射影定理和内接矩形知识点归纳,九年级上册数学射影定理和内接矩形典型例题讲解及答案解析
射影定理PPT课件

4
4
(4)CD= 3 cm,BC= 2 3cm.
你都做对 了吗?
你都弄懂了吗?
(1)在RtABC 中,CD为斜边AB上的高,图中共有6条线段
AC,BC,CD,AD,DB,AB 已知任意两条,便可求出其余四条. (2)射影定理中每个乘积式中,含三条线段,若已知两条 可求第三条. (3)解题过程中,注意和勾股定理联系,选择简便方法.
AC BC
AD CD
CA CD CB AD
3.不能。只能证明 CDB ∽
ACB
。
CDAB
若已知 ABC是直角三角形。ACB 90, 则能推出
。
直角三角形中的成比例线段
•运用射影定理时,注意前提条件
•求边注意联系方程与勾股定理
•如图中共有6条线段,已知任意2条,
求其余线段。
B A
A B’
A’ B’ l
A’
l B
直角三角形中的成比例线段
A B
A’ B’ l
如图,CD是 RtABC的斜边AB的高线 这里:AC、BC为直角边,AB为斜边, CD是斜边上的高 AD是直角边AC在斜边AB上的射影, A
BD是直角边BC在斜边AB上的射影。
C DB
直角三角形中的成比例线段
由复习得:
CEF ∽ CBA.
例2. 如图,在 ABC中, CDAB于D, DEAC于E,
DFBC于F,求证 : CEF∽ CBAC.
F
证法二:
1
RtCDF中,CD为外接圆的直径
RtCDE中,CD为外接圆的直径
E2 AD
四边形CEDF为圆内接四边形 1 2
RtCDB
例2. 如图,在 ABC中, CDAB于D, DEAC于E,
中考数学射影定理实例解析

中考数学射影定理实例解析1.如图,在Rt△ABC中,∠C=90°,CD⊥AB,BE平分∠ABC交CD于F,EH⊥CD于H,则下列结论正确的结有():①CD²=AD·BD;②AC²+BD²=BC²+AD²;③B+B B=1④若F为BE中点,则AD=3BDA.1个B.2个C.3个D.4个解:①∵∠ACB=90°,CD⊥AB,∴△ACD~△CBD,即CD²=AD-DB,故①正确②∵AC²-AD²=BC²-BD²=CD²∴AC²+BD²=BC²+AD²故②正确③作EM⊥AB,则BD+EH=BM∵BE平分∠ABC,ABCE=△BEM∴BC=BM=BD+EH,所以B+B B=1故③正确:④若F为BE中点,则CF=EF=BF,∴∠BCD=∠CBF=∠DBF=30°,∠A=30°∴AB=2BC=4BD∴AD=3BD。
答案:D2.如图,PA、PB是⊙O的切线,A、B为切点,OP交AB于点D,交⊙O于点C,在线段AB、PA、PB、PC、CD中,已知其中两条线段的长,但还无法计算出⊙O直径的两条线段是() A.AB,CD B.PA,PC C.PA,AB D.PA,PB解:A、构造一个由半径、半弦、弦心距组成的直角三角形,根据垂径定理以及勾股定理即可计算:B、根据切割线定理即可计算;C、首先根据垂径定理计算AD的长,再根据勾股定理计算PD的长,连接OA,根据射影定理计算OD的长,最后根据勾股定理即可计算其半径;D、根据切线长定理,得PA=PB.相当于只给了一条线段的长,无法计算出半径的长答案:D3.如图,AB是半圆O的直径,点D是AB上任意一点(不与点A,B重合),作CD⊥AB与半圆交于点C,设AD=a,BD=b,则下列选项正确的是()A.r2>BB.r2≥BC.r2<BD.r2≤B解:连接AC,BC,∵AB为直径,AB=AD+BD=a+b.∴∠ACD=90°∴∠A+∠B=90°∵CD⊥AB,∴∠ACD=∠CDB∴∠A+∠ACD=90°,∴∠ACD=∠B.∴△ACD~△CBD∴B B=B B即B=B∴CD=B答案:B4.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是弧AD的中点,弦CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q,连接AC,给出下列结论:①∠DAC=∠ABC:②AD=CB:③点P是ACQ的外心:④AC²=AE·AB;⑤CB||GD,其中正确的结论是()A.①③⑤B.②④⑤C.①②⑤D.①③④解∵在⊙O中,点C是AD的中点,∴AC=CD∴∠CAD=∠ABC,故①正确;∵AC≠BD,∴AD≠BC.