1大学物理1课后答案
大学物理课后习题1第一章答案

习题11.1选择题(1)一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为()(A)dtdr (B)dtr d (C)dtr d || (D)22)()(dtdy dt dx +答案:(D)。
(2)一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度()(A)等于零(B)等于-2m/s (C)等于2m/s (D)不能确定。
答案:(D)。
(3)一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为()(A)t R t R ππ2,2(B)tRπ2,0(C)0,0(D)0,2tRπ答案:(B)。
(4)质点作曲线运动,r表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,τa 表示切向加速度,下列表达式中,()①a t = d /d v ,②v =t r d /d ,③v =t S d /d ,④τa t =d /d v.(A)只有①、④是对的.(B)只有②、④是对的.(C)只有②是对的.(D)只有③是对的.答案:(D)。
(5)一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为υ,某一时间内的平均速度为v,平均速率为v ,它们之间的关系必定有:()(A)vv v,v == (B)v v v,v =≠ (C)vv v,v ≠≠ (D)vv v,v ≠= 答案:(D)。
1.2填空题(1)一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是;经过的路程是。
答案:10m;5πm。
(2)一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m ·s -1,则当t 为3s 时,质点的速度v=。
答案:23m·s -1.(3)一质点从静止出发沿半径R=1m 的圆周运动,其角加速度随时间t 的变化规律是α=12t 2-6t (SI),则质点的角速度ω=__________________;切向加速度τa =_________________.答案:4t 3-3t 2(rad/s),12t 2-6t (m/s 2)(4)一质点作直线运动,其坐标x 与时间t 的关系曲线如题1.2(4)图所示.则该质点在第___秒瞬时速度为零;在第秒至第秒间速度与加速度同方向.题1.2(4)图答案:3,36;(5)一质点其速率表示式为v s =+12,则在任一位置处其切向加速度a τ为。
大学物理1-6章课后习题答案1

二、课后习题解答1-1、一飞轮直径为0.2m ,质量为5.00kg ,t 边缘饶一轻绳,现用恒力拉绳子的一端,使其有静止均匀地加速,经0.50s 转速达10转/s 。
假定飞轮可看作实心圆柱体。
求; 飞轮的角加速度及在这段时间转过的转数 拉力及拉力所做的功从拉动后t=10s 时飞轮的角速度及边缘上一点的速度和切向加速度及发向速度。
解:,/1058.1,/6.12,/126,/1026.1)3(3.4921212125232202s m r a s m r a s m r v s t J J J J A t n t t z z z ⨯======⨯====-=ωβωβωωωωτ1-2、有一根长为l 、质量为m 的匀质细杆,两端各牢固的连接一个质量为m 的小球,整个系统可绕一过O 点并垂直于杆的水平轴无摩察的转动,如图。
当系统转到水平位置时,求: 系统所受的和力矩 系统的转动惯量 系统的角加速度解: (1)设垂直纸面向里为z 轴的正方向(即力矩的正方向),合力矩为两小球及杆的重力矩之和。
mgl M M M M lmg r g dr rg rgdm M l mlmg M lmg M F r M z z zz l l l l z zzz 4341243,4190,4/34/24/34/0=+'+'=∴======'-='=⨯=--⎰⎰杆右左杆右左杆所受重力矩:其中两小球所受重力矩:ρρρθ224/34/34/34/24/34/222483748731)41(,)43()2(ml J J J J ml r dr r dm r J l m J l m J z z zz l l l l l l z z z=+'+'=∴====='='---⎰⎰杆右左杆右左杆的转动惯量:两小球的转动惯量:转动惯量之和,小球的转动惯量和杆的系统的转动惯量等于两λλ(3)由转动定理lg J M J M z z z z 3736==⇒=ββ1-3、有一质量为m 1、 m 2(m 1>m 2)两物体分别悬挂在两个半径不同的组 合轮上,如图。
大学物理学课后习题答案

习题及解答(全)习题一1-1 |r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r -=∆; (2)t d d r 是速度的模,即t d d r ==v tsd d .t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆr ˆt r t d d d d d d r rr += 式中t rd d 就是速度径向上的分量,∴t r t d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d =,t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττ +=式中dt dv就是加速度的切向分量.(t tr d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jt y i t x t r a jt y i t x t r v222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a trv ==其二,可能是将22d d d d t r tr 与误作速度与加速度的模。
大学物理课后习题及答案(1-4章)含步骤解

,根据流量守恒
,
(2)当
(3)当
时,
时,
−
,整理可得:
可得
,即
,
图1-34所示为输液的装置。设吊瓶的截面积为1 ,针孔的截面积为2 ,且1 ≫ 2 ,开始时( = 0),吊瓶内上下
液面距针孔的高度分别为ℎ1 和ℎ2 ,求吊瓶内药液全部输完时需要的时间。
,则针孔的流量为
液体总体积为
Ԧ =
= 2Ԧ − 2 Ԧ = −2Ԧ
1s末和2s末质点的速度为: 1 = 2Ԧ − 2Ԧ(m ∙ s−1 ),2 = 2Ԧ − 4Ԧ(m ∙ s −1 );
1s末和2s末质点的加速度相等:Ԧ = −2Ԧ (m ∙ s−2 )
已知一质点做直线运动,其加速度Ԧ = 4 + 3 m ∙ s−2 , 开始运动时,0 = 5 m,
= 0.06(m)
(2)设弹簧最大压缩量为∆′ , 与碰撞粘在一起的速度为 ′,0 = ( +
) ′,代入已知条件可得 ′ = 4Τ11, + 压缩弹簧的过程中,机械能守恒,则
1
(
2
1
+ ) 2 = 2 ∆′2 ,得∆′ =
+
≈ 0.04(m)
(1)角加速度 =
由 =
∆
∆
=
0−2×1500÷60
50
由 =
=
2×1500
60
