三角形三边比为l::2,求线段AB1的长和B1的纵坐标.22.△ABC中,AC=BC,∠ACB=90°,点D,E分别在AB,BC上,且AD=BE,BD=AC.(1)如图1,连DE,求∠BDE的度数;(2)如图2,过E作EF⊥AB于F,求证:∠FED=∠CED;(3)在(2)的条件下,若BF=2,求CE的长.23.己知:在等腰三角形ABC中,AB=AC,AD⊥BC于点D,以AC为边作等边三角形ACE,直线BE交直线AD于点F,连接FC.(1)如图1,120°<∠BAC<180°,△ACE与△ABC在直线AC的异侧,且FC交AE于点M.①求证:∠FEA=∠FCA;②猜想线段FE,FA,FD之间的数量关系,并证明你的结论:(2)当60°<∠BAC<120°,且△ACE与△ABC在直线AC的同侧时,利用图2画出图形探究线段FE,FA,FD之间的数量关系,并直接写出你的结论.24.如图,线段AC∥x轴,点B在第四象限,AO平分∠BAC,AB交x轴于G,连OB,OC.(1)判断△AOG的形状,并证明;(2)如图1,若BO=CO且OG平分∠BOC,求证:OA⊥OB;(3)如图2,在(2)的条件下,点M为AO上的一点,且∠ACM=45°,若点B(1,﹣2),求M 的坐标.八年级(上)期中数学试卷参考答案与试题解析一、细心选一选(本大题有10个小题,每小题3分共30分)1.下列图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各个选项进行判断即可.【解答】解:A、是轴对称图形,A不合题意;B、不是轴对称图形,B符合题意;C、是轴对称图形,C不合题意;D、是轴对称图形,D不合题意;故选:B.【点评】本题考查的是轴对称图形的概念,掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形是解题的关键.2.△ABC中BC边上的高作法正确的是()A.B.C.D.【考点】三角形的角平分线、中线和高.【分析】根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答.【解答】解:为△ABC中BC边上的高的是D选项.故选D.【点评】本题考查了三角形的角平分线、中线、高线,熟记高线的定义是解题的关键.3.已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.12【考点】三角形三边关系.【专题】常规题型.【分析】根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.【解答】解:根据三角形的三边关系,得第三边大于:8﹣3=5,而小于:3+8=11.则此三角形的第三边可能是:10.故选:B.【点评】本题考查了三角形的三边关系,即三角形的第三边大于两边之差,而小于两边之和,此题基础题,比较简单.4.下列判断中错误的是()A.有两角和其中一个角的对边对应相等的两个三角形全等B.有一边相等的两个等边三角形全等C.有两边和一角对应相等的两个三角形全等D.有两边和其中一边上的中线对应相等的两个三角形全等【考点】全等三角形的判定.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据判定定理逐个判断即可.【解答】解:A、符合全等三角形的判定定理AAS,即能推出两三角形全等,故本选项错误;B、∵△ABC和△A′B′C′是等边三角形,∴AB=BC=AC,A′B′=B′C′=A′C′,∵AB=A′B′,∴AC=A′C′,BC=B′C′,即符合全等三角形的判定定理SSS,即能推出两三角形全等,故本选项错误;C、不符合全等三角形的判定定理,即不能推出两三角形全等,故本选项正确;D、如上图,∵AD、A′D′是三角形的中线,BC=B′C′,∴BD=B′D′,在△ABD和△A′B′D′中,,∴△ABD≌△A′B′D′(SSS),∴∠B=∠B′,在△ABC和△A′B′C′中,,∴△ABC≌△A′B′C′(SAS),故本选项错误;故选C.【点评】本题考查了全等三角形的判定定理和性质定理,等边三角形的性质的应用,主要考查学生对判定定理的理解能力,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应角相等.5.三角形中,若一个角等于其他两个角的差,则这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形【考点】三角形内角和定理.【分析】三角形三个内角之和是180°,三角形的一个角等于其它两个角的差,列出两个方程,即可求出答案.【解答】解:设三角形的三个角分别为:a°、b°、c°,则由题意得:,解得:a=90,故这个三角形是直角三角形.故选:B.【点评】本题主要考查了直角三角形的有关性质,可利用方程进行求解.关键是掌握三角形内角和为180°.6.如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.250°C.180°D.140°【考点】三角形内角和定理;多边形内角与外角.【分析】先利用三角形内角与外角的关系,得出∠1+∠2=∠C+(∠C+∠3+∠4),再根据三角形内角和定理即可得出结果.【解答】解:∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=∠C+(∠C+∠3+∠4)=70°+180°=250°.故选B.【点评】此题主要考查了三角形内角和定理及外角的性质,三角形内角和是180°;三角形的任一外角等于和它不相邻的两个内角之和.7.如图,O是△ABC的∠ABC,∠ACB的平分线的交点,OD∥AB交BC于D,OE∥AC交BC 于E,若△ODE的周长为10厘米,那么BC的长为()A.8cm B.9cm C.10cm D.11cm【考点】等腰三角形的判定与性质.【分析】根据角平分线的定义以及平行线的性质,可以证得:∠OBD=∠BOD,则依据等角对等边可以证得OD=BD,同理,OE=EC,即可证得BC=C△ODE从而求解.【解答】解:∵BO是∠ACB的平分线,∴∠ABO=∠OBD,∵OD∥AB,∴∠ABO=∠BOD,∴∠OBD=∠BOD,∴OD=BD,同理,OE=EC,BC=BD+DE+EC=OD+DE+OE=C△ODE=10cm.故选C.【点评】本题考查了平行线的性质,以及等腰三角形的判定方法,正确证得OD=BD是关键.8.附加题:下图是由九个等边三角形组成的一个六边形,当最小的等边三角形边长为2cm时,这个六边形的周长为()cm.A.30 B.40 C.50 D.60【考点】等边三角形的性质.【专题】压轴题;规律型.【分析】因为每个三角形都是等边的,从其中一个三角形入手,比右下角的以AB为边的三角形,设它的边长为x,则等边三角形的边长依次为x,x+x+2,x+2,x+2×2,x+2×2,x+3×2.所以六边形周长是2x+2(x+2)+2(x+2×2)+(x+3×2)=7 x+18,而最大的三角形的边长AF等于AB的2倍,所以可以求出x,则可求得周长.【解答】解:设AB=x,∴等边三角形的边长依次为x,x+x+2,x+2,x+2×2,x+2×2,x+3×2,∴六边形周长是2x+2(x+2)+2(x+2×2)+(x+3×2)=7 x+18,∵AF=2AB,即x+6=2x,∴x=6cm,∴周长为7 x+18=60cm.故选D【点评】结合等边三角形的性质,解一元一次方程,关键是要找出其中的等量关系.9.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,下列结论中正确的是()A.AB﹣AD>CB﹣CDB.AB﹣AD=CB﹣CDC.AB﹣AD<CB﹣CDD.AB﹣AD与CB﹣CD的大小关系不确定【考点】全等三角形的判定与性质;三角形三边关系.【专题】常规题型.【分析】在AB上截取AE=AD,则易得△AEC≌△ADC,则AE=AD,CE=CD,则AB﹣AD=BE,放在△BCE中,根据三边之间的关系解答即可.【解答】解:如图,在AB上截取AE=AD,连接CE.∵AC平分∠BAD,∴∠BAC=∠DAC,又AC是公共边,∴△AEC≌△ADC(SAS),∴AE=AD,CE=CD,∴AB﹣AD=AB﹣AE=BE,BC﹣CD=BC﹣CE,∵在△BCE中,BE>BC﹣CE,∴AB﹣AD>CB﹣CD.故选A.【点评】此题主要考查全等三角形的判定和性质以及三角形三边之间的关系,作辅助线是关键.10.如图,已知四边形ABCD中,对角线BD平分∠ABC,∠ACB=72°,∠ABC=50°,并且∠BAD+∠CAD=180°,那么∠ADC的度数为()A.62°B.65°C.68°D.70°【考点】多边形内角与外角.【分析】延长BA和BC,过D点作DE⊥BA于E点,过D点作DF⊥BC于F点,根据BD是∠ABC 的平分线可得出△BDE≌△BDF,故DE=DF,过D点作DG⊥AC于G点,可得出△ADE≌△ADG,△CDG≌△CDF,进而得出CD为∠ACF的平分线,得出∠DCA=54°,再根据∠ADC=180°﹣∠DAC ﹣∠DCA即可得出结论.【解答】解:延长BA和BC,过D点作DE⊥BA于E点,过D点作DF⊥BC于F点,∵BD是∠ABC的平分线在△BDE与△BDF中,,∴△BDE≌△BDF,∴DE=DF,又∵∠BAD+∠CAD=180°,∠BAD+∠EAD=180°,∴∠CAD=∠EAD,∴AD为∠EAC的平分线,过D点作DG⊥AC于G点,在RT△CDG与RT△CDF中,,∴RT△ADE≌RT△ADG,∴DE=DG,∴DG=DF.在RT△CDG与RT△CDF中,,∴RT△CDG≌RT△CDF,∴CD为∠ACF的平分线∠ACB=72°∴∠DCA=54°,△ABC中,∵∠ACB=72°,∠ABC=50°,∴∠BAC=180°﹣72°﹣50°=58°,∴∠DAC==61°,∴∠ADC=180°﹣∠DAC﹣∠DCA=180°﹣61°﹣54°=65°.故选:B.【点评】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°,全等三角形的判定与性质等知识是解答此题的关键.二、精心填一填(本大题有6个小题,每小题3分,共18分)11.若正n边形的每个内角都等于150°,则n=12,其内角和为1800°.【考点】多边形内角与外角.【分析】先根据多边形的内角和定理求出n,再根据多边形的内角和求出多边形的内角和即可.【解答】解:∵正n边形的每个内角都等于150°,∴=150°,解得,n=12,其内角和为(12﹣2)×180°=1800°.故答案为:12;1800°.【点评】本题考查的是多边形内角与外角的知识,掌握多边形内角和定理:n边形的内角和为:(n ﹣2)×180°是解题的关键.12.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是5.【考点】角平分线的性质.【分析】要求△ABD的面积,有AB=5,可为三角形的底,只求出底边上的高即可,利用角的平分线上的点到角的两边的距离相等可知△ABD的高就是CD的长度,所以高是2,则可求得面积.【解答】解:∵∠C=90°,AD平分∠BAC,∴点D到AB的距离=CD=2,∴△ABD的面积是5×2÷2=5.故答案为:5.【点评】本题主要考查了角平分线上的一点到两边的距离相等的性质.注意分析思路,培养自己的分析能力.13.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是50°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可.【解答】解:∵MN是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD,∵∠DBC=15°,∴∠ABC=∠A+15°,∵AB=AC,∴∠C=∠ABC=∠A+15°,∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为:50°.【点评】本题考查了线段垂直平分线上的点到两端点的距离相等的性质,等腰三角形的性质,熟记性质并用∠A表示出△ABC的另两个角,然后列出方程是解题的关键.14.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为8cm.【考点】轴对称-最短路线问题;线段垂直平分线的性质;等腰三角形的性质.【专题】探究型.【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=12,解得AD=6cm,∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8cm.故答案为:8.【点评】本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.15.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是()n﹣1×75°.【考点】等腰三角形的性质.【专题】规律型.【分析】先根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第n个三角形中以A n为顶点的内角度数.【解答】解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得∠EA3A2=()2×75°,∠FA4A3=()3×75°,∴第n个三角形中以A n为顶点的内角度数是()n﹣1×75°.故答案为:()n﹣1×75°.【点评】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律是解答此题的关键.16.△ABC为等边三角形,在平面内找一点P,使△PAB,△PBC,△PAC均为等腰三角形,则这样的点P的个数为10.【考点】等边三角形的性质;等腰三角形的判定.【分析】根据点P在等边△ABC内,而且△PBC、△PAB、△PAC均为等腰三角形,可知P点为等边△ABC的垂心;由此可得分别以三角形各顶点为圆心,边长为半径,交垂直平分线的交点就是满足要求的.【解答】解:如图:(1)点P在三角形内部时,点P是边AB、BC、CA的垂直平分线的交点,是三角形的外心;(2)分别以三角形各顶点为圆心,边长为半径,交垂直平分线的交点就是满足要求的.每条垂直平分线上得3个交点,再加三角形的垂心,一共10个.故答案为:10.【点评】本题考查了等边三角形的性质和等腰三角形的判定,熟练运用垂直平分线性质是解题的关键.三、认真解一解(共72分)17.如图,点F、C在BE上,BF=CE,AB=DE,∠B=∠E.求证:∠A=∠D.【考点】全等三角形的判定与性质.【专题】证明题.【分析】易证BC=EF,即可证明△ABC≌△DEF,可得∠A=∠D.即可解题.【解答】证明:∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠A=∠D.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证△ABC ≌△DEF是解题的关键.18.如图,在△ABC中,∠C=∠ABC=2∠A,BD⊥AC于D,求∠DBC的度数.【考点】三角形内角和定理.【分析】根据三角形的内角和定理与∠C=∠ABC=2∠A,即可求得△ABC三个内角的度数,再根据直角三角形的两个锐角互余求得∠DBC的度数.【解答】解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.∴∠C=∠ABC=2∠A=72°.∵BD⊥AC,∴∠DBC=90°﹣∠C=18°.【点评】本题考查的是等腰三角形的性质,解答此类题目时往往用到三角形的内角和是180°这一隐藏条件.19.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0),C(﹣1,0).(1)将△ABC向右平移5个单位,再向下平移4个单位得△A1B1C1,图中画出△A1B1C1,平移后点A的对应点A1的坐标是(3,﹣1).(2)将△ABC沿x轴翻折△A2BC,图中画出△A2BC,翻折后点A对应点A2坐标是(﹣2,﹣3).(3)将△ABC向左平移2个单位,则△ABC扫过的面积为13.5.【考点】作图-轴对称变换;作图-平移变换.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用关于x轴对称点的性质进而得出对应点位置;(3)利用平移的性质可得△ABC扫过的面积为△A′B′C′+平行四边形A′C′CA的面积.【解答】解:(1)如图所示:△A1B1C1,即为所求,平移后点A的对应点A1的坐标是:(3,﹣1);故答案为:(3,﹣1);(2)如图所示:△A2BC,即为所求,翻折后点A对应点A2坐标是:(﹣2,﹣3);故答案为:(﹣2,﹣3);(3)将△ABC向左平移2个单位,则△ABC扫过的面积为:S△A′B′C′+S平行四边形A′C′CA=×3×5+2×3=13.5.故答案为:13.5.【点评】此题主要考查了平移变换以及三角形面积求法,正确得出平移后对应点位置是解题关键.20.已知:如图,在△ABC中,点D是BC的中点,过点D作直线交AB,CA的延长线于点E,F.当BE=CF时,求证:AE=AF.【考点】全等三角形的判定与性质;平行线的性质;等腰三角形的判定与性质.【专题】证明题.【分析】过点B作BG∥FC,延长FD交BG于点G.