∴AD≠BC,故②错误∵∠ACQ=90°,∵AB是OO的直径,∴∠ACB=90°又·*CE⊥AB,∴∠ACE+∠CAE=∠ABC+∠CAE=90°∴∠ACE=∠ABC又∵C为AD的中点,∴AC=CD∴∠CAP=∠ABC∴∠ACE=∠CAP,∴AP=CP,∴∠ACP+∠PCQ=∠CAP+∠POC=90°∴∠PCQ=∠POC,∴PC=PQ∴AP=PQ,即P为Rt△ACQ斜边AQ的中点∴P为Rt△4CQ的外心,故③正确;∵AB是OO的直径,∴∠ACB=90°,又∵CE⊥AB∴根据射影定理,可得AC²=AE-AB,故④正确如图,连接BD,则∠ADG=∠ABD∵AC≠BD.∴AD≠BC,∴∠ABD≠∠BAC,∴∠ADG≠∠BAC又∵∠BAC=∠BCE=∠PQC,∴∠ADG≠∠PQC∴CB与GD不平行,故⑤错误.答案:D5.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,AC=8,AB=10,则AD等于()A.4.4B.5.5C.6.4D.7.4解:∵∠ACB=90°,CD⊥AB,∴AC²=AD·AB∴AD=8·810=6.4答案:C6.如图所示,在△ABC中,∠C=90°,D为BC边的中点,DE⊥AB于E,则AE²-BE²等于()A.AC²B.BD²C.BC²D.DE²解:作AB的中点F,连接DF,则DF||AC DF=12AC在RT△BDF中,又DE⊥AB,得△DEF~△BDF∴E E=E E即EF·BF=DF2=14AC2∴AE²-BE²=(AE+BE)·(AE-BE)=AB·2EF=4EF·BF=AC²答案:A7.如图,在正方形ABCD内,以D点为圆心,AD长为半径的弧与以BC为直径的半圆交于点P,延长CP、AP交AB、BC于点M、N.若AB=2,则AP等于()解:如图,设点S为BC'的中点,连接DP,DS,DS与PC'交于点H,作PE⊥BC于点E,PF⊥AB于点F,∴DP=CD=2,PS=CS=1即DS是PC的中垂线∴△DCS=△DPS∴∠DPS=∠DCB=90°.∴DS=DC²+CS²=2²+1=5∵BC为直径∴∠CPB=90°∴PB=B C²+P C²=255∴PE=FB=B·B B=45∴PF=BE=PB²+PE²=25∴AF=AB-FB=65∴AP=AF²+PF²=答案:B8.如图,点P是OO的直径BA延长线上一点,PC与OO相切于点C,CD⊥AB,垂足为D,连接AC、BC、OC,那么下列结论:①PC²=PA·PB:②PC·OC=OP·CD③OA²=OD·OP;④OA(CP-CD)=AP·CD,正确的结论有()个。
射影定理

射影定理直角三角形射影定理,又称“欧几里德定理”,定理内容是直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项,每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
公式表达为:如右图,在Rt△ABC中,∠ACB=90°,cd是斜边ab上的高,则有射影定理如下:①CD²;=AD·DB,②BC²=BD·BA ,③AC²=AD·AB ;④AC·BC=AB·CD (等积式,可用面积来证明)1概述射影定理直角三角形射影定理(又叫欧几里德(Euclid)定理):直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
公式Rt△ABC中,∠ACB=90°,cd是斜边ab上的高,则有射影定理如下:(1)(CD)^ 2;=AD·DB, (2)(BC)^2;=BD·BA , (3)(AC)^2;=AD·AB 。
等积式(4)ACXBC=ABXCD(可用面积来证明)2直角三角形所谓射影,就是正投影。
直角三角形射影定理(又叫欧几里德(Euclid)定理):直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
[1]公式: 如图,Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射影定理如下:(1)(BD)^2=AD·DC,(2)(AB)^2=AD·AC ,(3)(BC)^2=CD·CA。
等积式(4)AB×BC=AC×BD(可用“面积法”或相似来证明)(5)(AB)^2/(BC)^2=AD/CD [1]直角三角形射影定理的证明射影定理简图(几何画板):(主要是从三角形的相似比推算来的)一、在△BAD与△BCD中,∵∠ABD+∠CBD=90°,且∠CBD+∠C=90°,∴∠ABD=∠C,又∵∠BDA=∠BDC=90°∴△BAD∽△CBD∴AD/BD=BD/CD即BD²=AD·DC。
初三数学知识点剖析—期末冲刺:射影定理

即 DE2 = BE CE . 【点评】此题主要考查了相似三角形的判定与性质,根据已知得出∠B=∠1 是解题关键.