= 50 (rad ∙ s −1 )
= − (rad ∙ s−2 )
= −,得 = −,两边进行积分
得到 − 50 = − − 0,
大学物理上册-课后习题答案全解

第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13= 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23= 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:=Δx /Δt = 4(m·s -1).(2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:= [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为,并由上述资料求出量值.[证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2+ 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:.计算得加速度为:= (m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = (m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = (s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02= 2a s ,可得上升的最大高度为:h 1 = v y 02/2g = (m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = (m).根据自由落体运动公式s = gt 2/2,得下落的时间为:= (s). 因此人飞越的时间为:t = t 1 + t 2 = (s).人飞越的水平速度为;v x 0 = v 0cos θ = (m·s -1), 所以矿坑的宽度为:x = v x 0t = (m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = (m·s -1),落地速度为:v = (v x 2 + v y 2)1/2 = (m·s -1),与水平方向的夹角为:φ = arctan(v y /v x ) = º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程图,解得:.这里y = -70m,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t= (s).由此可以求解其它问题.1.4一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v/d t = -kv2,k为常数.(1)试证在关闭发动机后,船在t时刻的速度大小为;(2)试证在时间t内,船行驶的距离为.[证明](1)分离变数得,故,可得:.(2)公式可化为,由于v = d x/d t,所以:积分.因此.证毕.[讨论]当力是速度的函数时,即f = f(v),根据牛顿第二定律得f = ma.由于a = d2x/d t2,而 d x/d t = v,a = d v/d t,分离变数得方程:,解方程即可求解.在本题中,k已经包括了质点的质量.如果阻力与速度反向、大小与船速的n次方成正比,则d v/d t = -kv n.(1)如果n = 1,则得,积分得ln v = -kt + C.当t = 0时,v = v0,所以C = ln v0,因此ln v/v0 = -kt,得速度为:v = v0e-kt.而d v = v0e-kt d t,积分得:.当t = 0时,x = 0,所以C` = v0/k,因此.(2)如果n≠1,则得,积分得.当t = 0时,v = v0,所以,因此.如果n = 2,就是本题的结果.如果n≠2,可得,读者不妨自证.1.5 一质点沿半径为的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t3.求:(1)t = 2s时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值?(3)在哪一时刻,切向加速度和法向加速度恰有相等的值?[解答](1)角速度为ω = dθ/d t = 12t2= 48(rad·s-1),法向加速度为a n= rω2= (m·s-2);角加速度为β = dω/d t = 24t= 48(rad·s-2),切向加速度为a t= rβ = (m·s-2).(2)总加速度为a = (a t2 + a n2)1/2,当a t = a/2时,有4a t2 = a t2 + a n2,即.由此得,即,解得.所以 =(rad).(3)当a t = a n时,可得rβ= rω2,即: 24t = (12t2)2,解得:t = (1/6)1/3 = (s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为a = 20m·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为v 0x = v 0cos θ, v 0y = v 0sin θ.加速度的大小为a x = a cos α, a y = a sin α.运动方程为, . 即 ,.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);(s). 将t 代入x 的方程求得x = 9000m .[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 内下降的距离h = .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于,所以a t = 2h /Δt 2 = (m·s -2).物体下降3s 末的速度为v = a t t = (m·s -1),这也是边缘的线速度,因此法向加速度为= (m·s -2).1.8 一升降机以加速度·s -2上升,当上升速度为·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距.计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为;螺帽做竖直上抛运动,位移为. 由题意得h = h 1 - h 2,所以, 解得时间为= (s).算得h 2 = ,即螺帽相对于升降机外固定柱子的下降距离为.[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为; (2)如果气流的速度向东,证明来回飞行的总时间为; (3)如果气流的速度向北,证明来回飞行的总时间为. [证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v .(2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u ,所以飞行时间为 .(3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作向量三角形,其中沿AB 方向的速度大小为,所以飞行时间为. 