由平行线的性质可得∠G=∠F,然后判定△BDG 和△CDF全等,根据全等三角形的性质和等量代换得到BE=BG,由等腰三角形的性质可得∠G=∠BEG,由对顶角相等及等量代换得出∠F=∠AEF,根据等腰三角形的判定得出AE=AF.【解答】证明:过点B作BG∥FC,延长FD交BG于点G.∴∠G=∠F.∵点D是BC的中点,∴BD=CD.在△BDG和△CDF中,∴△BDG≌△CDF(AAS).∴BG=CF.∵BE=CF,∴BE=BG.∴∠G=∠BEG.∵∠BEG=∠AEF,∴∠G=∠AEF.∴∠F=∠AEF.∴AE=AF.【点评】本题考查了全等三角形和等腰三角形的判定与性质,作出辅助线构造等腰三角形,并根据等腰三角形的性质得到三角形全等的条件是解题的基本思路.21.如图,在平面直角坐标系中,点A在第二象限且纵坐标为1,点B在x轴的负半轴上,AB=AO,∠ABO=30°,直线MN经过原点O,点A关于直线MN的对称点A1在x轴的正半轴上,点B关于直线MN的对称点为B1.(1)求∠AOM的度数.(2)已知30°,60°,90°的三角形三边比为l::2,求线段AB1的长和B1的纵坐标.【考点】一次函数综合题.【分析】(1)由点A与点A1关于直线MN对称,可得出∠AOM=∠A1OM,再由等腰三角形的性质可得出∠AOB=30°,通过角的计算即可得出结论;(2)过点A作AC⊥x轴于点C,过点B1作B1D⊥x轴于点D,通过解直角三角形以及等腰三角形的性质可得出点A、B点的坐标,再根据对称的性质即可得出点A1的坐标以及AB1=A1B,在Rt△OB1D中,利用特殊角的三角函数值即可得出B1D的长度,此题得解.【解答】解:(1)∵点A与点A1关于直线MN对称,∴∠AOM=∠A1OM,∵AB=AO,∠ABO=30°,∴∠AOB=30°,∵∠AOB+∠AOM+∠A1OM=180°,∴∠AOM=75°.(2)过点A作AC⊥x轴于点C,过点B1作B1D⊥x轴于点D,如图所示.∵∠AOC=30°,∠ACO=90°,AC=1,∴AO=2AC=2,OC=AC=,∵AB=AO,∴BO=2OC=2,∴点A(﹣,1),点B(﹣2,0).∵点A与点A1关于直线MN对称,∴OA1=OA=2,∴点A1(2,0),∴A1B=2﹣(﹣2)=2+2,∵点A关于直线MN的对称点A1,点B关于直线MN的对称点为B1,∴AB1=A1B=2+2,OB1=OB=2.在Rt△OB1D中,∠B1OD=∠AOB=30°,∴B1D=OB1=.故线段AB1的长为2+2,B1的纵坐标为.【点评】本题考查了对称的性质、等腰三角形的性质、特殊角的三角函数值以及角的计算,解题的关键是:(1)找出∠AOM=∠A1OM;(2)求出线段A1B和B1D的长度.本题属于中档题,难度不大,解决该题型题目时,根据轴对称的性质找出相等的边角关系是关键.22.△ABC中,AC=BC,∠ACB=90°,点D,E分别在AB,BC上,且AD=BE,BD=AC.(1)如图1,连DE,求∠BDE的度数;(2)如图2,过E作EF⊥AB于F,求证:∠FED=∠CED;(3)在(2)的条件下,若BF=2,求CE的长.【考点】三角形综合题.【分析】(1)根据等腰三角形的性质和SAS可证△BDE≌△ACD,再根据等腰直角三角形的性质即可得到∠BDE的度数;(2)先由EF⊥AB和∠BDE=22.5°,求出∠BED,再由(1)结论推导出∠BCD=∠DEC=67.5°即可.(3)由(1)知CD=DE,根据等腰三角形的性质和角的和差关系可得∠CDE=45°,过D作DM⊥CE 于M,根据角平分线的性质以及等量关系即可得到CE的长【解答】解:(2)∵AC=BC,∠ACB=90°,∴∠A=∠B=45°,∵AC=BC,BD=AC,∴BD=BC,∴∠BCD=∠BDC==67.5°,∴∠ACD=∠ACB﹣∠BCD=90°﹣67.5°=22.5°,在△ADC和△BED中,,∴△ADC≌△BED,∴∠BDE=∠ACD=22.5°,(2)由(1)有∠BDE=22.5°,∵EF⊥AB,∴∠BFE=∠DFE=90°,∴∠DEF=90°﹣∠BDE=67.5°,由(1)有,△ADC≌△BED,∴DC=DE,∴∠DEC=∠BCD=67.5°,∴∠DEF=∠DEC,即:∠FED=∠CED;(3)如图2,由(1)知CD=DE,∴∠DCE=∠DEC=67.5°,∴∠CDE=45°,过D作DM⊥CE于M,∴CM=ME=CE,∠CDM=∠EDM=∠BDE=22.5°,∵EM⊥DM,EF⊥DB,∴EF=ME,∵∠BFE=90°,∠B=45°,∴∠BEF=∠B=45°,∴EF=BF,∴CE=2ME=2EF=2BF=4.【点评】本题考查了等腰直角三角形的性质的运用,等腰三角形的性质的运用,全等三角形的判定及性质的运用,解本题的关键是△ADC≌△BED,解答时添加合适的辅助线是难点.23.己知:在等腰三角形ABC中,AB=AC,AD⊥BC于点D,以AC为边作等边三角形ACE,直线BE交直线AD于点F,连接FC.(1)如图1,120°<∠BAC<180°,△ACE与△ABC在直线AC的异侧,且FC交AE于点M.①求证:∠FEA=∠FCA;②猜想线段FE,FA,FD之间的数量关系,并证明你的结论:(2)当60°<∠BAC<120°,且△ACE与△ABC在直线AC的同侧时,利用图2画出图形探究线段FE,FA,FD之间的数量关系,并直接写出你的结论.【考点】三角形综合题.【分析】(1)①利用中垂线得到∠FBC=∠FCB,从而得到∠FBA=∠FCA,再由等边三角形的性质得到∠ABF=∠AEF即可;②先得到∠EFC=∠EAC=60°,从而判断出∠ACD+∠ACF=30°,进而得出∠FCK=∠ECF,判断出△CFE≌△CFK,即可;(2)先得到∠EFC=∠EAC=60°,从而判断出∠ACD﹣∠ACF=30°,进而得出∠FCK=∠ECF,判断出△CFE≌△CFK,即可;【解答】解:(1)①∵AD⊥BC,AB=AC,∴BD=DC,∴FB=FC,∴∠FBC=∠FCB,∴AB=AC,∴∠ABC=∠ACB,∵∠FBA=∠FCA,∵以AC为边作等边三角形ACE,∴AE=AC=AB,∴∠ABF=∠AEF,∴∠ACF=∠AEF,即:∠FEA=∠FCA;②结论:EF=FA+AD,∵以AC为边作等边三角形ACE,∴∠EAC=60°,由①有,∠ACF=∠AEF,∴∠EFC=∠EAC=60°,由①得,BF=CF,FD⊥BC,∴∠BFD=∠CFD,∵∠BFD+∠CFD+∠EFC=180°,∴∠BFD=∠CFD==60°,∴∠FCD=90°﹣∠CFD=30°,∴∠ACD+∠ACF=30°,∴∠ECF=∠ECA﹣∠ACF=60°﹣∠ACF=60°﹣(30°﹣∠ACD)=30°+∠ACD,如图1,延长AD,在AD上截取AD=DK,连接CK,∵AD⊥BC,∴∠ACD=∠KCD,CA=CK∴∠FCK=∠FCD+∠KCD=∠ACF+∠ACD+∠KCD=30°+∠KCD=30°+∠ACD,∴∠FCK=∠ECF,∵AC=CE,AC=CK,∴CK=CE,在△CFE和△CFK中,,∴△CFE≌△CFK,∴FE=FK=FD+DK,∵AD=DK,∴FE=FD+AD;(2)结论:EF=FA+AD,如图2,∵以AC为边作等边三角形ACE,∴∠EAC=60°,同(2)①的方法有,∠ACF=∠AEF,∴∠EFC=∠EAC=60°,同(2)①方法得,BF=CF,FD⊥BC,∴∠BFD=∠CFD,∵∠BFD+∠CFD+∠EFC=180°,∴∠BFD=∠CFD==60°,∴∠FCD=90°﹣∠CFD=30°,∴∠ACD﹣∠ACF=30°,∴∠ECF=∠ECA+∠ACF=60°+∠ACF=60°+(∠ACD﹣30°)=30°+∠ACD,延长AD,在AD上截取AD=DK,连接CK,∵AD⊥BC,∴∠ACD=∠KCD,CA=CK∴∠FCK=∠FCD+∠KCD=∠ACD﹣∠ACF+∠KCD=30°+∠KCD=30°+∠ACD,∴∠FCK=∠ECF,∵AC=CE,AC=CK,∴CK=CE,在△CFE和△CFK中,,∴△CFE≌△CFK,∴FE=FK=FD+DK,∵AD=DK,∴FE=FD+AD;【点评】此题是三角形综合题,主要考查了等边三角形的性质,全等三角形的性质和判定,解本题的关键是结论∠ACD+∠ACF=30°的判定.作辅助线是解本题的难点.24.如图,线段AC∥x轴,点B在第四象限,AO平分∠BAC,AB交x轴于G,连OB,OC.(1)判断△AOG的形状,并证明;(2)如图1,若BO=CO且OG平分∠BOC,求证:OA⊥OB;(3)如图2,在(2)的条件下,点M为AO上的一点,且∠ACM=45°,若点B(1,﹣2),求M 的坐标.【考点】三角形综合题.【分析】(1)由角平分线得出∠CAO=∠BAO,由平行线得出∠CAO=∠AOG,即∠BAO=∠AOG,即可;(2)先判断出点F是BC中点,再用中位线得出AG=BG,从而判断出△AOB是直角三角形,即可;(3)先求出OG,从而求出AC,得出点A,C坐标,最后求出直线OA,CM的解析式,即可求出它们的交点坐标.【解答】解:(1)∵AO平分∠BAC,∴∠CAO=∠BAO,∵线段AC∥x轴,∴∠CAO=∠AOG,∴∠BAO=∠AOG,∴GO=GA,∴△AOG是等腰三角形;(2)如图1,连接BC,∵BO=CO且OG平分∠BOC,∴BF=CF,∵线段AC∥x轴,∴AG=BG,由(1)得OG=AG,∴OG=AB,∴△AOB是直角三角形,∴OA⊥OB,(3)如图2,连接BC,由(2)有,BF=CF,BC⊥OG,∵点B(1,﹣2),∴BF=2,OF=1,在Rt△BFG中,BF=2,BG=FG+1,根据勾股定理得,(FG+1)2=FG2+4,∴FG=,∵AC∥OG,AG=BG,∴AC=2FG=3,由(2)有,BF=CF,BC⊥OG,∵点B(1,﹣2),∴C(1,2),A(4,2),∴直线OA解析式为y=x①,延长CM交x轴于E,∵∠ACM=45°,∴∠CEO=45°,∴FE=FC=2,∴E(3,0),∵C(1,2),∴直线AE解析式为y=﹣x+3②,联立①②解得x=2,y=1,∴M(2,1).【点评】此题是三角形综合题,主要考查了角平分线的定义,平行线的性质,直角三角形的判定,待定系数法求直线解析式,解本题的关键是求出FG.。
2020年人教版数学八年级上册单元测试题及答案(全册)

人教版数学八年级上册第十一章达标测试卷3分,共30 分)(每题一、选择题1.下列长度的三条线段,能组成三角形的是( )A.3,7,2 B.4,9,6C.21,13,6 D.9,15,52.下列说法正确的是( )A.等腰三角形都是锐角三角形B.等腰三角形是等边三角形C.不存在既是钝角三角形又是等腰三角形的三角形D.三角形中至少有一个角不小于60°3.下面的图中能表示△ABC 的BC 边上的高的是( )4.如图,在△ABC 中,∠BAC=x,∠B=2x,∠C=3x,则∠BAD=( ) A.145°B.150°C.155°D.160°(第4题)(第6题)(第7题)5.等腰三角形的一边长等于4,另一边长等于10,则它的周长是( ) A.18 B.24 C.18或24 D.14 6.如图,在△ABC 中,∠C=90°,D,E 是AC 上两点,且AE=DE,BD 平分∠EBC,那么下列说法中不正确的是( )A.BE 是△ABD 的中线B.BD 是△BCE 的角平分线C.∠1=∠2=∠3 D.BC 是△ABE 的高7.小明把一副三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于( )A.180°B.210°C.360°D.270°8.一个多边形的内角和是外角和的 2 倍,则这个多边形的边数为( ) A.4 B.5 C.6 D.7(第9题)(第10题)9.如图,在△ABC 中,以点B 为圆心,以BA长为半径画弧交边BC 于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC 的度数是( )A.70°B.44°C.34°D.24°10.如图,过正五边形ABCDE 的顶点A 作直线l∥BE,则∠1 的度数为( ) A.30°B.36°C.38°D.45°3分,共30 分)二、填空题(每题11.在△ABC 中,∠A :∠B :∠C=2 :3 :4,则∠A 的度数为________.12.起重机的底座、输电线路的支架、自行车的斜支架等,都是采用三角形结构,这样做是利用了__________________.13.在△ABC 中,若AB=4,BC=5,则△ABC 的周长l 的取值范围是________________.14.如图,在Rt△ABC 中,∠ABC=90°,AB=12 cm,BC=5 cm,AC=13 cm,若BD 是AC 边上的高,则BD 的长为________cm.(第14题)(第15题)(第17题)15.如图,AD 是△ABC 的角平分线,BE 是△ABC 的高,∠BAC=40°,且∠ABC 与∠ACB 的度数之比为,则∠ADC=________,∠CBE=________.16.如果一个多边形的内角和为其外角和的 4 倍,那么从这个多边形的一个顶点________条对角线.出发共有17.如图,将三角板的直角顶点放在直尺的一边上,∠1=30°,∠2=135°,则∠3=________°.(第18 题) (第20 题)18.如图,∠1+∠2+∠3+∠4+∠5+∠6=________.19.已知a,b,c为△ABC 的三边长,则|a+b+c|-|a-b-c|-|a-b+c|-|a+b -c|=________.20.如图,D,E,F 分别是△ABC 的边AB,BC,AC 的中点,连接A E,BF,CD△BDG 的面积为S1,△CGF为6,设交于点G,AG GE=,△ABC 的面积S1+S2=________.为S2,则的面积题6分,23,24 题每题8 分,25,26题每题10分,27 三、解答题(21,22题每题12 分,共60 分)21.如图,∠ACD 是△ABC 的外角,CE 平分∠ACD,若∠A=60°,∠B=40°,求∠ECD 的度数.(第21 题)22.如图,B 处在A处的南偏西45°方向,C 处在A处的南偏东30°方向,C 处在B 处的北偏东60°方向,求∠ACB 的度数.(第22 题)23.如图.(1)在△ABC 中,BC 边上的高是________;(2)在△AEC 中,AE 边上的高是________;(3)若AB=CD=2 cm,AE=3 cm,求△AEC 的面积及C E 的长.(第23题)24.如图,六边形A BCDEF 的内角都相等,CF∥AB.(1)求∠FCD 的度数;(2)求证:A F∥CD.(第24题)25.如图,在△ABC 中,BD 是AC 边上的高,∠A=70°.(1)求∠ABD 的度数;(2)若CE 平分∠ACB 交BD 于点E,∠BEC=118°,求∠ABC 的度数.(第25题)26.已知等腰三角形的三边长分别为a,2a-1,5a-3,求这个等腰三角形的周长.27.已知∠MON=40°,OE 平分∠MON,点A,B,C 分别是射线O M,OE,ONO E 于点D.设∠OAC=x°.上的动点(A,B,C 不与点O 重合),连接A C 交射线(1)如图①,若AB∥ON,则①∠ABO 的度数是________;②当∠BAD=∠ABD 时,x=________;当∠BAD=∠BDA 时,x=________.(2)如图②,若AB⊥OM,则是否存在这样的x 的值,使得△ADB 中有两个相等的.角?若存在,求出x 的值;若不存在,说明理由(第27题)答案一、1.B 2.D 3.D4.B 点拨:在△ABC 中,∵∠B+∠C+∠BAC=180°,∠BAC=x,∠B=2x,∠C=3x,∴6x=180°,解得x=30°.∵∠BAD=∠B+∠C=5x,∴∠BAD=150°.故选B.5.B 6.C7.B 点拨:如图,∵∠α=∠1+∠D,∠β=∠4+∠F,∴∠α+∠β=∠1 +∠D+∠4+∠F=∠2+∠D+∠3+∠F=∠2+∠3+30°+90°=210°.故选B.(第7 题)8.C 点拨:由题意得这个多边形的内角和是360°×2=720°.设这个多边形的边数为n,根据题意得(n-2)×180°=720°,解得n=6.故选C.9.C 点拨:∵AB=BD,∠B=40°,∴∠ADB=70°.又∵∠C=36°,∴∠DAC =∠ADB-∠C=34°.故选C.10.B 点拨:∵五边形ABCDE 是正五边形,∴∠BAE=(5-2) ×180°÷5=108°,AB=AE.∴∠AEB=(180 °-108°) ÷2=36°.又∵l∥BE,∴∠1=∠AEB=36°.故选B.二、11.40°12.三角形的稳定性13.10<l<18 点拨:设△ABC 的AC边的长为x,则1<x<9,故△ABC 的周长l的取值范围是4+5+1<l<4+5+9,即10<l<18.60 14.13AB·BC点拨:由等面积法可知A B·BC=BD·AC,所以BD==AC12×5=136013(cm).15.80°;10°16.7 17.1518.360°点拨:如图,∵∠1+∠5=∠8,∠4+∠6=∠7,∠2+∠3+∠7 +∠8=360°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.(第18题)19.0 点拨:∵a,b,c 为△ABC 的三边长,∴a+b+c>0,a<b+c,a+c >b,a+b>c,∴|a+b+c|-|a-b-c|-|a-b+c|-|a+b-c|=(a+b+c)-(-a+b+c)-(a-b+c)-(a+b-c)=a+b+c+a-b-c-a+b-c-a-b+c=0.120.2 点拨:∵E 为BC 的中点,∴S△ABE=S△ACE=△ABC=3.