例 4:【分析】要证线段乘积式相等,常常先证比例式成立,要证比例式,须有三角形相似,要证三角形相 似,须根据已知与图形找条件就可.
【解答】 证明:连接 PC, ∵AB=AC,AD 是中线, ∴AD 所在直线是△ABC 的垂直平分线. ∴PC=PB,∠PCE=∠ABP. ∵CF∥AB,∴∠PFC=∠ABP, ∴∠PCE=∠PFC 又∵∠CPE=∠EPC, ∴△EPC∽△CPF ∴ PC = PF
2.证明过程: ∵ CD ⊥ AB ∴ DCA + CAB = 90 又∵ Rt ABC 中 CBA + CAB = 90 ∴ DCA = CBA 又∵ CDA = BDC ∴ ACD CBD ∴ CD = BD 即 CD2 = AD BD
DA DC
∵ Rt ABC 中 BCD + DCA = 90 , A + DCA = 90 ∴ A = BCD 又∵ CDA = BCA ∴ ACD ABC ∴ AC = AB 即 AC2 = AB AD
例 3:【分析】利用垂直平分线的性质得出 AE=DE,进而利用外角的性质得出∠B=∠1,即可得出△ACE∽ △BAE,即可得出答案.
【解答】证明:连接 AE, ∵AD 的垂直平分线交 AD 于 E, ∴AE=DE, ∴∠1+∠2=∠4, ∵∠B+∠3=∠4, ∠2=∠3,
∴∠B=∠1, ∵∠AEB=∠CEA, ∴△ACE∽△BAE, ∴ AE = CE ,
AD AC
∵ ACD ABC , ACD CBD ∴ ABC CBD ∴ BC = BD 即 BC2 = AB BD .
射影定理模型(解析版)-2023年中考数学重难点解题大招复习讲义-几何模型篇

模型介绍1.射影定理定义①直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项.②每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.2.如图在Rt △ABC 中,∠BAC =90°,AD 是斜边BC 上的高,有射影定理如下: 注意:直角三角形斜边上有高时,才能用射影定理!例题精讲【例1】.在矩形ABCD 中,BE ⊥AC 交AD 于点E ,G 为垂足.若CG =CD =1,则AC 的长是.①AD 2=BD •DC ;②AB 2=BD •BC ;AC 2=CD •BC .解:∵四边形ABCD是矩形,∴AB=CD=1,∠ABC=90°,∵BE⊥AC,∴∠AGB=90°=∠ABC,∵∠BAG=∠CAB,∴△ABG∽△ACB,∴=,∴AG•AC=AB2(射影定理),即(AC﹣1)•AC=12,解得:AC=或AC=(不合题意舍去),即AC的长为,故答案为:.【例2】.如图:二次函数y=ax2+bx+2的图象与x轴交于A、B两点,与y轴交于C点,若AC⊥BC,则a的值为()A.﹣B.﹣C.﹣1D.﹣2解:设A(x1,0)(x1<0),B(x2,0)(x2>0),C(0,t),∵二次函数y=ax2+bx+2的图象过点C(0,t),∴t=2;∵AC⊥BC,∴OC2=OA•OB(射影定理),即4=|x1x2|=﹣x1x2,根据韦达定理知x1x2=,∴a=﹣.故选:A.【例3】.将沿弦BC折叠,交直径AB于点D,若AD=4,DB=5,则BC的长是()A.3B.8C.D.2解:连接CA、CD;根据折叠的性质,知所对的圆周角等于∠CBD,又∵所对的圆周角是∠CBA,∵∠CBD=∠CBA,∴AC=CD(相等的圆周角所对的弦相等);∴△CAD是等腰三角形;过C作CE⊥AB于E.∵AD=4,则AE=DE=2;∴BE=BD+DE=7;在Rt△ACB中,CE⊥AB,根据射影定理,得:BC2=BE•AB=7×9=63;故BC=3.故选:A.变式训练【变式1】.如图,在△ABC中,若AB=AC,BC=2BD=6,DE⊥AC,则AC•EC的值是9.解:如图,∵在△ABC中,若AB=AC,BC=2BD=6,∴AD⊥BC,CD=BD=3.又DE⊥AC,∴∠CED=∠CDA=90°.∵∠C=∠C,∴△CDE∽△CAD.∴=,即AC•EC=CD2=9.(射影定理)故答案是:9.【变式2】.