证毕.图A B AB v v + uv - u A Bv u u vv1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?[解答]雨对地的速度等于雨对车的速度加车对地的速度,由此可作向量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 . 证毕.方法二:利用正弦定理.根据正弦定理可得,所以:,即 . 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.第二章 运动定律与力学中的守恒定律(一) 牛顿运动定律2.1 一个重量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度运动,的方向与斜面底边的水平约AB 平行,如图所示,求这质点的运动轨道.[解答]质点在斜上运动的加速度为a = g sin α,方向与初速度方向垂直.其运动方程为x = v 0t ,.将t = x/v 0,代入后一方程得质点的轨道方程为,这是抛物线方程.2.2 桌上有一质量M = 1kg 的平板,板上放一品质m = 2kg的另一物体,设物体与板、板与桌面之间的滑动摩擦因素均为μk = ,静摩擦因素为μs = .求:(1)今以水平力拉板,使两者一起以a = 1m·s -2的加速度运动,试计算物体与板、与桌面间的相互作用力;(2)要将板从物体下面抽出,至少需要多大的力?[解答](1)物体与板之间有正压力和摩擦力的作用.板对物体的支持大小等于物体的重力:N m = mg = (N), 这也是板受物体的压力的大小,但压力方向相反.物体受板摩擦力做加速运动,摩擦力的大小为:f m = ma = 2(N),这也是板受到的摩擦力的大小,摩擦力方向也相反.板受桌子的支持力大小等于其重力:N M = (m + M )g = (N), 这也是桌子受板的压力的大小,但方向相反.板在桌子上滑动,所受摩擦力的大小为:f M = μk N M = (N). 这也是桌子受到的摩擦力的大小,方向也相反.(2)设物体在最大静摩擦力作用下和板一起做加速度为a`的运动,物体的运动方程为图1h lα图 mf =μs mg = ma`,可得 a` =μs g .板的运动方程为F – f – μk (m + M )g = Ma`, 即 F = f + Ma` + μk (m + M )g= (μs + μk )(m + M )g ,算得 F = (N).因此要将板从物体下面抽出,至少需要的力.2.3 如图所示:已知F = 4N ,m 1 = ,m 2 = ,两物体与水平面的的摩擦因素匀为.求质量为m 2的物体的加速度及绳子对它的拉力.(绳子和滑轮品质均不计)[解答]利用几何关系得两物体的加速度之间的关系为a 2 = 2a 1,而力的关系为T 1 = 2T 2. 对两物体列运动方程得T 2 - μm 2g = m 2a 2, F – T 1 – μm 1g = m 1a 1. 可以解得m 2的加速度为 = (m·s -2),绳对它的拉力为= (N).2.4 两根弹簧的倔强系数分别为k 1和k 2.求证:(1)它们串联起来时,总倔强系数k 与k 1和k 2.满足关系关系式; (2)它们并联起来时,总倔强系数k = k 1 + k 2.[解答]当力F 将弹簧共拉长x 时,有F = kx ,其中k 为总倔强系数.两个弹簧分别拉长x 1和x 2,产生的弹力分别为 F 1 = k 1x 1,F 2 = k 2x 2. (1)由于弹簧串联,所以F = F 1 = F 2,x = x 1 + x 2, 因此 ,即:. (2)由于弹簧并联,所以F = F 1 + F 2,x = x 1 = x 2, 因此 kx = k 1x 1 + k 2x 2, 即:k = k 1 + k 2.2.5 如图所示,质量为m 的摆悬于架上,架固定于小车上,在下述各种情况中,求摆线的方向(即摆线与竖直线的夹角θ)及线中的张力T .(1)小车沿水平线作匀速运动; (2)小车以加速度沿水平方向运动;(3)小车自由地从倾斜平面上滑下,斜面与水平面成φ角; (4)用与斜面平行的加速度把小车沿斜面往上推(设b 1 = b ); (5)以同样大小的加速度(b 2 = b ),将小车从斜面上推下来.[解答](1)小车沿水平方向做匀速直线运动时,摆在水平方向没有受到力的作用,摆线偏角为零,线中张力为T = mg .(2)小车在水平方向做加速运动时,重力和拉力的合力就是合外力.由于tan θ = ma/mg , 所以 θ = arctan(a/g ); 绳子张力等于摆所受的拉力 :.(3)小车沿斜面自由滑下时,摆仍然受到重力和拉力,合力沿斜面向下,所以θ = φ; T = mg cos φ.(4)根据题意作力的向量图,将竖直虚线延长, 与水平辅助线相交,可得一直角三角形,θ是mb cos φ,邻边是mg + mb sin φ,由此可得: , 12图 2 图 (2)因此角度为; 而张力为 .(5)与上一问相比,加速度的方向反向,只要将上一结果中的b 改为-b 就行了.2.6 如图所示:质量为m =的小球,拴在长度l =的轻绳子的一端,构成一个摆.摆动时,与竖直线的最大夹角为60°.求: (1)小球通过竖直位置时的速度为多少?此时绳的张力多大? (2)在θ < 60°的任一位置时,求小球速度v 与θ的关系式.这时小球的加速度为多大?绳中的张力多大? (3)在θ = 60°时,小球的加速度多大?绳的张力有多大?[解答](1)小球在运动中受到重力和绳子的拉力,由于小球沿圆弧运动,所以合力方向沿着圆弧的切线方向,即F = -mg sin θ,负号表示角度θ增加的方向为正方向. 小球的运动方程为,其中s 表示弧长.由于s = Rθ = lθ,所以速度为 , 因此 , 即 v d v = -gl sin θd θ, (1) 取积分 , 得 ,解得:= (m·s -1). 由于:, 所以T B = 2mg = (N). (2)由(1)式积分得 ,当 θ = 60º时,v C = 0,所以C = -lg /2, 因此速度为.切向加速度为a t = g sin θ;法向加速度为 .由于T C – mg cos θ = ma n ,所以张力为T C = mg cos θ + ma n = mg (3cos θ – 1). (3)当 θ = 60º时,切向加速度为= (m·s -2),法向加速度为 a n = 0,绳子的拉力T = mg /2 = (N).[注意]在学过机械能守恒定律之后,求解速率更方便.2.7 小石块沿一弯曲光滑轨道上由静止滑下h 高度时,它的速率多大?(要求用牛顿第二定律积分求解)[解答]小石块在运动中受到重力和轨道的支持力,合力方向沿着曲线方向.设切线与竖直方向的夹角为θ,则F = mg cos θ.小球的运动方程为,s 表示弧长.由于,所以,图图因此v d v = g cosθd s= g d h,h表示石下落的高度.积分得,当h = 0时,v = 0,所以C = 0,因此速率为.2.8质量为m的物体,最初静止于x0,在力(k为常数)作用下沿直线运动.证明物体在x处的速度大小v = [2k(1/x– 1/x0)/m]1/2.[证明]当物体在直线上运动时,根据牛顿第二定律得方程利用v = d x/d t,可得,因此方程变为,积分得.