∵A E=2S,△BGA 与△BEG 为同高三角形,∴S△BGA S△BEG=,∴S△BGA =2.又∵D 为AB 的中点,∴S1=12S△BG A=1.同理得S2=1.∴S1+S2=2.三、21.解:∵∠A=60°,∠B=40°,∴∠ACD=∠A+∠B=100°.∵CE 平分∠ACD,∴∠ECD=1∠ACD=50°. 222.解:∵AE∥BD,∴∠EAB=45°=∠DBA.∵∠DBC=60°,∴∠ABC=15°,∴∠ACB=180°-∠ABC-∠BAC=180°-15°-45°-30°=90°.23.解:(1)AB (2)CD (3)∵AE=3 cm,CD=2 cm,∴S△AEC=1 1 2AE·C D=×3×2212).∴S 2,又∵AB=2 cm,∴CE=3 cm.=3(cm 2CE·A B=3 cm△AEC=24.(1)解:∵六边形ABCDEF 的内角都相等,内角和为(6-2) ×180°=720°,∴∠B=∠A=∠BCD=720°÷6=120°.∵CF∥AB,∴∠B+∠BCF=180°,∴∠BCF=60°,∴∠FCD=∠BCD-∠BCF=60°.(2)证明:∵CF∥AB,∴∠A+∠AFC=180°,∴∠AFC=180°-120°=60°,∴∠AFC=∠FCD,∴AF∥CD.25.解:(1)在△ABC 中,∵BD 是AC 边上的高,∴∠ADB=∠BDC=90°.又∵∠A=70°,∴∠ABD=180°-∠ADB-∠A=20°.(2)∵∠BEC=∠BDC+∠DCE,∠BEC=118°,∠BDC=90°,∴∠DCE=28°.又∵CE 平分∠ACB,∴∠DCB=2∠DCE=56°,∴∠DBC=180°-∠BDC-∠DCB=34°,∴∠ABC=∠ABD+∠DBC=54°.2 2 1 1 26.解:当底边长为a 时,2a-1=5a-3,即a=,则三边长为,,,3 3 3 3不满足三角形三边关系,不能构成三角形;3 1 当底边长为2a-1 时,a=5a-3,即a=,则三边长为,4 2 3 3,,4 41 3 3满足三角形三边关系,能构成三角形,此时三角形的周长为++2 4 4=2;当底边长为5a-3 时,2a-1=a,即a=1,则三边长为2,1,1,不满足三角形三边关系,不能构成三角形.所以这个等腰三角形的周长为2.27.解:(1)①20°②120;60(2)①当点D 在线段O B 上时,若∠BAD=∠ABD,则x=20.若∠BAD=∠BDA,则x=35.若∠ADB=∠ABD,则x=50.②当点 D 在射线BE 上时,因为∠ABE=110°,且三角形的内角和为180°,所以只有∠BAD=∠BDA,此时x=125.综上可知,存在这样的x 的值,使得△ADB 中有两个相等的角,且x=20,35,50 或125.卷试第十二章达标测3分,共30 分)(每题一、选择题1.在下列每组图形中,是全等形的是( )2.如图所示,△ACE≌△DBF,AD=8,BC=2,则AC=( ) A.2 B.8 C.5 D.3(第2题)(第3题)(第4题)(第5题)3.如图,已知AC=DB,AB=DC,你认为证明△ABC≌△DCB 应该用() A.“边边边”B.“边角边”C.“角边角”D.“角角边”4.如图,在△ABC 中,∠B=∠C=50°,BD=CF,BE=CD,则∠EDF 的度数是( )A.40°B.50°C.60°D.30°5.如图,在△ABC 中,AB=AC,点E,F 是中线AD 上的两点,则图中可证明为全等三角形的有( )A.3 对B.4 对C.5 对D.6 对6.如图,点P 是∠AOB 平分线OC 上一点,PD⊥OB,垂足为D,若PD=2,则点P 到边OA 的距离是( )A.1 B.2 C. 3 D.4(第6题)(第8题)(第9题)(第10题)7.在△ABC 中,∠B=∠C,与△ABC 全等的△DEF 中有一个角是100°,那么在△ABC 中与100°角对应相等的角是( )A.∠A B.∠B C.∠C D.∠B 或∠C8.如图,AD 是△ABC 的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG 和△AED 的面积分别为27 和16,则△EDF 的面积为()A.11 B.5.5 C.7 D.3.59.如图,直线a,b,c 表示三条公路,现要建一个货物中转站,要求它到三条公有( )路的距离相等,则可供选择的地址A.一处B.两处C.三处D.四处10.如图所示,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则( ) A.∠1=∠EFD B.BE=EC C.BF=DF=CD D.FD∥BC (每题3分,共30 分)二、填空题11.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=________.(第11题)(第12题)(第13题)(第16题) 12.如图,CE⊥AB,DF⊥AB,垂足分别为E,F,若CE=DF ,AE=BF,则△ADF≌△BCE,根据是________.13.如图,点O 在△ABC 内,且到三边的距离相等.若∠A=60°,则∠BOC=________°.14.在△ABC 中,AB=4,AC=3,AD 是△ABC 的角平分线,则△ABD 与△ACD 的面积之比是________.15.已知AD 是△ABC 中BC 边上的中线,若A B=4,AC=6,则AD 的取值范围是________.16.如图,在Rt△ABC 中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,QA P=________两点分别在AC 和过点 A 且垂直于AC 的射线AO 上运动,当时,△ABC 和△PQA 全等.17.如图,AD=AE,BE=CD,∠1=∠2=110°,∠BAC=80°,则∠CAE 的度数是________.(第17 题) (第18 题) (第19 题) (第20 题) 18.如图,在△ABC 中,AB=AC,D 是BC 的中点,DE⊥AB 于点E,DF⊥AC 于点F,则图中的全等三角形共有________对.19.如图,在平面直角坐标系中,点 B 的坐标为(3,1),AB=OB,∠ABO=90°,则点A 的坐标是________.20.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S 是________.题8 分,25~27 题每题10 分,共三、解答题(21,22 题每题7 分,23,24 题每60 分)21.如图,AB∥CD.(1)用直尺和圆规作∠C 的平分线CP,CP 交AB于点E;(保留作图痕迹,不写作法)(2)在(1)中作出的线段CE 上取一点F,连接A F,要使△ACF≌△AEF,还需要添加一个什么条件?请你写出这个条件.(只要给出一种情况即可;图中不再增加字母和线段;不要求证明)(第21题)22.如图,点A,B,C 在同一条直线上,△ABD≌△EBC,AB=2 cm,BC=5 cm.(1)求DE 的长;(2)DB 与AC 垂直吗?为什么?(第22题)23.如图,点C 是AE 的中点,∠A=∠ECD,AB=CD,ED=4,求CB 的长度.(第23题)24.如图,四边形ABCD,BEFG 均为正方形,连接AG,CE.求证:(1) AG=CE;(2) AG⊥CE.(第24题)25.如图,A,B 两建筑物位于河的两岸,要测它们之间的距离,可以从 B 点出D作DE∥AB,使E,C,发在河岸上画一条射线BF,在BF 上截取BC=CD,过A 在同一直线上,则D E 的长就是A,B 之间的距离,请你说明道理.(第25题)26.如图,在△A BC 中,∠ACB=90°,AC=7 cm,BC=3 cm,CD 为斜边AB 上的高,点 E 从点B 出发沿直线BC 以2 cm/s 的速度运动,过点 E 作BC 的垂线交直线CD 于点F.(1)求证:∠A=∠BCD;(2)点E 运动多长时间,CF=AB?并说明理由.(第26题)27.在△ABC 中,AB=AC,点D 是线段C B 上的一动点(不与点B,C 重合),以AD 为一边在AD 的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图①,当点D 在线段C B 上,∠BAC=90°时,那么∠DCE=________°;(2)设∠BAC=α,∠DCE=β.C B 上,∠BAC≠90°时,请你探究α与β之间的数量关①如图②,当点 D 在线段;系,并证明你的结论,完整C B 的延长线上,∠BAC≠90°时,请将图③补充②如图③,当点 D 在线段并直接写出此时α与β之间的数量关系(不需证明).(第27题)。
2020--2021学年上学期人教版 八年级数学试题

2020-2021上学期人教版八年级数学期末试卷一.选择题(共12小题)1.在预防新冠疫情期间,到公共场所都要佩戴口罩,据了解口罩的规格有两种:儿童款(长14cm)和成人款(长17cm),其中超过标准长度的数量记为正数,不足的数量记为负数.质量监督局检查了四个药店的儿童口罩,结果如下,从长度的角度看,最接近标准的儿童口罩是()A.+0.09B.﹣0.21C.+0.15D.﹣0.062.若|a|=a,则a表示()A.正数B.负数C.非正数D.非负数3.已知方程x2﹣3x=0,下列说法正确的是()A.方程的根是x=3B.只有一个根x=0C.有两个根x1=0,x2=3D.有两个根x1=0,x2=﹣34.x、y、c是有理数,则下列判断错误的是()A.若x=y,则x+2c=y+2c B.若x=y,则a﹣cx=a﹣cyC.若x=y,则=D.若=,则x=y5.点P到x轴的距离是3,到y轴的距离是2,且点P在y轴的左侧,则点P的坐标是()A.(﹣2,3)或(﹣2,﹣3)B.(﹣2,3)C.(﹣3,2)或(﹣3,﹣2)D.(﹣3,2)6.如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2019个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是()A.(1,0)B.(0,1)C.(﹣1,1)D.(﹣1,﹣2)7.下列属于圆柱体的是()A.B.C.D.8.沿图中虚线旋转一周,能围成的几何体是()A.B.C.D.9.如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔,若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋10.下列说法:①已知△ABC中,AB=6,AC=8,则中线AD的取值范围是1≤AD≤7;②两边和一角对应相等的两个三角形全等;③如果两个三角形关于某直线成轴对称,那么它们是全等三角形;④一腰上的中线也是这条腰上的高的等腰三角形是等边三角形.其中正确的有()A.1个B.2个C.3D.4个11.某校为了解七年级14个班级学生吃零食的情况,下列做法中,比较合理的是()A.了解每一名学生吃零食情况B.了解每一名女生吃零食情况C.了解每一名男生吃零食情况D.每班各抽取7男7女,了解他们吃零食情况12.把25枚棋子放入右图的三角形内,那么一定有一个小三角形中至少放入()枚.A.6B.7C.8D.9二.填空题(共6小题)13.如果汽车向东行驶30千米记作+30千米,那么向西行驶20千米记作千米.14.若x=﹣1为方程x2﹣m=0的一个根,则m的值为.15.点M(﹣2,3)到x轴和y轴的距离之和是.16.个完全相同的圆锥形铁块,可以熔铸成一个与它们等底等高的圆柱.17.如图,在矩形ABCD中,AB=8,BC=4,一发光电子开始置于AB边的点P处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着PR方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于45°,当发光电子与矩形的边碰撞2020次后,它与AB边的碰撞次数是.18.小芸为了解同学们最感兴趣的在线学习方式,设计了如下的调查问题(选项不完整):你最感兴趣的一种在线学习方式是()(单选)A.B.C.D.其他她准备从“①在线听课,②在线讨论,③在线学习2~3小时,④用手机在线学习,⑤在线阅读”中选取三个作为该问题的备选答案,合理的选取是.(填序号)三.解答题(共9小题)19.在抗洪抢险过程中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天航行路程记录如下:(单位:千米)15,﹣7,18,9,﹣3,6,﹣8(1)通过计算说明B地在A地的什么位置;(2)已知冲锋舟每千米耗油0.5升,油箱容量为40升,若冲锋舟在救援前将油箱加满,请问该冲锋舟在救援过程中是否还需要补充油?20.把下列各数填在相应的括号内:﹣,0,﹣30,,+20,﹣2.6,π,0.,0.3030030003…(每两个3之间逐次增加一个0).正有理数集合:{…};负数集合:{…};整数集合:{…}.21.阅读理解题:下面是小明将等式x﹣4=3x﹣4进行变形的过程:x﹣4+4=3x﹣4+4,①x=3x,②1=3.③(1)小明①的依据是.(2)小明出错的步骤是,错误的原因是.(3)给出正确的解法.22.关于x的方程x﹣2m=﹣3x+4与2﹣x=m的解互为相反数.(1)求m的值;(2)求这两个方程的解.23.已知当m,n都是实数.且满足2m=8+n时,称p(m﹣1,)为“开心点”.(1)判断点A(5,3),B(4,10)是否为“开心点”,并说明理由;(2)若点M(a,2a﹣1)是“开心点”,请判断点M在第几象限?并说明理由.24.综合与实践某“综合与实践”小组开展了“长方体纸盒的制作”实践活动,他们利用边长为acm的正方形纸板制作出两种不同方案的长方体盒子(图1为无盖的长方体纸盒,图2为有盖的长方体纸盒),请你动手操作验证并完成任务.(纸板厚度及接缝处忽略不计)动手操作一:根据图1方式制作一个无盖的长方体盒子.方法:先在纸板四角剪去四个同样大小边长为bcm的小正方形,再沿虚线折合起来.问题解决:(1)该长方体纸盒的底面边长为cm;(请你用含a,b的代数式表示)(2)若a=24cm,b=6cm,则长方体纸盒的底面积为多少cm2;动手操作二:根据图2方式制作一个有盖的长方体纸盒.方法:先在纸板四角剪去两个同样大小边长为bcm的小正方形和两个同样大小的小长方形,再沿虚线折合起来.拓展延伸:(3)该长方体纸盒的体积为多少cm3?(请你用含a,b的代数式表示)25.如图,△ABC中,∠ABC=45°,点A关于直线BC的对称点为P,连接PB并延长.过点C作CD⊥AC,交射线PB于点D.(1)如图①,∠ACB为钝角时,补全图形,判断AC与CD的数量关系:;(2)如图②,∠ACB为锐角时,(1)中结论是否仍成立,并说明理由.26.甲、乙两种水稻试验品种连续5年的平均单位面积产量(单位:t/hm2)如表,试根据这组数据估计哪一种水稻品种好.品种第1年第2年第3年第4年第5年甲9.89.910.11010.2乙9.410.310.89.79.8 27.若从1,2,3,…,n中任取5个两两互素的不同的整数a1,a2,a3,a4,a5,其中总有一个整数是素数,求n的最大值.2020-2021上学期人教版八年级数学期末试卷参考答案与试题解析一.选择题(共12小题)1.【分析】根据题意可知绝对值最小的即为最接近标准的儿童口罩,即可得出答案.【解答】解:根据题意得:|﹣0.06|<|+0.09|<|+0.15|<|﹣0.21|,故选:D.2.【分析】根据绝对值的意义解答即可.【解答】解:∵|a|=a,∴a为非负数,故选:D.3.【分析】本题应对方程进行变形,提取公因式x,将原式化为两式相乘的形式,再根据“两式相乘值为0,这两式中至少有一式值为0”来解题.【解答】解:原方程变形为:x(x﹣3)=0,∴x=0或x﹣3=0,∴x=0或x=3,故选:C.4.【分析】根据等式的性质一一判断即可.【解答】解:A、根据等式的性质1可得出,若x=y,则x+2c=y+2c,原变形正确,故此选项不符合题意;B、根据等式的性质1和2得出,若x=y,则a﹣cx=a﹣cy,原变形正确,故此选项不符合题意;C、由x=y得出=必须c≠0,当c=0时不成立,故本选项符合题意;D、根据等式的性质2可得出,若=,则x=y,原变形正确,故此选项不符合题意;故选:C.5.【分析】根据题意,判断出点P所在的象限,再根据点到y轴的距离是点的横坐标的绝对值,到x轴的距离是点的纵坐标的绝对值,判断即可.【解答】解:∵点P在y轴左侧,∴点P在第二象限或第三象限,∵点P到x轴的距离是3,到y轴距离是2,∴点P的坐标是(﹣2,3)或(﹣2,﹣3),故选:A.6.【分析】由点A,B,C,D的坐标可得出四边形ABCD为矩形及AB,AD的长,由矩形的周长公式可求出矩形ABCD的周长,结合2019=202×10﹣1可得出细线的另一端在线段AD上且距A点1个单位长度,结合点A的坐标即可得出结论.【解答】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=2,AD=3,四边形ABCD为矩形,∴C矩形ABCD=(3+2)×2=10.∵2019=202×10﹣1,∴细线的另一端在线段AD上,且距A点1个单位长度,∴细线的另一端所在位置的点的坐标是(1,1﹣1),即(1,0).故选:A.7.【分析】根据圆柱体的形状解答即可.【解答】解:A、图形是正方体,不符合题意;B、图形是梯形,不符合题意;C、图形属于圆柱体,符合题意;D、图形是圆,不符合题意;故选:C.8.【分析】根据“面动成体”可知,将长方形沿着长边所在的直线旋转一周,形成的几何体是圆柱,得出判断即可.【解答】解:将长方形沿着一边旋转一周,所形成的几何体是圆柱,故选:B.9.【分析】利用轴对称画出图形即可.【解答】解:如图所示:,该球最后落入的球袋是4号袋,故选:D.10.【分析】根据三角形的三边关系,全等三角形的判定,等边三角形的判定,轴对称的性质一一判断即可.【解答】解:①已知△ABC中,AB=6,AC=8,则中线AD的取值范围是1≤AD≤7,错误,应该是中线AD的取值范围是1<AD<7.②两边和一角对应相等的两个三角形全等,错误,SSA不一定全等.③如果两个三角形关于某直线成轴对称,那么它们是全等三角形,正确.④一腰上的中线也是这条腰上的高的等腰三角形是等边三角形,正确.故选:B.11.【分析】根据样本抽样的原则要求,逐项进行判断即可.【解答】解:根据样本抽样具有普遍性、代表性和可操作性,选项D比较合理,选项A为普查,没有必要,也不容易操作;选项B、C仅代表男生或女生的情况,不能反映全面的情况,不具有代表性,故选:D.12.【分析】把4个小三角形看作4个抽屉,把25枚棋子看作25个元素,那么每个抽屉需要放25÷4=6…1,所以每个抽屉需要放6枚,剩余的1枚无论怎么放,总有一个抽屉里至少有6+1=7,所以,至少有一个小三角形内至少要放7枚棋子,即可得出结论.【解答】解:25÷4=6……1,6+1=7(枚),故选:B.二.填空题(共6小题)13.【分析】根据正数和负数表示相反意义的量,向东行驶记为正,可得向西行驶的表示方法.【解答】解:如果汽车向东行驶30千米记作+30千米,那么向西行驶20千米记作﹣20千米.故答案为:﹣20.14.【分析】把x=﹣1代入方程得1﹣m=0,然后解一元一次方程即可.【解答】解:把x=﹣1代入方程得1﹣m=0,解得m=1.故答案为1.15.【分析】根据点的坐标与其到坐标轴的距离的关系进行解答.【解答】解:点M(﹣2,3)到x轴的距离为:3,到y轴的距离为:2,故点M(﹣2,3)到x轴和y轴的距离之和是:3+2=5.故答案为:5.16.【分析】根据圆柱的体积是同底同高的圆锥的体积的三倍解答即可.【解答】解:因为圆柱的体积是同底同高的圆锥的体积的三倍,所以3个完全相同的圆锥形铁块,可以熔铸成一个与它们等底等高的圆柱.故答案为:3.17.【分析】如图,以AB为x轴,AD为y轴,建立平面直角坐标系,根据反射角与入射角的定义可以在格点中作出图形,可以发现,在经过6次反射后,发光电子回到起始的位置,即可求解.【解答】解:如图以AB为x轴,AD为y轴,建立平面直角坐标系,根据图形可以得到:每6次反弹为一个循环组依次循环,经过6次反弹后动点回到出发点(6,0),且每次循环它与AB边的碰撞有2次,∵2020÷6=336…4,当点P第2020次碰到矩形的边时为第336个循环组的第4次反弹,点P的坐标为(2,0),∴它与AB边的碰撞次数是=336×2+1=673次,故答案为:673.18.【分析】根据题意可得“①在线听课,②在线讨论,⑤在线阅读”合理.【解答】解:根据题意可知:①在线听课,②在线讨论,⑤在线阅读,作为该问题的备选答案合理,故答案为:①②⑤.三.解答题(共9小题)19.【分析】(1)求出所有正负数之和,可以判断B点位置;(2)求所有正负数的绝对值之和,即为行程总和,在确定所需油量即可求解.【解答】解:(1)15﹣7+18+9﹣3+6﹣8=30(千米),答:B地在A地东面30千米;(2)15+7+18+9+3+6+8=66(千米),66×0.5=33<40,答:不需补充.20.【分析】按照有理数的分类填写即可.【解答】解:正有理数集合:{,+20,0.…}负数集合:{,﹣30,﹣2.6…}整数集合:{0,﹣30,+20…}故答案为:,+20,0.;,﹣30,﹣2.6;0,﹣30,+20.21.【分析】根据等式的性质解答即可.【解答】解:(1)小明①的依据是等式的两边都加(或减)同一个数(或整式),结果仍得等式;(2)小明出错的步骤是③,错误的原因是等式两边都除以0;(3)x﹣4=3x﹣4,x﹣4+4=3x﹣4+4,x=3x,x﹣3x=0,﹣2x=0,x=0.故答案为:等式的两边都加(或减)同一个数(或整式),结果仍得等式;③;等式两边都除以0.22.【分析】(1)先分别解关于x的一次方程得到x=m+1和x=2﹣m,再利用相反数的定义得到m+1+2﹣m=0,然后解关于m的方程即可;(2)把m的值分别代入x=m+1和x=2﹣m中得到两方程的解.【解答】解:(1)解方程x﹣2m=﹣3x+4得x=m+1,解方程2﹣x=m得x=2﹣m,根据题意得,m+1+2﹣m=0,解得m=6;(2)当m=6时,x=m+1=×6+1=4,即方程x﹣2m=﹣3x+4的解为x=4;当m=6时,x=2﹣m=2﹣6=﹣4,即方程2﹣x=m的解为x=﹣4.23.【分析】(1)根据A、B点坐标,代入(m﹣1,)中,求出m和n的值,然后代入2m=8+n检验等号是否成立即可;(2)直接利用“开心点”的定义得出a的值进而得出答案.【解答】解:(1)点A(5,3)为“开心点”,理由如下,当A(5,3)时,m﹣1=5,,得m=6,n=4,则2m=12,8+n=12,所以2m=8+n,所以A(5,3)是“开心点”;点B(4,10)不是“开心点”,理由如下,当B(4,10)时,m﹣1=4,,得m=5,n=18,则2m=10,8+18=26,所以2m≠8+n,所以点B(4,10)不是“开心点”;(2)点M在第三象限,理由如下:∵点M(a,2a﹣1)是“开心点”,∴m﹣1=a,,∴m=a+1,n=4a﹣4,代入2m=8+n有2a+2=8+4a﹣4,∴a=﹣1,2a﹣1=﹣3,∴M(﹣1,﹣3),故点M在第三象限.24.【分析】(1)根据折叠可得答案;(2)将a=24,b=6代入底面积的代数式计算即可;(3)根据图2的裁剪,折叠后,表示出长、宽、高进而用代数式表示体积.【解答】解:(1)根据折叠可知,底面是边长为(a﹣2b)(cm)的正方形,故答案为:(a﹣2b);(2)将a=24,b=6代入得,(a﹣2b)2=(24﹣2×6)2=144(cm2)答:长方体纸盒的底面积为144cm2;(3)裁剪后折叠成长方体的长为:(a﹣2b)cm,宽为cm,高为bcm,所以,折叠后长方体的体积为(a﹣2b)××b,即,b(a﹣2b)2,答:长方体的体积为b(a﹣2b)2.25.【分析】(1)结论:AC=CD.想办法证明,AC=CP,CD=CP即可.(2)结论不变,证明方法类似(1).【解答】解:(1)结论:AC=CD.理由:如图①中,设AB交CD于O,∵A,P关于BC对称,CA=CP,∴∠A=∠P,∠ABC=∠CBP=45°,∴∠ABP=∠ABD=90°,∵AC⊥CD,∴∠ACO=∠DBO=90°,∵∠AOC=∠DOB,∴∠D=∠A,∴∠D=∠P,∴CD=CP,∴AC=CD.故答案为:AC=CD.(2)结论不变.理由:如图②中,∵A,P关于BC对称,CA=CP,∴∠A=∠P,∠ABC=∠CBP=45°,∴∠ABP=∠ABD=90°,∵AC⊥CD,∴∠ACD=∠DBA=90°,∴∠ABD+∠ACD=180°,∴∠A+∠BDC=180°,∵∠CDP+∠BDC=180°,∴∠A=∠CDP∴∠CDP=∠P,∴CD=CP,∴AC=CD.26.【分析】首先求得平均产量,然后求得方差,进行比较即可.【解答】解:根据表格中的数据求得甲的平均数=(9.8+9.9+10.1+10+10.2)÷5=10;乙的平均数=(9.4+10.3+10.8+9.7+9.8)÷5=10,甲种水稻产量的方差是:[(9.8﹣10)2+(9.9﹣10)2+(10.1﹣10)2+(10﹣10)2+(10.2﹣10)2]=0.02,乙种水稻产量的方差是:[(9.4﹣10)2+(10.3﹣10)2+(10.8﹣10)2+(9.7﹣10)2+(9.8﹣10)2]=0.244.∴0.02<0.244,∴产量比较稳定的水稻品种是甲.因为甲、乙两种水稻单位面积产量的平均数相等,甲种方差小于乙种方差,所以甲种水稻品种好.27.【分析】只有1和它本身两个因数的数,就是质数(或素数).除了1和它本身以外,还有别的因数的数,就是合数.因为5个整数两两互素,它们的约数只能取2、3、5、7、11,又因为是合数,只能是约数的平方.所以可求解.【解答】解:若n≥49,取整数1,22,32,52,72,这五个整数是五个两两互素的不同的整数,但没有一个整数是素数,∴n≤48,在1,2,3,……,48中任取5个两两互素的不同的整数,若都不是素数,则其中至少有四个数是合数,不妨假设,a1,a2,a3,a4为合数,设其中最小的素因数分别为p1,p2,p3,p4,由于两两互素,∴p1,p2,p3,p4两两不同,设p是p1,p2,p3,p4中的最大数,则p≥7,因为a1,a2,a3,a4为合数,所以其中一定存在一个,aj≥p2≥72=49,与n≤48矛盾,于是其中一定有一个是素数,综上所述,正整数n的最大值为48.。
河南省郑州市2020-2021学年八年级上学期期末数学试卷含答案

2020-2021学年河南省郑州市八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1下列各数中,是无理数的是()A.0B.πC.D.3.14159262如图,某公园内的一块草坪是长方形ABCD,已知AB=8m,BC=6m,公园管理处为了方便群众,沿AC 修了一条近道,一个人从A到C走A﹣B﹣C比直接走AC多走了()A.2米B.4米C.6米D.8米3下列说法正确的是()A.若点A(3,﹣1),则点A到x轴的距离为3B.平行于y轴的直线上所有点的纵坐标都相同C.(﹣2,2)与(2,﹣2)表示两个不同的点D.若点Q(a,b)在x轴上,则a=04列方程组解古算题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”题目大意是:几个人共同购买一件物品,每人出8钱,余3钱;每人出7钱,缺4钱.设参与共同购物的有x个人,物品价值y钱,可列方程组为()A.B.C.D.5下列问题中,两个变量之间是正比例函数关系的是()A.汽车以80km/h的速度匀速行驶,行驶路程y(km)与行驶时间x(h)之间的关系B.圆的面积y(cm2)与它的半径x(cm)之间的关系C.某水池有水15m3,我打开进水管进水,进水速度5m3/h,xh后水池有水ym3D.有一个边长为x的正方体,则它的表面积S与边长x之间的函数关系6在下列各图象中,y不是x的函数的是()A.B.C.D.7如图,在同一直角坐标系中作出一次函数y=k1x与y=k2x+b的图象,则二元一次方程组的解是()A.B.C.D.8如图是一个三级台阶,它的每一级的长、宽和高分别为9、3和1,A和B是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B点去吃可口的食物,则这只蚂蚁沿着台阶面爬行的最短路程是()A.6B.8C.9D.159如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A坐标是(1,2),则经过第2021次变换后点A的对应点的坐标为()A.(1,﹣2)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)10结合学习函数的经验,小红在平面直角坐标系中画出了函数y=的图象,如图所示根据图象,小红得到了该函数四条结论,其中正确的是()A.y随x的增大而减小B.当x=﹣1时,y有最大值C.当x=2与x=﹣2时,函数值相等D.当x>0时,0<y<1二.填空题(共5小题,每小题3分,共15分)11“你喜欢数学吗?”这句话命题.(填“是”或者“不是”)12请写出一个大于且小于的整数:.13如图,所有的四边形都是正方形,所有的三角形都是直角三角形.则下列关于面积的等式:①S A=S B+S C;②S A=S F+S G+S B;③S B+S C=S D+S E+S F+S G,其中成立的有(写出序号即可).14已知m、n满足方程组,则m+n的值是.15如图所示,把长方形AOBC放在直角坐标系xOy中,使OB、OA分别落在x轴、y轴上,点C的坐标为(2,1),将△ABC沿AB翻折,使C点落在该坐标平面内的D点处,AD交x轴于点E,则点D的坐标为.三、解答题(本大题共7小题,共75分)16计算:+(﹣2)2﹣÷.17为选拔参加八年级数学建模竞赛的活动人选,数学王老师对本班甲、乙两名学生的10次模拟成绩进行了整理、分析,成绩达到6分及以上为合格,达到9分及以上为优秀.在这次竞赛中,甲、乙学生成绩分布的折线统计图和成绩统计分析表如图所示:平均分中位数方差合格率优秀率甲 6.86 3.7690%30%乙7.27.5 1.9680%20%如要推选1名学生参加活动,你推荐谁?请说明你推荐的理由.18小明说,在一次函数y=kx+b中,x每增加1,kx增加了k,b没变,因此,y也增加了k.而如图所示的一次函数图象中从1变成2时,函数值从3变为5,增加了2,因此该一次函数中k的值是2.(1)小明这种确定k的方法有道理吗?说说你的认识;(2)已知一次函数的图象经过(0,3)、(1,1)两点,下面运用两种方法求了这个一次函数的表达式,请你将过程补充完整.方法一:设该一次函数的表达式为y=kx+b,∵一次函数的图象经过(0,3)、(1,1)两点,∴b=.∵x从0变成1时,增加了1,函数值从3变为1,增加了﹣2,∴k=.∴该一次函数的表达式为.方法二:设该一次函数的表达式为y=kx+b,∵一次函数的图象经过(0,3)、(1,1)两点,把(0,3)、(1,1)代入y=kx+b得,解得.∴该一次函数的表达式为.(3)像(2)中的方法二,先设出函数的表达式,再根据所给条件确定表达式中未知的系数,从而得到函数表达式的方法,叫做.19.古埃及人曾用下面的方法得到直角,如图他们用13个等距的结把一根绳子分成等长的12段,一个工匠同时握住绳子的第1个结和第13个结,两个助手分别握住第4个结和第8个结,拉紧绳子,就会得到一个直角三角形,其直角在第4个结处.(1)你能说说其中的道理吗?(2)伤照上面的方法,你能否只用绳子,设计一种不同于(1)的直角三角形(在图2中,只需画出示意图.)20在平面直角坐标系中.(1)如何确定一个给定的点的坐标?请你举例说明.(2)某个图形上各点的纵坐标不变,而横坐标变为原来的相反数,此图形却未发生任何改变,你认为可能吗?请举例说明.21. 2021年郑州市中招体育考试统考项目为:长跑、立定跳远、足球运球,选考项目(50米跑或1分钟跳绳).为了备考练习,很多同学准备重新购买足球、跳绳.(1)某校九(1)班有部分同学准备统一购买新的足球和跳绳.经班长统计共需要购买足球的有12名同学,需要购买跳绳的有10名同学.请你根据如图中班长和售货员阿姨的对话信息,分别求出足球和跳绳的单价.(2)由于足球和跳绳的需求量增大,该体育用品商店老板计划再次购进足球a个和跳绳b根(其中a>15),恰好用了1800元,其中足球每个进价为80元,跳绳每根的进价为15元,则有哪几种购进方案?(3)假如(2)中所购进的足球和跳绳全部售出,且单价与(1)中的售价相同,为了使销售获利最多,应选择哪种购进方案?22一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A 顺时针转动,使两块三角尺至少有一组边互相平行.如图2:当角∠CAE=60°时,BC∥DE.求其它所有可能符合条件的角∠CAE(0°<∠CAE<180°)的度数,画出对应的图形并证明.2020-2021学年河南省郑州市八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1下列各数中,是无理数的是()A.0B.πC.D.3.1415926【考点】无理数.【专题】实数;数感.【答案】B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、0是整数,属于有理数,选项不合题意;B、π是无理数,选项符合题意;C、是分数,属于有理数,选项不合题意;D、3.1415926是有限小数,属于有理数,选项不合题意.故选:B.2如图,某公园内的一块草坪是长方形ABCD,已知AB=8m,BC=6m,公园管理处为了方便群众,沿AC 修了一条近道,一个人从A到C走A﹣B﹣C比直接走AC多走了()A.2米B.4米C.6米D.8米【考点】勾股定理的应用.【专题】等腰三角形与直角三角形;应用意识.【答案】B【分析】根据勾股定理可得答案.【解答】解:由勾股定理,得捷径AC==10(m),多走了8+6﹣10=4(m).故选:B.3下列说法正确的是()A.若点A(3,﹣1),则点A到x轴的距离为3B.平行于y轴的直线上所有点的纵坐标都相同C.(﹣2,2)与(2,﹣2)表示两个不同的点D.若点Q(a,b)在x轴上,则a=0【考点】坐标与图形性质.【专题】平面直角坐标系;应用意识.【答案】C【分析】根据坐标系中点的位置特征一一判断即可.【解答】解:A、若点A(3,﹣1),则点A到x轴的距离应该是1,本选项错误,不符合题意.B、平行于y轴的直线上所有点的纵坐标都相同,错误,应该是横坐标相同,本选项不符合题意.C、(﹣2,2)与(2,﹣2)表示两个不同的点,正确,本选项符合题意.D、若点Q(a,b)在x轴上,应该是b=0,本选项错误,不符合题意.故选:C.4列方程组解古算题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”题目大意是:几个人共同购买一件物品,每人出8钱,余3钱;每人出7钱,缺4钱.