利用初始条件,当x = x0时,v = 0,所以C = -k/x0,因此,即.证毕.[讨论]此题中,力是位置的函数:f = f(x),利用变换可得方程:mv d v = f(x)d x,积分即可求解.如果f(x) = -k/x n,则得.(1)当n = 1时,可得利用初始条件x = x0时,v = 0,所以C = ln x0,因此,即.(2)如果n≠1,可得.利用初始条件x = x0时,v = 0,所以,因此,即.当n = 2时,即证明了本题的结果.2.9一质量为m的小球以速率v0从地面开始竖直向上运动.在运动过程中,小球所受空气阻力大小与速率成正比,比例系数为k.求:(1)小球速率随时间的变化关系v(t);(2)小球上升到最大高度所花的时间T.[解答](1)小球竖直上升时受到重力和空气阻力,两者方向向下,取向上的方向为下,根据牛顿第二定律得方程,分离变数得,积分得.当t = 0时,v = v0,所以,因此,小球速率随时间的变化关系为.(2)当小球运动到最高点时v = 0,所需要的时间为.[讨论](1)如果还要求位置与时间的关系,可用如下步骤:由于v = d x/d t,所以,即,积分得,当t = 0时,x = 0,所以,因此 .(2)如果小球以v 0的初速度向下做直线运动,取向下的方向为正,则微分方程变为 ,用同样的步骤可以解得小球速率随时间的变化关系为.这个公式可将上面公式中的g 改为-g 得出.由此可见:不论小球初速度如何,其最终速率趋于常数v m = mg/k .2.10 如图所示:光滑的水平桌面上放置一固定的圆环带,半径为R .一物体帖着环带内侧运动,物体与环带间的滑动摩擦因子为μk .设物体在某时刻经A 点时速率为v 0,求此后时刻t 物体的速率以及从A 点开始所经过的路程.[解答]物体做圆周运动的向心力是由圆环带对物体的压力,即 N = mv 2/R .物体所受的摩擦力为f = -μk N ,负号表示力的方向与速度的方向相反.根据牛顿第二定律得, 即 : .积分得:.当t = 0时,v = v 0,所以, 因此 .解得 .由于 , 积分得,当t = 0时,x = x 0,所以C = 0,因此.2.11 如图所示,一半径为R 的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今逐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.[解答]珠子受到重力和环的压力,其合力指向竖直直径,作为珠子做圆周运动的向心力,其大小为:F = mg tg θ.珠子做圆周运动的半径为r = R sin θ.根据向心力公式得F = mg tg θ = mω2R sin θ,可得,解得 .(二)力学中的守恒定律2.12 如图所示,一小球在弹簧的弹力作用下振动.弹力F = -kx ,而位移x = A cos ωt ,其中k ,A 和ω都是常数.求在t = 0到t = π/2ω的时间间隔内弹力予小球的冲量.[解答]方法一:利用冲量公式.根据冲量的定义得d I = F d t = -kA cos ωt d t ,积分得冲量为 , 方法二:利用动量定理.小球的速度为v = d x/d t = -ωA sin ωt , 设小球的品质为m ,其初动量为p 1 = mv 1 = 0, 末动量为p 2 = mv 2 = -mωA ,图小球获得的冲量为I = p 2 – p 1 = -mωA ,可以证明k =mω2,因此I = -kA /ω.2.13一个质量m = 50g ,以速率的v = 20m·s -1作匀速圆周运动的小球,在1/4周期内向心力给予小球的冲量等于多少?[解答]小球动量的大小为p = mv ,但是末动量与初动量互相垂直,根据动量的增量的定义得:, 由此可作向量三角形,可得:.因此向心力给予小球的的冲量大小为= (N·s). [注意]质点向心力大小为F = mv 2/R ,方向是指向圆心的,其方向在 不断地发生改变,所以不能直接用下式计算冲量.假设小球被轻绳拉着以角速度ω = v/R 运动,拉力的大小就是向心力 F = mv 2/R = mωv , 其分量大小分别为 F x = F cos θ = F cos ωt ,F y = F sin θ = F sin ωt ,给小球的冲量大小为 d I x = F x d t = F cos ωt d t ,d I y = F y d t = F sin ωt d t , 积分得,,合冲量为,与前面计算结果相同,但过程要复杂一些.2.14 用棒打击质量,速率等于20m·s -1的水平飞来的球,球飞到竖直上方10m 的高度.求棒给予球的冲量多大?设球与棒的接触时间为,求球受到的平均冲力?[解答]球上升初速度为= 14(m·s -1),其速度的增量为= (m·s -1).棒给球冲量为I = m Δv = (N·s),对球的作用力为(不计重力):F = I/t = (N). 2.15 如图所示,三个物体A 、B 、C ,每个品质都为M ,B 和C 靠在一起,放在光滑水平桌面上,两者连有一段长度为的细绳,首先放松.B 的另一侧则连有另一细绳跨过桌边的定滑轮而与A 相连.已知滑轮轴上的摩擦也可忽略,绳子长度一定.问A 和B 起动后,经多长时间C 也开始运动?C 开始运动时的速度是多少?(取g = 10m·s -2)[解答]物体A 受到重力和细绳的拉力,可列方程Mg – T = Ma ,物体B 在没有拉物体C 之前在拉力T 作用下做加速运动, 加速度大小为a ,可列方程:T = Ma ,联立方程可得:a = g/2 = 5(m·s -2). 根据运动学公式:s = v 0t + at 2/2, 可得B 拉C 之前的运动时间;= (s).此时B 的速度大小为:v = at = 2(m·s -1).v x Δv v y物体A 跨过动滑轮向下运动,如同以相同的加速度和速度向右运动.A 和B 拉动C 运动是一个碰撞过程,它们的动量守恒,可得:2Mv = 3Mv`,因此C 开始运动的速度为:v` = 2v /3 = (m·s -1).2.16 一炮弹以速率v 0沿仰角θ的方向发射出去后,在轨道的最高点爆炸为质量相等的两块,一块沿此45°仰角上飞,一块沿45°俯角下冲,求刚爆炸的这两块碎片的速率各为多少?[解答] 炮弹在最高点的速度大小为v = v 0cos θ,方向沿水平方向. 根据动量守恒定律,可知碎片的总动量等于炮弹爆炸前的 总动量,可作向量三角形,列方程得, 所以 v` = v /cos45° = .2.17 如图所示,一匹马拉着雪撬沿着冰雪覆盖的弧形路面极缓慢地匀速移动,这圆弧路面的半径为R .设马对雪橇的拉力总是平行于路面.雪橇的品质为m ,它与路面的滑动摩擦因子为μk .当把雪橇由底端拉上45°圆弧时,马对雪橇做了多少功?重力和摩擦力各做了多少功?[解答]取弧长增加的方向为正方向,弧位移的大小为d s = R d θ.重力的大小为:G = mg ,方向竖直向下,与位移元的夹角为π + θ,所做的功元为,积分得重力所做的功为. 摩擦力的大小为:f = μk N = μk mg cos θ,方向与弧位移的方向相反,所做的功元为,积分得摩擦力所做的功为.要使雪橇缓慢地匀速移动,雪橇受的重力、摩擦力和马的拉力就是平衡力,即 , 或者 . 拉力的功元为:, 拉力所做的功为.由此可见,重力和摩擦力都做负功,拉力做正功.2.18 一品质为m 的质点拴在细绳的一端,绳的另一端固定,此质点在粗糙水平面上作半径为r 的圆周运动.设质点最初的速率是v 0,当它运动1周时,其速率变为v 0/2,求:(1)摩擦力所做的功; (2)滑动摩擦因子;(3)在静止以前质点运动了多少圈?[解答] (1)质点的初动能为:E 1 = mv 02/2,末动能为:E 2 = mv 2/2 = mv 02/8,动能的增量为:ΔE k = E 2 – E 1 = -3mv 02/8, 这就是摩擦力所做的功W .(2)由于d W = -f d s = -μk N d s = -μk mgr d θ,积分得: .图由于W = ΔE ,可得滑动摩擦因子为.(3)在自然坐标中,质点的切向加速度为:a t = f/m = -μk g ,根据公式v t 2 – v o 2= 2a t s ,可得质点运动的弧长为,圈数为 n = s/2πr = 4/3.[注意]根据用动能定理,摩擦力所做的功等于质点动能的增量:-fs = ΔE k , 可得 s = -ΔE k /f ,由此也能计算弧长和圈数。