设参与共同购物的有x个人,物品价值y钱,可列方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【专题】一次方程(组)及应用;应用意识.【答案】A【分析】根据题意可以找出题目中的等量关系,列出相应的方程组,从而可以解答本题.【解答】解:设参与共同购物的有x个人,物品价值y钱,可列方程组为,故选:A.5下列问题中,两个变量之间是正比例函数关系的是()A.汽车以80km/h的速度匀速行驶,行驶路程y(km)与行驶时间x(h)之间的关系B.圆的面积y(cm2)与它的半径x(cm)之间的关系C.某水池有水15m3,我打开进水管进水,进水速度5m3/h,xh后水池有水ym3D.有一个边长为x的正方体,则它的表面积S与边长x之间的函数关系【考点】正比例函数的定义.【专题】一次函数及其应用;应用意识.【答案】见试题解答内容【分析】根据正比例函数的定义逐个判断即可求解.【解答】解:选项A:y=80x,属于正比例函数,两个变量之间成正比例函数关系,符合题意;选项B:y=πx2,属于二次函数,两个变量之间不是成正比例函数关系,不合题意;选项C:y=15+5x,属于一次函数,两个变量之间不是成正比例函数关系,不合题意;选项D:S=6x2,属于二次函数,两个变量之间不是成正比例函数关系,不合题意;故选:A.6在下列各图象中,y不是x的函数的是()A.B.C.D.【考点】函数的概念.【专题】常规题型;数据分析观念.【答案】C【分析】由函数的概念可知,在变化过程两个变量x、y,如果给x一个值,y都有唯一确定的值与其对应,那么y是x的函数;接下来对题目中给出的四个选项的图象进行判断,即可得到y不是x的函数的图象.【解答】解:选项A、B、D,对于每一个x,都有唯一的y值与其对应,故选项A、B、D是函数图象,选项C,对于一个x有多个y与之对应,故y不是x的函数的图象.故选:C.7如图,在同一直角坐标系中作出一次函数y=k1x与y=k2x+b的图象,则二元一次方程组的解是()A.B.C.D.【考点】一次函数与二元一次方程(组).【专题】一次函数及其应用;模型思想.【答案】B【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题.【解答】解:∵一次函数y1=k1x与y=k2x+b的图象的交点坐标为(1,3),∴二元一次方程组的解为.故选:B.8如图是一个三级台阶,它的每一级的长、宽和高分别为9、3和1,A和B是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B点去吃可口的食物,则这只蚂蚁沿着台阶面爬行的最短路程是()A.6B.8C.9D.15【考点】平面展开﹣最短路径问题.【专题】等腰三角形与直角三角形;运算能力.【答案】D【分析】此类题目只需要将其展开便可直观的得出解题思路.将台阶展开得到的是一个矩形,蚂蚁要从B点到A点的最短距离,便是矩形的对角线,利用勾股定理即可解出答案.【解答】解:将台阶展开,如图,因为AC=3×3+1×3=12,BC=9,所以AB2=AC2+BC2=225,所以AB=15,所以蚂蚁爬行的最短线路为15.答:蚂蚁爬行的最短线路为15.故选:D.9如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A坐标是(1,2),则经过第2021次变换后点A的对应点的坐标为()A.(1,﹣2)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)【考点】规律型:点的坐标;坐标与图形变化﹣对称.【专题】平面直角坐标系;平移、旋转与对称;几何直观.【答案】C【分析】观察图形可知每四次对称为一个循环组依次循环,用2021除以4,然后根据商和余数的情况确定出变换后的点A所在的象限,然后解答即可.【解答】解:点A第一次关于y轴对称后在第二象限,点A第二次关于x轴对称后在第三象限,点A第三次关于y轴对称后在第四象限,点A第四次关于x轴对称后在第一象限,即点A回到原始位置,所以,每四次对称为一个循环组依次循环,∵2021÷4=505余1,∴经过第2021次变换后所得的A点与第一次变换的位置相同,在第二象限,坐标为(﹣1,2).故选:C.10结合学习函数的经验,小红在平面直角坐标系中画出了函数y=的图象,如图所示根据图象,小红得到了该函数四条结论,其中正确的是()A.y随x的增大而减小B.当x=﹣1时,y有最大值C.当x=2与x=﹣2时,函数值相等D.当x>0时,0<y<1【考点】函数值;函数的图象.【专题】函数及其图象;几何直观;运算能力.【答案】D【分析】根据函数的图象以及函数的解析式逐一判断即可.【解答】解:A.由图象可知,当x>﹣1时,y随x的增大而减小,故本选项不合题意;B.函数的自变量的取值范围为x≠﹣1,故本选项不合题意;C.当x=2时,函数值为;当x=﹣2时,函数值为1,故本选项不合题意;D.由图象可知,当x>0时,0<y<1,故本选项符合题意.故选:D.二.填空题(共5小题,每小题3分,共15分)11“你喜欢数学吗?”这句话命题.(填“是”或者“不是”)【考点】命题与定理.【专题】线段、角、相交线与平行线;数据分析观念.【答案】不是.【分析】根据命题的定义确定答案即可.【解答】解:“你喜欢数学吗?”这句话没有对事件作出判断,是疑问句,不是命题,故答案为:不是.12请写出一个大于且小于的整数:.【考点】估算无理数的大小.【专题】实数;数感.【答案】见试题解答内容【分析】根据无理数的估算,找出在与的整数,任选一个即可.【解答】解:因为,,所以大于且小于的整数有2,3.故答案为:2(或3).13如图,所有的四边形都是正方形,所有的三角形都是直角三角形.则下列关于面积的等式:①S A=S B+S C;②S A=S F+S G+S B;③S B+S C=S D+S E+S F+S G,其中成立的有(写出序号即可).【考点】勾股定理.【专题】等腰三角形与直角三角形;矩形菱形正方形;推理能力.【答案】见试题解答内容【分析】由勾股定理和正方形的性质得S A=S B+S C,S B=S D+S E,S C=S F+S G,即可得出结论.【解答】解:由勾股定理和正方形的性质可知:S A=S B+S C,S B=S D+S E,S C=S F+S G,∴S A=S B+S C=S F+S G+S B,S B+S C=S D+S E+S F+S G,故答案为:①②③.14已知m、n满足方程组,则m+n的值是.【考点】二元一次方程组的解;解二元一次方程组.【专题】一次方程(组)及应用;运算能力.【答案】4.【分析】把方程组中的两个方程相加可得4m+4n=16,进而得出m+n的值.【解答】解:,①+②,得4m+4n=16,即4(m+n)=16,所以m+n=4.故答案为:4.15如图所示,把长方形AOBC放在直角坐标系xOy中,使OB、OA分别落在x轴、y轴上,点C的坐标为(2,1),将△ABC沿AB翻折,使C点落在该坐标平面内的D点处,AD交x轴于点E,则点D的坐标为.【考点】矩形的性质;坐标与图形变化﹣对称;翻折变换(折叠问题).【专题】图形的全等;矩形菱形正方形;平移、旋转与对称;推理能力.【答案】见试题解答内容【分析】由“AAS”可证△AOE≌△BDE,可得AE=BE,OE=ED,由勾股定理可求BF的长,由面积法可求DH,即可求解.【解答】解:如图,过点D作DH⊥OB于H,∵四边形AOBC是矩形,点C的坐标为(2,1),∴OA=BC=1,AC=OB=2,∵将△ABC沿AB翻折,使C点落在该坐标平面内的D点处,∴AD=AC=2,BD=BC=1,在△AOE和△BDE中,,∴△AOE≌△BDE(AAS),∴AE=BE,OE=ED,设AE=BE=x,则OE=2﹣x,∵OA2+OE2=AE2,∴12+(2﹣x)2=x2,解得x=,∴BE=,DE=OE=,∵S△DEB=×DE×BD=×BE×DH,∴DH=,∴BH===,∴OH=,∴点D(,﹣),故答案为:(,﹣).三、解答题(本大题共7小题,共75分)16计算:+(﹣2)2﹣÷.【考点】分母有理化;二次根式的混合运算.【专题】二次根式;运算能力.【答案】12.【分析】先把除法运算化为乘法运算,再利用二次根式的性质和乘法法则运算,然后合并即可.【解答】解:原式=+12﹣×=+12﹣=+12﹣=12.17为选拔参加八年级数学建模竞赛的活动人选,数学王老师对本班甲、乙两名学生的10次模拟成绩进行了整理、分析,成绩达到6分及以上为合格,达到9分及以上为优秀.在这次竞赛中,甲、乙学生成绩分布的折线统计图和成绩统计分析表如图所示:平均分中位数方差合格率优秀率甲 6.86 3.7690%30%乙7.27.5 1.9680%20%如要推选1名学生参加活动,你推荐谁?请说明你推荐的理由.【考点】折线统计图;中位数;方差.【专题】统计的应用;应用意识.【答案】见试题解答内容【分析】根据平均分,中位数,方差,合格率,优秀率分析即可.答案不唯一.【解答】解:从合格率以及优秀率来看应该选甲.从平均分,中位数,方差来看应该选乙.18小明说,在一次函数y=kx+b中,x每增加1,kx增加了k,b没变,因此,y也增加了k.而如图所示的一次函数图象中从1变成2时,函数值从3变为5,增加了2,因此该一次函数中k的值是2.(1)小明这种确定k的方法有道理吗?说说你的认识;(2)已知一次函数的图象经过(0,3)、(1,1)两点,下面运用两种方法求了这个一次函数的表达式,请你将过程补充完整.方法一:设该一次函数的表达式为y=kx+b,∵一次函数的图象经过(0,3)、(1,1)两点,∴b=.∵x从0变成1时,增加了1,函数值从3变为1,增加了﹣2,∴k=.∴该一次函数的表达式为.方法二:设该一次函数的表达式为y=kx+b,∵一次函数的图象经过(0,3)、(1,1)两点,把(0,3)、(1,1)代入y=kx+b得,解得.∴该一次函数的表达式为.(3)像(2)中的方法二,先设出函数的表达式,再根据所给条件确定表达式中未知的系数,从而得到函数表达式的方法,叫做.【考点】一次函数的图象;一次函数的性质;一次函数图象上点的坐标特征;待定系数法求一次函数解析式.【专题】一次函数及其应用;运算能力;应用意识.【答案】(1)见解答;(2)3,﹣2,y=﹣2x+3.,.y=﹣2x+3.(3)待定系数法.【分析】(1)利用待定系数法即可证得;(2)利用待定系数法和题目所述的方法求解即可.(3)待定系数法.【解答】解:(1)有道理,将x+1代入得:y2=k(x+1)+b,∴y2﹣y=k(x+1)+b﹣kx﹣b=k,∵y2﹣y=2,∴k=2;故小明这种确定k的方法有道理的;(2)方法一:设该一次函数的表达式为y=kx+b,∵一次函数的图象经过(0,3)、(1,1)两点,∴b=3.∵x从0变成1时,增加了1,函数值从3变为1,增加了﹣2,∴k=﹣2.∴该一次函数的表达式为y=﹣2x+3.方法二:设该一次函数的表达式为y=kx+b,∵一次函数的图象经过(0,3)、(1,1)两点,把(0,3)、(1,1)代入y=kx+b得,解得.∴该一次函数的表达式为y=﹣2x+3.故答案为3,﹣2,y=﹣2x+3.,.y=﹣2x+3.(3)先设出函数的表达式,再根据所给条件确定表达式中未知的系数,从而得到函数表达式的方法,叫做待定系数法.故答案为待定系数法.19.古埃及人曾用下面的方法得到直角,如图他们用13个等距的结把一根绳子分成等长的12段,一个工匠同时握住绳子的第1个结和第13个结,两个助手分别握住第4个结和第8个结,拉紧绳子,就会得到一个直角三角形,其直角在第4个结处.(1)你能说说其中的道理吗?(2)伤照上面的方法,你能否只用绳子,设计一种不同于(1)的直角三角形(在图2中,只需画出示意图.)【考点】勾股定理的逆定理.【专题】等腰三角形与直角三角形;应用意识.【答案】(1)理由见解答;(2)答图见解答.【分析】(1)根据勾股定理的逆定理进行证明即可;(2)根据勾股定理的逆定理,可用31个等距的结把一根绳子分成等长的30段,一个工匠同时握住绳子的第1个结和第31个结,两个助手分别握住第6个结和第18个结,拉紧绳子,就会得到一个直角三角形,其直角在第6个结处.【解答】解:(1)设相邻两个结点之间的距离为a,则此三角形三边的长分别为3a、4a、5a,∵(3a)2+(4a)2=(5a)2,∴以3a、4a、5a为边长的三角形是直角三角形;(2)如图所示:20在平面直角坐标系中.(1)如何确定一个给定的点的坐标?请你举例说明.(2)某个图形上各点的纵坐标不变,而横坐标变为原来的相反数,此图形却未发生任何改变,你认为可能吗?请举例说明.【考点】点的坐标.【专题】常规题型;几何直观.【答案】(1)在数轴上每个点都对应一个实数,这个实数叫做这个点在数轴上的坐标.(2)可能.例如本身关于y轴或轴对称图形.【分析】(1)根据在数轴上每个点都对应一个实数,这个实数叫做这个点在数轴上的坐标即可确定.(2)由题意可知满足条件的有关于y轴对称的图形或轴对称图形.【解答】解:(1)在数轴上每个点都对应一个实数,这个实数叫做这个点在数轴上的坐标,如下图点A,横坐标对应5,中坐标对应3.故点A(5,3).由此确定一个点在直角坐标系上的坐标.(2)可能.例如,当图形关于y轴对称时,图形上各点纵坐标不变,横坐标变为原来的相反数,此时图形未改变,如上图△BCD.故答案为可能,例如本身关于y轴或轴对称图形.21. 2021年郑州市中招体育考试统考项目为:长跑、立定跳远、足球运球,选考项目(50米跑或1分钟跳绳).为了备考练习,很多同学准备重新购买足球、跳绳.(1)某校九(1)班有部分同学准备统一购买新的足球和跳绳.经班长统计共需要购买足球的有12名同学,需要购买跳绳的有10名同学.请你根据如图中班长和售货员阿姨的对话信息,分别求出足球和跳绳的单价.(2)由于足球和跳绳的需求量增大,该体育用品商店老板计划再次购进足球a个和跳绳b根(其中a>15),恰好用了1800元,其中足球每个进价为80元,跳绳每根的进价为15元,则有哪几种购进方案?(3)假如(2)中所购进的足球和跳绳全部售出,且单价与(1)中的售价相同,为了使销售获利最多,应选择哪种购进方案?【考点】列代数式;一元一次方程的应用;二元一次方程组的应用.【专题】一次方程(组)及应用;运算能力;推理能力.【答案】见试题解答内容【分析】(1)设足球和跳绳的单价分别为x元、y元,由题意列出方程组,解方程组解可;(2)由题意得80a+15b=1800(a>15),当全买足球时,可买足球的数量为22.5,对a、b的值进行讨论得两种方案即可;(3)求出方案一利润和方案二利润,即可得出结论.【解答】解:(1)设足球和跳绳的单价分别为x元、y元,由题意得:,解得:,∴足球和跳绳的单价分别为100元、20元,答:足球和跳绳的单价分别为100元、20元;(2)由题意得:80a+15b=1800,(a>15),当全买足球时,可买足球的数量为:=22.5,∴15<a<22.5,当a=16时,b=(舍去);当a=17时,b=(舍去);当a=18时,b=24;当a=19时,b=(舍去);当a=20时,b=(舍去);当a=21时,b=8;当a=22时,b=(舍去);∴有两种方案:方案一,购进足球18个,跳绳24根;方案二,购进足球21个,跳绳8根;答:有两种方案:方案一,购进足球18个,跳绳24根;方案二,购进足球21个,跳绳8根;(3)方案一利润:(100﹣80)×18+(20﹣15)×24=480(元),方案二利润:(100﹣80)×21+(20﹣15)×8=460(元),∵480元>460元,∴选方案一,购进足球18个,跳绳24根.22一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行.如图2:当角∠CAE=60°时,BC∥DE.求其它所有可能符合条件的角∠CAE(0°<∠CAE<180°)的度数,画出对应的图形并证明.【考点】平行线的判定与性质.【专题】线段、角、相交线与平行线;等腰三角形与直角三角形;推理能力.【答案】见试题解答内容【分析】根据题意画出图形,再由平行线的判定定理即可得出结论.【解答】解:当AC∥DE时,如图所示:则∠CAE=∠E=90°;当BC∥AD时,如图所示:则∠CAE=180°﹣∠C﹣∠DAE=180°﹣30°﹣45°=105°;当BC∥AE时,∵∠EAB=∠B=60°,∴∠CAE=∠CAB+∠EAB=90°+60°=150°;综上所述:∠CAE的度数为90°或105°或150°.。
2020年湘教版数学八年级上册第2章三角形单元测试卷(附答案)

第2章测试题一.选择题(共10小题)1.(3分)如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48° B.36° C.30° D.24°2.(3分)如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC 的周长是()A.8 B.9 C.10 D.113.(3分)如图所示,在Rt△ABC中,∠C=90°,AB的垂直平分线DE交BC于D,交AB于点E.当∠B=30°时,图中不一定相等的线段有()A.AC=AE=BE B.AD=BD C.AC=BD D.CD=DE4.(3分)等腰三角形ABC中,一腰AB的垂直平分线交另一腰AC于G,已知AB=10,△GBC 的周长为17,则底BC为()A.5 B.7 C.10 D.95.(3分)若等腰三角形中有两边长分别为2和5,则这个三角形的周长为()A.9 B.12 C.7或9 D.9或126.(3分)如图,△ABC、△ADE中,C、D两点分别在AE、AB上,BC与DE相交于F点.若BD=CD=CE,∠ADC+∠ACD=114°,则∠DFC的度数为何?()A.114 B.123 C.132 D.1477.(3分)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15° B.17.5°C.20° D.22.5°8.(3分)已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若DE=8,则线段BD+CE的长为()A.5 B.6 C.7 D.89.(3分)如图所示,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC.∠EBC=∠E=60°,若BE=6,DE=2,则BC的长度是()A.6 B.8 C.9 D.1010.(3分)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个二.填空题(共8小题)11.(3分)如图,在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB于点F,若AF=2,BF=3,则CE的长度为.12.(3分)已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为.13.(3分)等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是.14.(3分)如图,△ABC中,∠A=90°,DE是BC的垂直平分线,AD=DE,则∠C的度数是°.15.(3分)如图,锐角三角形ABC中,直线PL为BC的垂直平分线,射线BM为∠ABC的平分线,PL与BM相交于P点.若∠PBC=30°,∠ACP=20°,则∠A的度数为°.16.(3分)如图所示,在△ABC中,DE是AC的中垂线,AE=3cm,△ABD的周长为13cm,则△ABC的周长是 cm.17.(3分)如图,在△ABC中,AB=1.8,BC=3.9,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为.18.(3分)如图,直线a∥b,△ABC是等边三角形,点A在直线a上,边BC在直线b上,把△ABC沿BC方向平移BC的一半得到△A′B′C′(如图①);继续以上的平移得到图②,再继续以上的平移得到图③,…;请问在第100个图形中等边三角形的个数是.三.解答题(共6小题)19.如图,△ABC中BA=BC,点D是AB延长线上一点,DF⊥AC于F交BC于E,求证:△DBE是等腰三角形.20.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.21.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E,EH⊥AB,垂足是H.在AB上取一点M,使BM=2DE,连接ME.求证:ME⊥BC.22.如图,在△ABC中,DE,FG分别是AB,AC的垂直平分线,连接AE,AF,已知∠BAC=80°,请运用所学知识,确定∠EAF的度数.23.在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l1与l2相交于点O.△ADE的周长为6cm.(1)求BC的长;(2)分别连结OA、OB、OC,若△OBC的周长为16cm,求OA的长.24.已知如图1:△ABC中,AB=AC,∠B、∠C的平分线相交于点O,过点O作EF∥BC交AB、AC于E、F.①图中有几个等腰三角形?请说明EF与BE、CF间有怎样的关系.②若AB≠AC,其他条件不变,如图2,图中还有等腰三角形吗?如果有,请分别指出它们.另第①问中EF与BE、CF间的关系还存在吗?③若△ABC中,∠B的平分线与三角形外角∠ACD的平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.如图3,这时图中还有哪几个等腰三角形?EF与BE、CF间的关系如何?为什么?参考答案:一.选择题(共10小题)1.(3分)如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48° B.36° C.30° D.24°【分析】根据角平分线的性质可得∠DBC=∠ABD=24°,然后再计算出∠ACB的度数,再根据线段垂直平分线的性质可得BF=CF,进而可得∠FCB=24°,然后可算出∠ACF的度数.【解答】解:∵BD平分∠ABC,∴∠DBC=∠ABD=24°,∵∠A=60°,∴∠ACB=180°﹣60°﹣24°×2=72°,∵BC的中垂线交BC于点E,∴BF=CF,∴∠FCB=24°,∴∠ACF=72°﹣24°=48°,故选:A.【点评】此题主要考查了线段垂直平分线的性质,以及三角形内角和定理,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.2.(3分)如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC 的周长是()A.8 B.9 C.10 D.11【分析】由ED是AB的垂直平分线,可得AD=BD,又由△BDC的周长=DB+BC+CD,即可得△BDC 的周长=AD+BC+CD=AC+BC.【解答】解:∵ED是AB的垂直平分线,∴AD=BD,∵△BDC的周长=DB+BC+CD,∴△BDC的周长=AD+BC+CD=AC+BC=6+4=10.故选C.【点评】本题考查了线段垂直平分线的性质,三角形周长的计算,掌握转化思想的应用是解题的关键.3.(3分)如图所示,在Rt△ABC中,∠C=90°,AB的垂直平分线DE交BC于D,交AB于点E.当∠B=30°时,图中不一定相等的线段有()A.AC=AE=BE B.AD=BD C.AC=BD D.CD=DE【分析】分别根据线段垂直平分线及角平分线的性质对四个答案进行逐一判断即可.【解答】解:∵∠B=30°,∠C=90°,∴∠BAC=60°,AC=,∵DE是AB的垂直平分线,∴AD=BD,AE=BE=AB,∴∠DAB=30°,AC=AE=BE,故A、B正确;∴∠CAD=30°,∴AD是∠BAC的平分线∵CD⊥AC,DE⊥AB,∴CD=DE,故D正确;故选C.【点评】本题考查的是线段垂直平分线及角平分线的性质、直角三角形的性质,涉及面较广,难度适中.4.(3分)等腰三角形ABC中,一腰AB的垂直平分线交另一腰AC于G,已知AB=10,△GBC 的周长为17,则底BC为()A.5 B.7 C.10 D.9【分析】根据垂直平分线上的点到线段两个端点的距离相等,得GB=GA,即△GBC的周长=AC+BC,从而就求得了BC的长.【解答】解:设AB的中点为D,∵DG为AB的垂直平分线∴GA=GB (垂直平分线上一点到线段两端点距离相等),∴三角形GBC的周长=GB+BC+GC=GA+GC+BC=AC+BC=17,又∵三角形ABC是等腰三角形,且AB=AC,∴AB+BC=17,∴BC=17﹣AB=17﹣10=7.故选B.【点评】此题考查了等腰三角形的性质及线段垂直平分线的性质;进行有效的等量代换是正确解答本题的关键.5.(3分)若等腰三角形中有两边长分别为2和5,则这个三角形的周长为()A.9 B.12 C.7或9 D.9或12【分析】题目给出等腰三角形有两条边长为5和2,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当腰为5时,根据三角形三边关系可知此情况成立,周长=5+5+2=12;当腰长为2时,根据三角形三边关系可知此情况不成立;所以这个三角形的周长是12.故选:B.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.6.(3分)如图,△ABC、△ADE中,C、D两点分别在AE、AB上,BC与DE相交于F点.若BD=CD=CE,∠ADC+∠ACD=114°,则∠DFC的度数为何?()A.114 B.123 C.132 D.147【分析】先根据等腰三角形的性质得出∠B=∠DCB,∠E=∠CDE,再利用三角形的内角和进行分析解答即可.【解答】解:∵BD=CD=CE,∴∠B=∠DCB,∠E=∠CDE,∵∠ADC+∠ACD=114°,∴∠BDC+∠ECD=360°﹣114°=246°,∴∠B+∠DCB+∠E+∠C DE=360°﹣246°=114°,∴∠DCB+∠CDE=57°,∴∠DFC=180°﹣57°=123°,故选B.【点评】此题考查等腰三角形的性质,关键是利用等边对等角和三角形内角和分析解答.7.(3分)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15° B.17.5°C.20° D.22.5°【分析】先根据角平分线的定义得到∠1=∠2,∠3=∠4,再根据三角形外角性质得∠1+∠2=∠3+∠4+∠A,∠1=∠3+∠D,则2∠1=2∠3+∠A,利用等式的性质得到∠D=∠A,然后把∠A的度数代入计算即可.【解答】解:∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4,∵∠ACE=∠A+∠ABC,即∠1+∠2=∠3+∠4+∠A,∴2∠1=2∠3+∠A,∵∠1=∠3+∠D,∴∠D=∠A=×30°=15°.故选A.【点评】本题考查了三角形内角和定理,关键是根据三角形内角和是180°和三角形外角性质进行分析.8.(3分)已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若DE=8,则线段BD+CE的长为()A.5 B.6 C.7 D.8【分析】根据角平分线的性质,可得∠DBF与∠FBC的关系,∠ECF与∠FCB的关系,根据两直线平行,可得∠DFB与∠FBC的关系,∠EFC与∠FCB的关系,根据等腰三角形的判定,可得BD与DF的关系,EF与EC的关系,可得答案.【解答】解:OB和OC分别平分∠ABC和∠ACB,∴∠DBF=∠FBC,∠ECF=∠FCB.∵DE∥BC,∴∠FBC=∠DFB,∠EFC=∠FCB.∠DBF=∠DFB,∠EFC=∠ECF.∴DB=DF,EF=EC,DE=DF+EF=DB+EC=8,故选:D.【点评】此题主要考查学生对等腰三角形的判定与性质平行线段性质的理解和掌握,此题关键是求证DB=DO,OE=EC,难度不大,是一道基础题.9.(3分)如图所示,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC.∠EBC=∠E=60°,若BE=6,DE=2,则BC的长度是()A.6 B.8 C.9 D.10【分析】作出辅助线后根据等腰三角形的性质得出BE=6,DE=2,进而得出△BEM为等边三角形,△EMD为等边三角形,从而得出BN的长,进而求出答案.【解答】解:延长ED交BC于M,延长AD交BC于N,∵AB=AC,AD平分∠BAC,∴AN⊥BC,BN=CN,∵∠EBC=∠E=60°,∴△BEM为等边三角形,∴BE=EM∵BE=6,DE=2,∴DM=EM﹣DE═6﹣2=4,∵△BEM为等边三角形,∴∠EMB=60°,∵AN⊥BC,∴∠DNM=90°,∴∠NDM=30°,∴NM=2,∴BN=4,∴BC=2BN=8,故选B.【点评】此题主要考查了等腰三角形的性质和等边三角形的性质,能求出MN的长是解决问题的关键.10.(3分)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个【分析】根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.【解答】解:∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°﹣∠DBC﹣∠C=180°﹣36°﹣72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=(180°﹣36°)÷2=72°,∴∠ADE=∠BED﹣∠A=72°﹣36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有5个.故选D.【点评】此题考查了等腰三角形的判定,用到的知识点是等腰三角形的判定、三角形内角和定理、三角形外角的性质、三角形的角平分线定义等,解题时要找出所有的等腰三角形,不要遗漏.二.填空题(共8小题)11.(3分)如图,在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB于点F,若AF=2,BF=3,则CE的长度为 7 .【分析】根据等边对等角得出∠B=∠C,再根据EP⊥BC,得出∠C+∠E=90°,∠B+∠BFP=90°,从而得出∠D=∠BFP,再根据对顶角相等得出∠E=∠AFE,最后根据等角对等边即可得出答案.【解答】证明:在△ABC中,∵AB=AC,∴∠B=∠C,∵EP⊥BC,∴∠C+∠E=90°,∠B+∠BFP=90°,∴∠E=∠BFP,又∵∠BFP=∠AFE,∴∠E=∠AFE,∴AF=AE,∴△AEF是等腰三角形.又∵AF=2,BF=3,∴CA=AB=5,AE=2,∴CE=7.【点评】本题考查了等腰三角形的判定和性质,解题的关键是证明∠E=∠AFE,注意等边对等角,以及等角对等边的使用.12.(3分)已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为120°或20° .【分析】设两个角分别是x,4x,根据三角形的内角和定理分情况进行分析,从而可求得顶角的度数.【解答】解:设两个角分别是x,4x①当x是底角时,根据三角形的内角和定理,得x+x+4x=180°,解得,x=30°,4x=120°,即底角为30°,顶角为120°;②当x是顶角时,则x+4x+4x=180°,解得,x=20°,从而得到顶角为20°,底角为80°;所以该三角形的顶角为120°或20°.故答案为:120°或20°.【点评】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.已知中若有比出现,往往根据比值设出各部分,利用部分和列式求解.13.(3分)等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是110°或70° .【分析】本题要分情况讨论.当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.【解答】解:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为:110°或70°.【点评】考查了等腰三角形的性质,注意此类题的两种情况.其中考查了直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和.14.(3分)如图,△ABC中,∠A=90°,DE是BC的垂直平分线,AD=DE,则∠C的度数是 30 °.【分析】根据角平分线性质求出∠ABD=∠DBE,根据线段垂直平分线求出CD=BD,推出∠C=∠DBE=∠ABD,根据三角形内角和定理求出即可.【解答】解:∵△ABC中,∠A=90°,DE⊥BC,AD=DE,∴∠ABD=∠DBE,∵DE是BC的垂直平分线,∴CD=BD,∴∠C=∠DBE,∵∠A=90°,∴3∠C=90°,∴∠C=30°,故答案为:30.【点评】本题考查了线段垂直平分线性质,角平分线性质,等腰三角形性质,三角形内角和定理的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.15.(3分)如图,锐角三角形ABC中,直线PL为BC的垂直平分线,射线BM为∠ABC的平分线,PL与BM相交于P点.若∠PBC=30°,∠ACP=20°,则∠A的度数为 70 °.【分析】根据角平分线得出∠ABC=60°,再根据线段垂直平分线得出∠PCB=30°,利用三角形的内角和解答即可.【解答】解:∵射线BM为∠ABC的平分线,∠PBC=30°,∴∠ABC=60°,∵直线PL为BC的垂直平分线,∴∠PCB=30°,∴∠A的度数=180°﹣60°﹣30°﹣20°=70°,故答案为:70.【点评】此题考查线段垂直平分线性质,关键是根据角平分线得出∠ABC=60°,再根据线段垂直平分线得出∠PCB=30°进行分析.16.(3分)如图所示,在△ABC中,DE是AC的中垂线,AE=3cm,△ABD的周长为13cm,则△ABC的周长是 19 cm.【分析】由已知条件,根据垂直平分线的性质得到线段相等,进行线段的等量代换后可得到答案.【解答】解:∵△ABC中,DE是AC的中垂线,∴AD=CD,AE=CE=AC=3cm,∴△ABD得周长=AB+AD+BD=AB+BC=13 ①则△ABC的周长为AB+BC+AC=AB+BC+6 ②把②代入①得△ABC的周长=13+6=19cm故答案为:19.【点评】本题考查了线段垂直平分线的性质;解答此题时要注意利用垂直平分线的性质找出题中的等量关系,进行等量代换,然后求解.17.(3分)如图,在△ABC中,AB=1.8,BC=3.9,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为 2.1 .