大学物理一课外题型答案

质点运动学一、选择题D 1、某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作(A) 匀加速直线运动,加速度沿x 轴正方向(B) 匀加速直线运动,加速度沿x 轴负方向(C) 变加速直线运动,加速度沿x 轴正方向(D) 变加速直线运动,加速度沿x 轴负方向 B 2、一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中a 、b 为常量), 则该质点作(A) 匀速直线运动 (B) 变速直线运动 (C) 抛物线运动 (D)一般曲线运动 D. 3、 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,a 表示切向加速度,下列表达式中, (1) a t = d /d v , (2) v =t r d /d , (3) v =t S d /d (4) t a t =d /d v .(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的(C) 只有(2)是对的 (D) 只有(3)是对的C 4、某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为v 0,则速度v 与时间t 的函数关系是(A) 0221v v +=kt , (B) 0221v v +-=kt , (C) 02121v v +=kt , (D) 02121v v +-=kt C. 5、下列说法中,哪一个是正确的?(A) 一质点某时刻的瞬时速度是2 m/s ,说明它在此后1 s 内一定要经过2 m 的路程(B) 斜向上抛的物体,在最高点处的速度最小,加速度最大(C) 物体作曲线运动时,有可能在某时刻的法向加速度为零(D) 物体加速度越大,则速度越大二 填空题 i 21、一物体质量M =2 kg ,在合外力i t F )23(+= (SI )的作用下,从静止开始运动,式中i 为方向一定的单位矢量, 则当t=1 s 时物体的速度1v =_______ ___.20.1y x x =- 2. 一足球运动员踢出的初速度 010/v m s =,0v 与水平方向成45度角,不计空气阻力,此足球的轨迹方程为 。
2020年智慧树知道网课《大学物理(一)》课后章节测试满分答案》课后章》课后章

第一章测试1【判断题】(1分)物体的速率在减小,其加速度必在减小。
A.错B.对2【判断题】(1分)作曲线运动的质点的速度和位置矢量必定垂直。
A.对B.错3【判断题】(1分)作曲线运动的物体,必有向心加速度。
A.错B.对4【判断题】(1分)位移是位置矢量的增量。
A.对B.错5【判断题】(1分)质点运动的速率必等于速度的大小。
A.错B.对6【单选题】(1分)A.抛体运动.B.变速直线运动.C.一般曲线运动.D.匀速直线运动.7【单选题】(1分)几个不同倾角的光滑斜面,有共同的底边,顶点也在同一竖直面上.若使一物体(视为质点)从斜面上端由静止滑到下端的时间最短,则斜面的倾角应选A.60°.B.15°.C.30°.D.45°.【单选题】(1分)A.匀加速运动.B.匀减速运动.C.变加速运动.D.变减速运动.9【单选题】(1分)以下能够看作是质点的物体是A.在研究的问题中,物体的大小和形状都可以忽略不计的物体.B.质量很轻的物体一定可以当作质点.C.体积不大的物体D.太阳一定不能当作质点.10【单选题】(1分)物体作曲线运动时A.一定是速度大小变化的运动.B.一定有加速度.C.加速度可为零.D.可作匀速运动.第二章测试1【判断题】(1分)质点的动量发生了变化,则它的动能也一定发生变化。
A.对B.错2【判断题】(1分)物体的运动方向与合外力的方向总是相同的。
A.对B.错3【判断题】(1分)质点受到外力作用时,则它的动能一定会发生变化。
A.错B.对4【判断题】(1分)物体沿铅直平面内的光滑圆轨道作圆周运动,机械能守恒。
A.对B.错5【判断题】(1分)质点的动能大小跟所选择的惯性参考系无关。
A.错B.对6【单选题】(1分)一辆汽车从静止出发,在平直公路上加速前进的过程中,如果发动机的功率一定,阻力大小不变,那么,下面哪一个说法是正确的?A.汽车的加速度与它的速度成正比。
B.汽车的加速度是不变的。
(完整版)大学物理学(课后答案)第1章

(完整版)⼤学物理学(课后答案)第1章第1章质点运动学习题⼀选择题1-1 对质点的运动,有以下⼏种表述,正确的是[ ] (A)在直线运动中,质点的加速度和速度的⽅向相同(B)在某⼀过程中平均加速度不为零,则平均速度也不可能为零 (C)若某质点加速度的⼤⼩和⽅向不变,其速度的⼤⼩和⽅向可不断变化 (D)在直线运动中,加速度不断减⼩,则速度也不断减⼩解析:速度是描述质点运动的⽅向和快慢的物理量,加速度是描述质点运动速度变化的物理量,两者没有确定的对应关系,故答案选C 。
1-2 某质点的运动⽅程为)(12323m t t x +-=,则该质点作[ ] (A)匀加速直线运动,加速度沿ox 轴正向 (B)匀加速直线运动,加速度沿ox 轴负向 (C)变加速直线运动,加速度沿ox 轴正向 (D)变加速直线运动,加速度沿ox 轴负向解析:229dx v t dt ==-,18dva tdt==-,故答案选D 。
1-3 ⼀质点在平⾯上作⼀般曲线运动,其瞬时速度为v ,瞬时速率为v ,某⼀段时间内的平均速率为v ,平均速度为v ,他们之间的关系必定有[ ](A)v =v ,v =v (B)v ≠v ,v =v (C)v ≠v ,v ≠v (D)v =v ,v ≠v解析:瞬时速度的⼤⼩即瞬时速率,故v =v ;平均速率sv t=,⽽平均速度trv =,故v ≠v 。
答案选D 。
1-4 质点作圆周运动时,下列表述中正确的是[ ](A)速度⽅向⼀定指向切向,所以法向加速度也⼀定为零 (B)法向分速度为零,所以法向加速度也⼀定为零 (C)必有加速度,但法向加速度可以为零 (D)法向加速度⼀定不为零解析:质点作圆周运动时,2n t v dva a dtρ=+=+n t n t a e e e e ,所以法向加速度⼀定不为零,答案选D 。
1-5 某物体的运动规律为2dvkv t dt=-,式中,k 为⼤于零的常量。