【分析】由将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上,可得AD=AB,又由∠B=60°,可证得△ABD是等边三角形,继而可得BD=AB=2,则可求得答案.【解答】解:由旋转的性质可得:AD=AB,∵∠B=60°,∴△ABD是等边三角形,∴BD=AB,∵AB=1.8,BC=3.9,∴CD=BC﹣BD=3.9﹣1.8=2.1.故答案为:2.1.【点评】此题考查了旋转的性质以及等边三角形的判定与性质.此题比较简单,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用.18.(3分)如图,直线a∥b,△ABC是等边三角形,点A在直线a上,边BC在直线b上,把△ABC沿BC方向平移BC的一半得到△A′B′C′(如图①);继续以上的平移得到图②,再继续以上的平移得到图③,…;请问在第100个图形中等边三角形的个数是 400 .【分析】先证出阴影的三角形是等边三角形,又观察图可得,第n个图形中大等边三角形有2n个,小等边三角形有2n个,据此求出第100个图形中等边三角形的个数.【解答】解:如图①∵△ABC是等边三角形,∴AB=BC=AC,∵A′B′∥AB,BB′=B′C=BC,∴B′O=AB,CO=AC,∴△B′OC是等边三角形,同理阴影的三角形都是等边三角形.又观察图可得,第1个图形中大等边三角形有2个,小等边三角形有2个,第2个图形中大等边三角形有4个,小等边三角形有4个,第3个图形中大等边三角形有6个,小等边三角形有6个,…依次可得第n个图形中大等边三角形有2n个,小等边三角形有2n个.故第100个图形中等边三角形的个数是:2×100+2×100=400.故答案为:400.【点评】本题主要考查了等边三角形的判定和性质及平移的性质,解题的关键是据图找出规律.三.解答题(共6小题)19.如图,△ABC中BA=BC,点D是AB延长线上一点,DF⊥AC于F交BC于E,求证:△DBE是等腰三角形.【分析】首先根据等腰三角形的两个底角相等得到∠A=∠C,再根据等角的余角相等得∠FEC=∠D,同时结合对顶角相等即可证明△DBE是等腰三角形.【解答】证明:在△ABC中,BA=BC,∵BA=BC,∴∠A=∠C,∵DF⊥AC,∴∠C+∠FEC=90°,∠A+∠D=90°,∴∠FEC=∠D,∵∠FEC=∠BED,∴∠BED=∠D,∴BD=BE,即△DBE是等腰三角形.【点评】此题主要考查等腰三角形的基本性质及综合运用等腰三角形的性质来判定三角形是否为等腰三角形.20.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.21.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E,EH⊥AB,垂足是H.在AB上取一点M,使BM=2DE,连接ME.求证:ME⊥BC.【分析】根据EH⊥AB于H,得到△BEH是等腰直角三角形,然后求出HE=BH,再根据角平分线上的点到角的两边距离相等可得DE=HE,然后求出HE=HM,从而得到△HEM是等腰直角三角形,再根据等腰直角三角形的性质求解即可.【解答】解:∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵EH⊥AB于H,∴△BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴ME⊥BC.【点评】本题考查等腰直角三角形的判定与性质,角平分线上的点到角的两边距离相等的性质,熟记性质并证明出等腰直角三角形是解题的关键.22.如图,在△ABC中,DE,FG分别是AB,AC的垂直平分线,连接AE,AF,已知∠BAC=80°,请运用所学知识,确定∠EAF的度数.【分析】在△ABC中,利用三角形内角定理易求∠B+∠C,再根据线段垂直平分线的性质易求∠BAE=∠B,同理可得∠CAF=∠C,再结合三角形内角和定理进而可得∠BAE+∠CAF﹣∠BAC=∠EAF.【解答】解:在△ABC中,∠BAC=80°,∴∠B+∠C=180°﹣∠BAC=100°,∵DE是AB的垂直平分线,∴EB=EA,∴∠BAE=∠B,同理可得∠CAF=∠C,∴∠EAF=∠BAE+∠CAF﹣∠BAC=∠B+∠C﹣∠BAC=20°.【点评】本题考查了线段垂直平分线的性质,解题的关键是先求出∠B+∠C.23.在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l1与l2相交于点O.△ADE的周长为6cm.(1)求BC的长;(2)分别连结OA、OB、OC,若△OBC的周长为16cm,求OA的长.【分析】(1)先根据线段垂直平分线的性质得出AD=BD,AE=CE,再根据AD+DE+AE=BD+DE+CE 即可得出结论;(2)先根据线段垂直平分线的性质得出OA=OC=OB,再由∵△OBC的周长为16cm求出OC的长,进而得出结论.【解答】解:(1)∵DF、EG分别是线段AB、AC的垂直平分线,∴AD=BD,AE=CE,∴AD+DE+AE=BD+DE+CE=BC,∵△ADE的周长为6cm,即AD+DE+AE=6cm,∴BC=6cm;(2)∵AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,∴OA=OC=OB,∵△OBC的周长为16cm,即OC+OB+BC=16,∴OC+OB=16﹣6=10,∴OC=5,∴OA=OC=OB=5.【点评】本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.24.已知如图1:△ABC中,AB=AC,∠B、∠C的平分线相交于点O,过点O作EF∥BC交AB、AC于E、F.①图中有几个等腰三角形?请说明EF与BE、CF间有怎样的关系.②若AB≠AC,其他条件不变,如图2,图中还有等腰三角形吗?如果有,请分别指出它们.另第①问中EF与BE、CF间的关系还存在吗?③若△ABC中,∠B的平分线与三角形外角∠ACD的平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.如图3,这时图中还有哪几个等腰三角形?EF与BE、CF间的关系如何?为什么?【分析】(1)根据EF∥BC,∠B、∠C的平分线交于O点,可得∠EOB=∠OBC,∠FOC=∠OCB,∠EOB=∠OBE,∠FCO=∠FOC,再加上题目中给出的AB=AC,共5个等腰三角形;根据等腰三角形的性质,即可得出EF与BE、CF间有怎样的关系.(2)根据EF∥BC 和∠B、∠C的平分线交于O点,还可以证明出△OBE和△OCF是等腰三角形;利用几个等腰三角形的性质即可得出EF与BE,CF的关系.(3)EO∥BC和OB,OC分别是∠ABC与∠ACL的角平分线,还可以证明出△BEO和△CFO是等腰三角形.【解答】解:(1)有5个等腰三角形,EF与BE、CF间有怎样的关系是:EF=BE+CF=2BE=2CF.理由如下:∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,又∠B、∠C的平分线交于O点,∴∠EBO=∠OBC,∠FCO=∠OCB,∴∠EOB=∠OBE,∠FCO=∠FOC,∴OE=BE,OF=CF,∴EF=OE+OF=BE+CF.又AB=AC,∴∠ABC=∠ACB,∴∠EOB=∠OBE=∠FCO=∠FOC,∴EF=BE+CF=2BE=2CF;(2)有2个等腰三角形分别是:等腰△OBE和等腰△OCF;第一问中的EF与BE,CF的关系是:EF=BE+CF.(3)有,还是有2个等腰三角形,△EBO,△OCF,EF=BE﹣CF,理由如下:∵EO∥BC,∴∠EOB=∠OBC,∠EOC=∠OCG(G是BC延长线上的一点)又∵OB,OC分别是∠ABC与∠ACG的角平分线∴∠EBO=∠OBC,∠ACO=∠OCD,∴∠EOB=∠EBO,∴BE=OE,∠FCO=∠FOC,∴CF=FO ,又∵EO=EF+FO ,∴EF=BE ﹣CF .【点评】此题主要考查学生对等腰三角形的判定与性质和平行线性质的理解和掌握,此题难度并不大,但是步骤繁琐,属于中档题,还有第(1)中容易忽略△ABC 也是等腰三角形,因此这又是一道易错题.要求学生在证明此题时一定要仔细,认真.1、盛年不重来,一日难再晨。
2020年人教版八年级数学上册《第11章三角形》单元测试卷(解析版)

2020年人教版八年级数学上册《第11章三角形》单元测试卷一.选择题(共10小题)1.图中锐角三角形的个数有()个.A.2B.3C.4D.52.如图,AD是△ABC的中线,已知△ABD的周长为22cm,AB比AC长3cm,则△ACD 的周长为()A.19cm B.22cm C.25cm D.31cm3.下列图形中,不是运用三角形的稳定性的是()A.B.C.D.4.已知三角形的两边长分别为2和9,第三边长为正整数,则这样的三角形个数为()A..3B.4C..5D..65.如图,将一副三角板按如图方式叠放,则角α等于()A.165°B.135°C.105°D.75°6.三角形具有稳定性,所以要使如图所示的五边形木架不变形,至少要钉上()根木条.A.1B.2C.3D.47.下列图形中具有稳定性的是()A.正方形B.长方形C.平行四边形D.锐角三角形8.下列说法正确的是()A.对角线相等且互相垂直的四边形是菱形B.对角线互相平分的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形9.如图,足球图片正中的黑色正五边形的内角和是()A.180°B.360°C.540°D.720°10.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180°B.270°C.360°D.720°二.填空题(共8小题)11.在图中共有个三角形.12.直角三角形中,两锐角的角平分线所夹的锐角是度.13.如图,桥梁拉杆和桥面构成三角形的结构,根据的数学道理.14.三角形一边长为4,另一边长为7,且第三边长为奇数,则第三边的长为.15.三角形具有稳定性,要使一个四边形框架稳定不变形,至少需要钉根木条.16.在下列四个图形中,具有稳定性的是(填序号)①正方形②长方形③直角三角形④平行四边形17.在五边形ABCDE中,若∠A+∠B+∠C+∠D=440°,则∠E=.18.把一块含60°的三角板与一把直尺按如图方式放置,则∠α=度.三.解答题(共8小题)19.用6根火柴能否组成四个一样大的三角形,若能,请说明你的图形.20.(1)如图(1),已知,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B =30°,∠C=50°.求∠DAE的度数;(2)如图(2),已知AF平分∠BAC,交边BC于点E,过F作FD⊥BC,若∠B=x°,∠C=(x+36)°,①∠CAE=(含x的代数式表示)②求∠F的度数.21.要使四边形木架(用4根木条钉成)不变形,至少要再钉上几根木条?五边形木架和六边形木架呢?22.已知△ABC中,AB=6,BC=4,求AC的取值范围.23.如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上几根木条?要使一个n边形(n≥4)木架在同一平面内不变形,至少还要再钉上几根木条?24.四边形ABCD中,∠A=145°,∠D=75°.(1)如图1,若∠B=∠C,试求出∠C的度数;(2)如图2,若∠ABC的角平分线BE交DC于点E,且BE∥AD,试求出∠C的度数;(3)①如图3,若∠ABC和∠BCD的角平分线交于点E,试求出∠BEC的度数.②在①的条件下,若延长BA、CD交于点F(如图4),将原来条件“∠A=145°,∠D=75°”改为“∠F=40°”,其他条件不变,∠BEC的度数会发生变化吗?若不变,请说明理由;若变化,求出∠BEC的度数.25.如图,五边形ABCDE的每个内角都相等,且∠1=∠2=∠3=∠4.AC与DE平行吗?请说明理由.26.(1)如图①,△OAB、△OCD的顶点O重合,且∠A+∠B+∠C+∠D=180°,则∠AOB+∠COD=°;(直接写出结果)(2)连接AD、BC,若AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线.①如图②,如果∠AOB=110°,那么∠COD的度数为;(直接写出结果)②如图③,若∠AOD=∠BOC,AB与CD平行吗?为什么?2020年人教版八年级数学上册《第11章三角形》单元测试卷参考答案与试题解析一.选择题(共10小题)1.图中锐角三角形的个数有()个.A.2B.3C.4D.5【分析】先找出以A为顶点的锐角三角形的个数,再找出以E为顶点的锐角三角形的个数,然后将两种锐角三角形相加即可.【解答】解:①以A为顶点的锐角三角形△ABC、△ADC共2个;②以E为顶点的锐角三角形:△EDC,共1个;所以图中锐角三角形的个数有2+1=3(个);故选:B.【点评】本题考查了三角形.数三角形的个数,可以按照数线段条数的方法,如果一条线段上有n个点,那么就有条线段,也可以与线段外的一点组成个三角形.2.如图,AD是△ABC的中线,已知△ABD的周长为22cm,AB比AC长3cm,则△ACD 的周长为()A.19cm B.22cm C.25cm D.31cm【分析】根据题意得到AB=AC+3,根据中线的定义得到BD=DC,根据三角形的周长公式计算即可.【解答】解:由题意得,AB=AC+3,∵AD是△ABC的中线,∴BD=DC,∵△ABD的周长为22,∴AB+BD+AD=AC+3+DC+AD=22,则AC+DC+AD=19,∴△ACD的周长=AC+DC+AD=19(cm),故选:A.【点评】本题考查的是三角形的中线,三角形一边的中点与此边所对顶点的连线叫做三角形的中线.3.下列图形中,不是运用三角形的稳定性的是()A.B.C.D.【分析】利用三角形的稳定性进行解答.【解答】解:伸缩门是利用了四边形的不稳定性,A、B、D都是利用了三角形的稳定性.故选:C.【点评】本题考查了三角形的稳定性在实际生活中的应用问题,关键是分析能否在同一平面内组成三角形.4.已知三角形的两边长分别为2和9,第三边长为正整数,则这样的三角形个数为()A..3B.4C..5D..6【分析】根据三角形的三边关系:三角形两边之和大于第三边,两边差小于第三边;解答即可.【解答】解:设第三边长为x,由题意可得9﹣2<x<9+2,解得7<x<11,故x为8、9、10,这样的三角形个数为3.故选:A.【点评】本题考查了三角形的三边关系:三角形两边之和大于第三边,两边差小于第三边;牢记三角形的三边关系是解答的关键.5.如图,将一副三角板按如图方式叠放,则角α等于()A.165°B.135°C.105°D.75°【分析】根据三角形内角和定理求出∠1,根据三角形外角的性质求出∠2,根据邻补角的概念计算即可.【解答】解:∠1=90°﹣30°﹣60°,∴∠2=∠1﹣45°=15°,∴∠α=180°﹣15°=165°,故选:A.【点评】本题考查的是三角形内角和定理和三角形的外角的性质,掌握三角形内角和等于180°是解题的关键.6.三角形具有稳定性,所以要使如图所示的五边形木架不变形,至少要钉上()根木条.A.1B.2C.3D.4【分析】三角形具有稳定性,所以要使五边形木架不变形需把它分成三角形,即过六边形的一个顶点作对角线,有几条对角线,就至少要钉上几根木条.【解答】解:过五边形的一个顶点作对角线,有5﹣3=2条对角线,所以至少要钉上2根木条.故选:B.【点评】本题考查了三角形具有稳定性,是基础题,作出图形更形象直观.7.下列图形中具有稳定性的是()A.正方形B.长方形C.平行四边形D.锐角三角形【分析】根据三角形具有稳定性解答.【解答】解:正方形,长方形,平行四边形,锐角三角形中只有锐角三角形具有稳定性.故选:D.【点评】本题考查了三角形的稳定性,是基础题,需熟记.8.下列说法正确的是()A.对角线相等且互相垂直的四边形是菱形B.对角线互相平分的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形【分析】利用多边形对角线的性质,分析四个选项即可得出结论.【解答】解:利用排除法分析四个选项:A、菱形的对角线互相垂直且平分,故A错误;B、对角线互相平分的四边形式应该是平行四边形,故B错误;C、对角线互相垂直的四边形并不能断定为平行四边形,故C错误;D、对角线相等且互相平分的四边形是矩形,故D正确.故选:D.【点评】本题考查了多变形对角线的性质,解题的关键是牢记各特殊图形对角线的性质即可解决该题.9.如图,足球图片正中的黑色正五边形的内角和是()A.180°B.360°C.540°D.720°【分析】根据多边形内角和公式(n﹣2)×180°即可求出结果.【解答】解:黑色正五边形的内角和为:(5﹣2)×180°=540°,故选:C.【点评】本题考查了多边形的内角和公式,解题关键是牢记多边形的内角和公式.10.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180°B.270°C.360°D.720°【分析】根据三角形外角的性质和四边形内角和等于360°可得∠A+∠B+∠C+∠D+∠E+∠F的度数.【解答】解:如图,∵∠1=∠A+∠C,∠2=∠B+∠F,∠1+∠2+∠D+∠E=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故选:C.【点评】此题考查三角形的内角和,角的和与差,掌握三角形的内角和定理是解决问题的关键.二.填空题(共8小题)11.在图中共有8个三角形.【分析】按照从左到右的顺序,分单个的三角形和复合的三角形找出所有的三角形,然后再计算个数.【解答】解:三角形有:△ACE、△CDE、△DEF、△BCD,△CDF、△ACD、△BCE、△ACB,共8个.故答案为:8.【点评】考查了三角形,本题难点在于找出复合三角形的个数,按照一定的顺序找即可做到不重不漏.12.直角三角形中,两锐角的角平分线所夹的锐角是45度.【分析】根据△ACB为Rt△,利用三角形内角和定理求出∠CAB+∠ABC=90°,再利用角平分线的性质即可求出两锐角的角平分线所夹的锐角的度数.【解答】解:如图所示△ACB为Rt△,AD,BE,分别是∠CAB和∠ABC的角平分线,AD,BE相交于一点F.∵∠ACB=90°,∴∠CAB+∠ABC=90°∵AD,BE,分别是∠CAB和∠ABC的角平分线,∴∠FAB+∠FBA=∠CAB+∠ABC=45°.故答案为:45.【点评】此题主要考查学生对三角形内角和定理和角平分线的性质等知识点的理解和掌握,此题难度不大,要求学生应熟练掌握.13.如图,桥梁拉杆和桥面构成三角形的结构,根据的数学道理三角形具有稳定性.【分析】根据三角形的三边一旦确定,则形状大小完全确定,即三角形的稳定性作答.【解答】解:桥梁拉杆和桥面构成三角形的结构,根据的数学道理三角形具有稳定性.故答案为:三角形具有稳定性.【点评】本题考查三角形的稳定性在实际生活中的应用问题,是基础题型.14.三角形一边长为4,另一边长为7,且第三边长为奇数,则第三边的长为5,7,9.【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.即可求解.【解答】解:第三边的取值范围是大于3而小于11,又第三边长为奇数,故第三边的长为5,7,9.故答案为:5,7,9.【点评】考查了三角形的三边关系:两边之和大于第三边,两边之差小于第三边.还要注意第三边长为奇数这一条件.15.三角形具有稳定性,要使一个四边形框架稳定不变形,至少需要钉1根木条.【分析】根据三角形的稳定性可得答案.【解答】解:如图所示:要使这个木架不变形,他至少还要再钉上1个木条,故答案为:1【点评】此题主要考查了三角形的稳定性,关键是掌握当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.16.在下列四个图形中,具有稳定性的是③(填序号)①正方形②长方形③直角三角形④平行四边形【分析】根据三角形具有稳定性对各图形分析后解答.【解答】解:在下列四个图形中,具有稳定性的是三角形.故答案为:③【点评】本题主要考查了三角形具有稳定性的性质,是基础题,但容易出错.17.在五边形ABCDE中,若∠A+∠B+∠C+∠D=440°,则∠E=100°.【分析】首先利用多边形的外角和定理求得正五边形的内角和,然后减去已知四个角的和即可.【解答】解:正五边形的内角和为(5﹣2)×180°=540°,∵∠A+∠B+∠C+∠D=440°,∴∠E=540°﹣440°=100°,故答案为:100°.【点评】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.18.把一块含60°的三角板与一把直尺按如图方式放置,则∠α=120度.【分析】三角板中∠B=90°,三角板与直尺垂直,再用四边形的内角和减去∠A、∠B、∠ACD即得∠α的度数.【解答】解:如图:∵在四边形ABCD中,∠A=60°,∠B=90°,∠ACD=90°,∴∠α=360°﹣∠A﹣∠B﹣∠ACD=360°﹣60°﹣90°﹣90°=120°,故答案为:120.【点评】本题主要考查了多边形的内角和.关键是得出用四边形的内角和减去∠A、∠B、∠ACD即得∠α的度数.三.解答题(共8小题)19.用6根火柴能否组成四个一样大的三角形,若能,请说明你的图形.【分析】用6根火柴能组成四个一样大的三角形,把六根火柴棒组合成一个正三棱锥即可.【解答】解:首先用3根火柴棒拼成一个等边三角形,然后用3根火柴棒与原来的3根火柴棒组合成三棱锥,因为三棱锥有4个面,每个面都是一样大小的三角形,所以用6根火柴能组成四个一样大的三角形.【点评】此题主要考查了空间想象能力的应用,以及正三棱锥的特征和应用,要熟练掌握.20.(1)如图(1),已知,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B =30°,∠C=50°.求∠DAE的度数;(2)如图(2),已知AF平分∠BAC,交边BC于点E,过F作FD⊥BC,若∠B=x°,∠C=(x+36)°,①∠CAE=72°﹣x°(含x的代数式表示)②求∠F的度数.【分析】(1)先根据三角形内角和得到∠CAB=180°﹣∠B﹣∠C=100°,再根据角平分线与高线的定义得到∠CAE=∠CAB=50°,∠ADC=90°,则∠CAD=90°﹣∠C =40°,然后利用∠DAE=∠CAE﹣∠CAD计算即可;(2)根据题意可知∠B=x°,∠C=(x+36)°,根据三角形的内角和定理可知∠ADC+∠DAC+∠C=180°,∠ADC=∠B+∠BAF,根据角平分线的性质,可知∠EAC=∠BAF,可得出∠ADC的度数,再根据FD⊥BC,可得出∠F的度数.【解答】解:(1)∵∠B=30°,∠C=50°,∴∠CAB=180°﹣∠B﹣∠C=100°,∵AD是△ABC角平分线,∴∠CAE=∠CAB=50°,∵AE分别是△ABC的高,∴∠ADC=90°,∴∠CAD=90°﹣∠C=40°,∴∠DAE=∠CAE﹣∠CAD=50°﹣40°=10°;(2)①∵∠B=x°,∠C=(x+36)°,AF平分∠BAC,∴∠EAC=∠BAF,∴∠CAE=[180°﹣x°﹣(x+36)°]=72°﹣x°,②∠AEC=∠BAE+∠B=72°,∵FD⊥BC,∴∠F=18°.【点评】本题考查的是三角形的角平分线、中线和高以及三角形内角和定理,掌握三角形的角平分线、中线和高的概念,正确运用数形结合思想是解题的关键.21.要使四边形木架(用4根木条钉成)不变形,至少要再钉上几根木条?五边形木架和六边形木架呢?【分析】根据三角形的稳定性解答.【解答】解:如图,根据三角形的稳定性可知,要使四边形木架不变形,至少要再钉上1根木条,要使五边形木架不变形,至少要再钉上2根木条,要使六边形木架不变形,至少要再钉上3根木条.【点评】本题考查的是三角形的稳定性,当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.22.已知△ABC中,AB=6,BC=4,求AC的取值范围.【分析】根据三角形的第三边应大于两边之差,而小于两边之和进行分析求解.【解答】解:根据三角形的三边关系,得6﹣4<AC<6+4,∴2<AC<10.AC的取值范围是:2<AC<10.【点评】本题考查了求三角形第三边的范围,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.23.如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上几根木条?要使一个n边形(n≥4)木架在同一平面内不变形,至少还要再钉上几根木条?【分析】从一个多边形的一个顶点出发,能做(n﹣3)条对角线,把三角形分成(n﹣2)个三角形.【解答】解:根据三角形的稳定性,要使六边形木架不变形,至少再钉上3根木条;要使一个n边形木架不变形,至少再钉上(n﹣3)根木条.【点评】本题考查了多边形以及三角形的稳定性;掌握从一个顶点把多边形分成三角形的对角线条数是n﹣3.24.四边形ABCD中,∠A=145°,∠D=75°.(1)如图1,若∠B=∠C,试求出∠C的度数;(2)如图2,若∠ABC的角平分线BE交DC于点E,且BE∥AD,试求出∠C的度数;(3)①如图3,若∠ABC和∠BCD的角平分线交于点E,试求出∠BEC的度数.②在①的条件下,若延长BA、CD交于点F(如图4),将原来条件“∠A=145°,∠D=75°”改为“∠F=40°”,其他条件不变,∠BEC的度数会发生变化吗?若不变,请说明理由;若变化,求出∠BEC的度数.【分析】(1)先根据四边形内角和等于360°求出∠B+∠C的度数,再除以2即可求解;(2)先根据平行线的性质得到∠ABE的度数,再根据角平分线的定义得到∠ABC的度数,再根据四边形内角和等于360°求出∠BEC的度数;(3)①先根据四边形内角和等于360°求出∠ABC+∠BCD的度数,再根据角平分线的定义得到∠EBC+∠ECB的度数,再根据三角形内角和等于180°求出∠BEC的度数;②先根据三角形内角和等于180°求出∠FBC+∠BCF的度数,再根据角平分线的定义得到∠EBC+∠ECB的度数,再根据三角形内角和等于180°求出∠BEC的度数【解答】解:(1)∵四边形ABCD中,∠A=145°,∠D=75°,∴∠B+∠C=360°﹣(145°+75°)=140°,∵∠B=∠C,∴∠C=70°;(2)∵BE∥AD,∴∠ABE=180°﹣∠A=180°﹣145°=35°,∵∠ABC的角平分线BE交DC于点E,∴∠ABC=70°,∴∠C=360°﹣(145°+75°+70°)=70°;(3)①∵四边形ABCD中,∠A=145°,∠D=75°,∴∠B+∠C=360°﹣(145°+75°)=140°,∵∠ABC和∠BCD的角平分线交于点E,∴∠EBC+∠ECB=70°,∴∠BEC=180°﹣70°=110°;②不变.∵∠F=40°,∴∠FBC+∠BCF=180°﹣40°=140°,∵∵∠ABC和∠BCD的角平分线交于点E,∴∠EBC+∠ECB=70°,∴∠BEC=180°﹣70°=110°.【点评】本题考查了多边形内角与外角,解决的关键是综合运用四边形的内角和以及三角形的内角和、熟练运用平行线的性质和角平分线的定义.25.如图,五边形ABCDE的每个内角都相等,且∠1=∠2=∠3=∠4.AC与DE平行吗?请说明理由.【分析】由五边形ABCDE的内角都相等,先求出五边形的每个内角度数,再求出∠1=∠2=∠3=∠4=36°,从而求出∠CAD=108°﹣72°=36°,得出内错角相等,可得两直线平行.【解答】答:AC∥DE,理由:∵五边形ABCDE的内角和=540°,且每个内角都相等.∴∠B=∠BAE=∠E=108°.∵∠1=∠2=∠3=∠4.∴∠1=∠2=∠3=∠4==36°,∴∠CAD=108°﹣36°×2=36°,∴∠CAD=∠4,∴AC∥DE.【点评】本题主要考查了平行线的判定、正五边形的内角和以及正五边形的有关性质.解此题的关键是能够求出∠1=∠2=∠3=∠4=36°,和正五边形的每个内角是108°.26.(1)如图①,△OAB、△OCD的顶点O重合,且∠A+∠B+∠C+∠D=180°,则∠AOB+∠COD=180°;(直接写出结果)(2)连接AD、BC,若AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线.①如图②,如果∠AOB=110°,那么∠COD的度数为70°;(直接写出结果)②如图③,若∠AOD=∠BOC,AB与CD平行吗?为什么?【分析】(1)根据三角形内角和解答即可;(2)①由四边形的内角和为360°以及角平分线的定义可得∠AOB+∠COD=180°,据此解答即可;②由①得∠AOB+∠COD=180°,从而得出∴∠ADO+∠BOD=180°,可得∠AOD=∠BOC=90°,进而得出∠DAB+∠ADC=180°,可得AB∥CD.【解答】解:(1)∵∠AOB+∠COD+∠A+∠B+∠C+∠D=180°×2=360°,∠A+∠B+∠C+∠D=180°,∴∠AOB+∠COD=360°﹣180°=180°.故答案为180;(2)①∵AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线,∴,,,,∴∠OAB+∠OBA+∠OCD+∠ODC=,在四边形ABCD中,∠DAB+∠CBA+∠BCD+∠ADC=360°,∴∠OAB+∠OBA+∠OCD+∠ODC=,在△OAB中,∠OAB+∠OBA=180°﹣∠AOB,在△OCD中,∠OCD+∠ODC=180°﹣∠COD,∴180°﹣∠AOB+180°﹣∠COD=180°,∴∠AOB+∠COD=180°;∵∠AOB=110°,∴∠COD=180°﹣110°=70°.故答案为:70°;②AB∥CD,理由如下:∵AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线,∴,,,,∴∠OAB+∠OBA+∠OCD+∠ODC=,在四边形ABCD中,∠DAB+∠CBA+∠BCD+∠ADC=360°,∴∠OAB+∠OBA+∠OCD+∠ODC=,在△OAB中,∠OAB+∠OBA=180°﹣∠AOB,在△OCD中,∠OCD+∠ODC=180°﹣∠COD,∴180°﹣∠AOB+180°﹣∠COD=180°,∴∠AOB+∠COD=180°;∴∠ADO+∠BOD=360°﹣(∠AOB+∠COD)=360°﹣180°=180°,∵∠AOD=∠BOC,∴∠AOD=∠BOC=90°.在∠AOD中,∠DAO=∠ADO=180°﹣∠AOD=180°﹣90°=90°,∵,,∴,∴∠DAB+∠ADC=180°,∴AB∥CD.【点评】此题考查了三角形内角和定理、三角形外角的性质、平行线的性质以及角平分线的定义,掌握角平分线的性质和等量代换是解决问题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020八年级上册数学试卷
一、仔细选一选。
1.下列运算中,准确的是()
A、x3x3=x6
B、3x2÷2x=x
C、(x2)3=x5
D、(x+y2)2=x2+y4
2.下列图案中是轴对称图形的是()
3.下列各式由左边到右边的变形中,是分解因式的为()
A、a(x+y)=ax+ay
B、x2-4x+4=x(x-4)+4
C、10x2-5x=5x(2x-1)
D、x2-16+3x=(x-4)(x+4)+3x
4.下列说法准确的是()
A、0.25是0.5的一个平方根
B、负数有一个平方根
C、72的平方根是7
D、正数有两个平方根,且这两个平方根之和等于0
5.下列各曲线中不能表示y是x的函数的是()
6.如图,四点在一条直线上,再添一个条件仍不能证明⊿ABC≌⊿DEF的是()
A.AB=DE B..DF∥AC
C.∠E=∠ABC D.AB∥DE
7.已知,,则的值为()
A、9
B、
C、12
D、
8.已知正比例函数(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是()
9、打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机
经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排
水时洗衣机中的水量y(升)与时间x(分钟)之间满足某种函数关系,其函数图象大致为()
10.已知等腰三角形一边长为4,一边的长为10,则等腰三角形
的周长为()
A、14
B、18
C、24
D、18或24
11.在实数中,无理数的个数是()
A.1 B.2 C.3 D.4
12.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),
那么此一次函数的解析式为()
A.y=-x-2 B.y=-x-6 C.y=-x+10 D.y=-x-1
13.如果单项式与 x3ya+b是同类项,那么这两个单项式的积是()
A.x6y4 B.-x3y2 C.- x3y2 D.-x6y4
14.计算(-3a3)2÷a2的结果是()
A.9a4 B.-9a4 C.6a4 D.9a3
15.若m+n=7,mn=12,则m2-mn+n2的值是()
A.11 B.13 C.37 D.61
16.下列各式是完全平方式的是()
A.x2-x+ B.1+x2 C.x+xy+l D.x2+2a-l
17.一次函数y=mx-n的图象如图所示,则下面结论准确的是()
A.m0C.m>0,n>0 D.m>0,n-2且x≠1 D.x≥-2且x≠1
21.直线y=-2x+a经过(3,y1,)和(-2,y2),则y1与y2的
大小关系是()
A.y1>y2 B.y1<y2 C.y1=y2 D.无法确定
二、认真填写,试一试自己的身手
1.若a4ay=a19,则y=_____________.
2.计算:()2008×(- )2009×(-1)2007=_____________.
3.若多项式x2+mx+9恰好是另一个多项式的平方,则
m=_____________.
4.已知:,则x+y的算术平方根为_____________.
5.已知点A(-2,4),则点A关于y轴对称的点的坐标为
_____________.
6.周长为10cm的等腰三角形,腰长Y(cm)与底边长x(cm)之
间的函数关系式是_____________.
7.将直线y=4x+1的图象向下平移3个单位长度,得到直线
_____________.
8.已知a+ =3,则a2+ 的值是______________.
9.已知一次函数y=-x+a与y=x+b的图象相交于点(m,8),则
a+b=_____________.
10.已知直线y=x-3与y=2x+2的妄点为(-5,-8),则方程组
的解是_________.
11.如果直线y=-2x+k与两坐标轴所围成的三角形面积是9,则k
的值为_____________.
12.观察下列单项式:。