当0t =时,初速为0v ,则速率v 与时间t 的函数关系为[ ](A)2012v kt v =+ (B)20112kt v v =+(C)2012v kt v =-+ (D)20112kt v v =-+解析:由于2dvkv t dt=-,所以020()vtv dv kv t dt =-?,得到20112kt v v =+,故答案选B 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习 题 一1-1 一质点在平面xOy 内运动,运动方程为t x 2=,2219t y -= (SI ).(1)求质点的运动轨道;(2)求s 1=t 和s 2=t 时刻质点的位置矢量;(3)求s 1=t 和s 2=t 时刻质点的瞬时速度和瞬时加速度;(4)在什么时刻,质点的位置矢量和速度矢量垂直?这时x 、y 分量各为多少?(5)在什么时刻,质点离原点最近?最近距离为多大?[解] 质点的运动方程t x 2=,2219t y -= (1)消去参数t ,得轨道方程为:22119x y -= ()0≥x(2)把s 1=t 代入运动方程,得j i j i r 172+=+=y x 把s 2=t 代入运动方程,得()j i j i r 1142219222+=⨯-+⨯=(3)由速度、加速度定义式,有4/d d ,0/d d 4/d d ,2/d d y y x x y x -====-====t v a t v a t t y v t x v所以,t 时刻质点的速度和加速度分别为=v j i j i t v v 42y x -=+j j i a 4y x -=+=a a所以,s 1=t 时,j i v 42-=,j a 4-= s 2=t 时,j i v 82-=,j a 4-= (4)当质点的位置矢量和速度矢量垂直时,有0=⋅v r即 ()[][]04221922=-⋅-+j i j i t t t 整理,得 093=-t t解得 01=t ; 32=t ;33-=t (舍去)m 19,0,s 011===y x t 时 m 1,m 6,s 322===y x t 时(5)任一时刻t 质点离原点的距离()()()222222192t t y x t r -+=+=令0d d =tr可得 3=t 所以,s 3=t 时,质点离原点最近 () 6.08m 3=r1-2 一粒子按规律59323+--=t t t x 沿x 轴运动,试分别求出该粒子沿x 轴正向运动;沿x 轴负向运动;加速运动;减速运动的时间间隔.[解] 由运动方程59323+--=t t t x 可得 质点的速度 ()()133963d d 2+-=--==t t t t txv (1)粒子的加速度 ()16d d -==t tva(2) 由式(1)可看出 当3s >t 时,0>v ,粒子沿x 轴正向运动; 当3s <t 时,0<v ,粒子沿x 轴负向运动.由式(2)可看出 当1s >t 时,0>a ,粒子的加速度沿x 轴正方向; 当1s <t时,0<a ,粒子的加速度沿x 轴负方向.因为粒子的加速度与速度同方向时,粒子加速运动,反向时,减速运动,所以,当s 3>t 或1s 0<<t 间隔内粒子加速运动,在3s 1s <<t 间隔内里粒子减速运动.1-3 一质点的运动学方程为2t x =,()21-=t y (S1).试求: (1)质点的轨迹方程;(2)在2=t s 时,质点的速度和加速度.[解] (1) 由质点的运动方程 2t x = (1)()21-=t y (2)消去参数t ,可得质点的轨迹方程 ()21-=x y(2) 由(1)、(2)对时间t 求一阶导数和二阶导数可得任一时刻质点的速度和加速度 t t x v 2d d x ==()12d d y -==t tyv 所以 ()j i j i v 122y x -+=+=t t v v (3)2d d 22x ==t x a 2d d 22y ==t ya 所以 j i a 22+= (4) 把2s =t 代入式(3)、(4),可得该时刻质点的速度和加速度. j i v 24+= j i a 22+=1-4 质点的运动学方程为t A x ωsin =,t B y ωcos =,其中 A 、B 、ω为正常数,质点的轨道为一椭圆.试证明质点的加速度矢量恒指向椭圆的中心.[证明] 由质点的运动方程 t A x ωs i n= (1) t B y ωc o s = (2) 对时间t 求二阶导数,得质点的加速度 t A t xa ωωsin d d 222x -== t B tya ωωcos d d 222y -==所以加速度矢量为 ()r j i a 22cos sin ωωωω-=+-=t B t A 可得加速度矢量恒指向原点——椭圆中心.1-5 质点的运动学方程为()j i r 222t t -+= (SI ),试求:(1)质点的轨道方程;(2) 2s =t 时质点的速度和加速度.[解] (1) 由质点的运动方程,可得t x 2= 22t y -=消去参数t ,可得轨道方程2412x y -=(2) 由速度、加速度定义式,有j i r v t t 22d /d -==j r a 2d /d 22-==t将2s =t 代入上两式,得j i v 42-= j a 2-=1-6 已知质点的运动学方程为t r x ωcos =,t r y ωsin =,ct z =,其中r 、ω、c 均为常量.试求:(1)质点作什么运动?(2)其速度和加速度? (3)运动学方程的矢量式.[解] (1) 质点的运动方程 t r x ωc o s = (1)t r y ωsin = (2)ct z = (3)由(1)、(2)消去参数t 得 222r y x =+此方程表示以原点为圆心以r 为半径的圆,即质点的轨迹在xoy 平面上的投影为圆. 由式(2)可以看出,质点以速率c 沿z 轴匀速运动.综上可知,质点绕z 轴作螺旋线运动. (2) 由式(1)、(2)、(3)两边对时间t 求导数可得质点的速度t r txv ωωsin d d x -==t r t yv ωωcos d d y ==c tz v ==d d z所以 k j i k j i v c t r t r v v v ++-=++=ωωωωcos sin z y x 由式(1)、(2)、(3)两边对时间求二阶导数,可得质点的加速度t r txa x ωωcos d d 222-==t r tya y ωωsin d d 222-==0z =a所以 j i k j i a t r t r a a a ωωωωsin cos 22z y x --=++= (3) 由式(1)、(2)、(3)得运动方程的矢量式k j i k j i r ct t r t r z y x ++=++=ωωsin cos1-7 湖中一小船,岸边的人用跨过高处的定滑轮的绳子拉船靠岸(如图所示).当收绳速度为0v 时,试问:(1)船的运动速度u 比v 大还是小?(2)若常量=v .船能否作匀速运动?如果不能,其加速度为何值? [解] (1) 由图知222h s L +=两边对t 求导数,并注意到h 为常数,得tsst L Ld d 2d d 2= 又 t su t L v d d ,d d -=-= 所以 su Lv = (1) 即1>=sL v u 因此船的速率u 大于收绳速率v .(2) 将(1)式两边对t 求导,并考虑到v 是常量 tust s u t L vd d d d d d += 所以 sa v u =-22即 ()32222sv h s v u a =-=1-8 质点沿x 轴运动,已知228t v +=,当8=t s 时,质点在原点左边52m 处(向右为x 轴正向).试求:(1)质点的加速度和运动学方程;(2)初速度和初位置;(3)分析质点的运动性质.[解] (1) 质点的加速度 t t v a 4/d d ==又 t x v /d d = 所以 t v x d d = 对上式两边积分,并考虑到初始条件得()⎰⎰⎰+==-tt x t t t v x 82852d 28d d所以 3.4573283-+=t t x因而质点的运动学方程为 33283.457t t x ++-= (2) 将0=t 代入速度表达式和运动学方程,得m/s 802820=⨯+=vm 3.457032083.45730-=⨯+⨯+-=x(3) 质点沿x 轴正方向作变加速直线运动,初速度为8m/s ,初位置为3.457-m.1-9 一物体沿x 轴运动,其加速度与位置的关系为x a 62+=.物体在0=x 处的速度为s m 10,求物体的速度与位置的关系.[解] 根据链式法则 x vvt x x v t v a d d d d d d d d ===()x x x a v v d 62d d +==对上式两边积分并考虑到初始条件,得 ()⎰⎰+=xvx x v v 010d 62d故物体的速度与位置的关系为100462++=x x v m1-10 一质点在平面内运动,其加速度j i a y x a a +=,且x a ,y a 为常量.(1)求t -v 和t -r 的表达式;(2)证明质点的轨迹为一抛物线.0=t 时,0r r =,0v v =.[解] 由 td d va =得 t d a v = 两边积分得⎰⎰=tvt 0d 0a v v因x a ,y a 为常量,所以a 是常矢量,上式变为t a v v =-0 即 t a v v +=0由 td d rv =得 ()t t t d d d 0a v v r +== 两边积分,并考虑到0v 和a 是常矢量,()⎰⎰+=tr t t 00d d 0a v r r即 20021t t a v r r ++=(2) 为了证明过程简单起见,按如下方式选取坐标系,使一个坐标轴(如y 轴)与a平行,并使质点在0=t 时刻位于0r .这样 00x t v x x += (1)00221y t v at y y ++=(2) 联立 (1)~(2)式,消去参数t 得()()00x0y 0202x 021y x x v v x x v a y +-+-=此即为轨道方程,它为一条抛物线.1-11 在重力和空气阻力的作用下,某物体下落的加速度为Bv g a -=,g 为重力加速度,B 为与物体的质量、形状及介质有关的常数.设0=t 时物体的初速度为零.(1)试求物体的速度随时间变化的关系式;(2)当加速度为零时的速度(称为收尾速度)值为多大?[解] (1) 由tva d d =得 t Bvg vd d =-两边分别积分,得⎰⎰=-t vt Bvg v0d d所以,物体的速率随时间变化的关系为:()Bt e Bgv --=1 (2) 当0=a 时 有 0=-=Bv g a (或以∞=t 代入)由此得收尾速率 Bg v =1-12 一质点由静止开始作直线运动,初始加速度为a ,此后随t 均匀增加,经时间τ后,加速度变为2a ,经τ2后,加速度变为3a ,…….求经时间τn 后,该质点的加速度和所走过的距离.[解] 由题意可设质点的加速度与时间t 的关系为kt a a +=t (k 为常数)由 a k a a 2τ=+=τ得τak =所以 a t t aa a ⎪⎭⎫⎝⎛+=+=ττ1t 故当τn t =时,质点的加速度 ()a n a 1n τ+=由tv a d d =得 t a v d d =对上式两边积分得⎰⎰⎪⎭⎫ ⎝⎛+=t vt a t v 00d 1d τ 所以 22t a at v τ+= 又 txv d d = t v x d d = 对上式两边积分⎰⎰⎪⎭⎫ ⎝⎛+=ττn st t a at x 020d 2d 经过时间τn 后,质点所走过的距离()2232361621τττa n n t a at s n +=⎪⎭⎫ ⎝⎛+=1-13 一物体悬挂于弹簧上沿竖直方向作谐振动,其加速ky a -=,k 为常数,y 是离开平衡位置的坐标值.设0y 处物体的速度为0v ,试求速度v 与y 的函数关系.[解] 根据链式法则 y v v t y y v t v a d d d d d d d d ===y a v v d d =对上式两边积分⎰⎰⎰-==y y y y v y ky y a v v 0d d d v即 ()()2022022121y y k v v --=- 故速度v 与y 的函数关系为()220202y y k v v -+=1-14 一艘正以速率0v 匀速行驶的舰艇,在发动机关闭之后匀减速行驶.其加速度的大小与速度的平方成正比,即2kv a -=, k 为正常数.试求舰艇在关闭发动机后行驶了x 距离时速度的大小.[解] 根据链式法则 xvvt x x v t v a d d d d d d d d === v avx d d =对上式两边积分⎰⎰⎰-==v v vv xkv v v avx 00d d d 0化简得ln 1v vk x -= 所以kx e v v -=0l-15 一粒子沿抛物线轨道2x y =运动,且知s m 3x =v .试求粒子在m 32=x 处的速度和加速度.[解] 由粒子的轨道方程 2x y = 对时间t 求导数 x y 2d d 2d d xv txx t y v ===(1) 再对时间t 求导数,并考虑到x v 是恒量2x y 2d d v tv a ==(2)把m 32=x 代入式(1)得 m 43322y =⨯⨯=v所以,粒子在m 32=x 处的速度为 m 543222x 2x =+=+=v v v与x 轴正方向之间的夹角85334arctanarctan0xy '===v v θ 由式(2)得粒子在m 32=x 处的加速度为 22m 1832=⨯=a加速度方向沿y 轴的正方向.1-16 一质点沿半径为0.10m 的圆周运动,其角位置342t +=θ.(1)在2s =t 时,它的法向加速度和切向加速度各是多少?(2)切向加速度的大小恰是总加速度大小的一半时,θ值为多少?(3)何时切向加速度与法向加速度大小相等?[解] 质点的角速度 212d d t t==θω质点的线速度 222.11210.0t t R v =⨯==ω 质点的法向加速度n a ,切向加速度t a 为()4222n 4.1410.012t t R a =⨯==ω (1)t tva 4.2d d t ==(2) (1)把2s =t 代入(1)式和(2)式,得此时2t 224n m/s8.424.2m/s 103.224.14=⨯=⨯=⨯=a a(2)质点的总加速度1364.262t 2n +=+=t t a a a由 a a 21t =得 1364.25.04.26+⨯=t t t 解得 0.66s =t 所以 rad 15.3423=+=t θ (3)当t n a a =即t t 4.24.144=时有 0.55s =t1-17 火车在曲率半径R =400m 的圆弧轨道上行驶.已知火车的切向加速度2.0t =a 2m ,求火车的瞬时速率为m 10时的法向加速度和加速度.[解] 火车的法向加速度 222n s m 25.040010===R v a 方向指向曲率中心火车的总加速度 2222t 2n s m 32.02.025.0=+=+=a a a设加速度a 与速度v 之间的夹角为θ,则025134.512.025.0arctan arctan00t n '====a a θ1-18 为了转播电视而发射的地球同步卫星在赤道上空的圆轨道上运动,周期等于地球的自转周期24h =T .求卫星离开地面的高度和卫星的速率(距地球中心r 处的重力加速度2e ⎪⎭⎫⎝⎛=r R g a ,e R 是地球的半径.) [解] 设同步卫星距地球的中心为r ,速率为v ,则Trv π2=(1)2e 2⎪⎭⎫ ⎝⎛==r R g a r v (2) 解(2)式可得()()m 1022.443600241063788.947322233222e ⨯=⨯⨯⨯⨯==ππT gR r 代入(1)式可得s m 1007.33600241022.42237⨯=⨯⨯==ππT r v所以,卫星距地面的高度m 1058.31063781022.4737e ⨯=⨯-⨯=-=R r h1-19 若登月舱在登上月球之前绕月球以半径e 31R r = (e R 为地球半径)作圆周运动,并且已知这时月球对登月舱的引力加速度g a 121=.试计算登月舱的速率和飞行一周所需要的时间.[解] 设登月舱的速率为v ,周期为T ,则a r v =2 即g R v 1213e 2= (1) v T r=π2 即v TR =32e π (2) 解(1)式可得s m 1032.1106378368.93633e ⨯=⨯⨯==R g v 代入(2)式可得s 1001.1368.931063782363243e ⨯=⨯==ππg R T1-20 如图所示,一卷扬机自静止开始作匀加速运动,绞索上一点起初在A 处经3s 到达鼓轮的B 处,然后作圆周运动.已知0.45m =AB ,鼓轮半径0.5m =R ,求该点经过点C 时,其速度和加速度的大小和方向.[解] 设A 点的切向加速度为t a ,经过B 点时的速率为B v ,法向加速度为n a由A 到B 过程:2t 21t a AB =(1)t a v t B = (2)在B 点: R a R v //t B B ==βω, (3)由B 到C 过程:πβωω22B 2C =- (4)在C 点: R v C C ω= (5) 联立以上五式,得m 64.05.035.045.0435.045.02422222C C =⨯⨯⨯+⎪⎭⎫ ⎝⎛⨯⨯=+⎪⎭⎫ ⎝⎛==ππωR Rt AB Rt AB R v 方向沿切向R v a 2C n = 2t 2tAB a =22222n2t m 83.05.064.0345.02=⎪⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛⨯=+=a a a 28330.4520.50.64arctan arctan 022n t '=⨯==a a θ1-21 在一个转动的齿轮上,一个齿尖P 沿半径为R 的圆周运动,其路程随时间的变化规律为2021bt t v s +=,其中0v 和b 都是正常量.求t 时刻齿尖P 的速度及加速度的大小. [解] 设时刻t 齿尖P 的速率为v ,切向加速度t a ,法向加速度n a ,则Rbt v R v a b tv a bt v t sv 202n t 0)(d d d d +====+==所以,t 时刻齿尖P 的加速度为24022n2t)(R bt v b a a a ++=+=1-22 一物体作斜抛运动,抛射角为α,初速度为0v ,轨迹为一抛物线(如图所示).试分别求抛物线顶点A 及下落点B 处的曲率半径.[解] 物体在A 点的速度设为A v ,法向加速度为nA a ,曲率半径为A ρ,由题图显然有αcos 0A v v = (1) nA a =g (2)A n A2Aa v =ρ (3)联立上述三式得 gv αρ220A c o s =物体在B 点的速度设为B v ,法向加速度为nB a ,曲率半径为B ρ,由题图显然有0B v v = (4) αcos nB g a = (5)nB B2Ba v =ρ (6)联立上述三式得 αρcos 20B g v =1-23 一物体作如图所示的抛体运动,测得轨道的点A 处,速度的大小为v ,其方向与水平线的夹角为030,求点A 的切向加速度和该处的曲率半径.[解] 设A 点处物体的切向加速度为t a ,法向加速度为n a ,曲率半径为ρ,则 n t a a g +=由图知 g g a 5.030sin 0t -=-=2/330cos 0n g g a ==又 n 2a v =ρ 所以 g v g v a v 3322/322n 2===ρ1-24 一门火炮在原点处以仰角0130=θ、初速10v m 100=发射一枚炮弹.另有一门位于600=x m 处的火炮同时以初速8020=v s m 发射另一枚炮弹,其仰角2θ为何值时,可望能与第一枚炮弹在空中相碰? 相碰时间和位置如何(忽略空气阻力的影响)?[解] 设经过时间t 后,炮弹1、炮弹2的坐标分别为()11,y x 、()22,y x ,则对炮弹1 t v x 1101cos θ= 2110121sin gt t v y -=θ 对炮弹2 t v x x 22002cos θ+= 2220221sin gt t v y -=θ当炮弹1、炮弹2相碰时 21x x = 21y y =即 t v x t v 2200110cos cos θθ+= (1)2220211021sin 21sin gt t v gt t v -=-θθ (2)解(2)式可得 625.030sin 80100sin sin 0120102=⨯==θθv v (3) 所以 02682.38625.0arcsin ==θ 由(1)式可得 s 48.2682.38cos 8030cos 10060cos cos 002201100=⨯-⨯=-=θθv v x t 相遇时的坐标设为(x ,y ),则m 77.21448.230cos 100cos 011021=⨯⨯====t v x x x θm 86.9348.28.92148.230sin 10021sin 20211021=⨯⨯-⨯⨯=-===gt t v y y y θ1-25 河宽为d ,靠河岸处水流速度变为零,从岸边到中流,河水的流速与离开岸的距离成正比地增大,到中流处为0v .某人以相对水流不变的速率v 垂直水流方向驶船渡河,求船在达到中流之前的轨迹方程.[解] 取图示坐标系ky v =x已知 2dy =时,0x v v = 代入上式得 d vk 02=所以 y dvv 0x 2= (1)又 v v =y积分得 vt y = (2) 代入(1)式得 vt dv v 0x 2=积分得 20vt d v x = (3) 由(2)、(3)消去t 得 20y vdvx =1-26 如图所示,一航空母舰正以s m 17的速度向东行驶,一架直升飞机准备降落在舰的甲板上.海上有s m 12的北风吹着.若舰上的海员看到直升飞机以s m 5的速度垂直下降,求直升飞机相对海水及相对空气的速度?[解] 已知 k v 5-=机对舰 j v 17=舰对海 i v 12=气对海 故 ()s m 175j k v v v +-=+=舰对海机对舰机对海()s m 51712k j i v v v -+-=+=海对气机对海机对气习题 1-26 图。