如图所示,在矩形ABCD中,AE⊥BD于点E,对角线AC,BD交于O,且BE:ED=1:3,AD=6cm,则AE=cm.解:设BE=x,因为BE:ED=1:3,故ED=3x,根据射影定理,AD2=3x(3x+x),即36=12x2,x2=3;由AE2=BE•ED,AE2=x•3x;即AE2=3x2=3×3=9;AE=3.【变式3】.如图,若抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,若∠OAC=∠OCB.则ac的值为()A.﹣1B.﹣2C.D.解:设A(x1,0),B(x2,0),C(0,c),∵二次函数y=ax2+bx+c的图象过点C(0,c),∴OC=c,∵∠OAC=∠OCB,OC⊥AB,∴△OAC∽△OCB,∴,∴OC2=OA•OB(即射影定理)即|x1•x2|=c2=﹣x1•x2,令ax2+bx+c=0,根据根与系数的关系知x1•x2=,∴,故ac=﹣1,故选:A.【变式4】.如图,正方形ABCD中,E为AB上一点,AF⊥DE于点F,已知DF=5EF=5,过C、D、F的⊙O与边AD交于点G,则DG=____________.解:连接CF、GF,如图:在正方形ABCD中,∠EAD=∠ADC=90°,AF⊥DE,∴△AFD∽△EAD,∴=,又∵DF=5EF=5,∴AD====CD,在Rt△AFD中,AF===,∵∠CDF+∠ADF=90°,∠DAF+∠ADF=90°,∴∠DAF=∠CDF,∵四边形GFCD是⊙O的内接四边形,∴∠FCD+∠DGF=180°,∵∠FGA+∠DGF=180°,∴∠FGA=∠FCD,∴△AFG∽△DFC,∴=,∴=,∴AG=,∴DG=AD﹣AG=﹣【变式5】.如图,在△ABC中,以AC边为直径的⊙O交BC于点D,过点B作BG⊥AC 交⊙O于点E、H,连AD、ED、EC.若BD=8,DC=6,则CE的长为2.解:∵AC为⊙O的直径,∴∠ADC=90°,∵BG⊥AC,∴∠BGC=∠ADC=90°,∵∠BCG=∠ACD,∴△ADC∽△BGC,∴=,∴CG•AC=DC•BC=6×14=84,连接AE,∵AC为⊙O的直径,∴∠AEC=90°,∴∠AEC=∠EGC=90°,∵∠ACE=∠ECG,∴△CEG∽△CAE,∴=,∴CE2=CG•AC=84,∴CE=2.故答案为2.【变式6】.如图,四边形ABCD是平行四边形,过点A作AE⊥BC交BC于点E,点F在实战演练BC 的延长线上,且CF =BE ,连接DF .(1)求证:四边形AEFD 是矩形;(2)连接AC ,若∠ACD =90°,AE =4,CF =2,求EC 和AC的长.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∵CF =BE ∴BE +CE =CF +CE ,即BC =EF ,∴AD =EF ,∵AD ∥EF ,∴四边形AEFD 是平行四边形,∵AE ⊥BC ,∴∠AEF =90°,∴平行四边形AEFD 是矩形;(2)解:如图,∵CF =BE ,CF =2,∴BE =2,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠BAC =∠ACD =90°,∵AE ⊥BC ,∴AE 2=BE •EC (射影定理),∴EC ===8,∴AC ===4.1.如图,在矩形ABCD 中,DE ⊥AC ,垂足为点E .若sin ∠ADE =,AD =4,则AB 的长为()A .1B .2C .3D .4解:∵DE ⊥AC ,∴∠ADE+∠CAD=90°,∵∠ACD+∠CAD=90°,∴∠ACD=∠ADE,∵矩形ABCD的对边AB∥CD,∴∠BAC=∠ACD,∵sin∠ADE=,BC=AD=4,∴=,∴=,∴AC=5,由勾股定理得,AB==3,故选:C.2.如图,在矩形ABCD中,BD=2.对角线AC与BD相交于点O,过点D作AC的垂线,交AC于点E,AE=3CE.则DE2的值为()A.4B.2C.D.4解:∵四边形ABCD是矩形,∴∠ADC=90°,AC=BD=2,∵AE=3CE,∴AE=AC=,CE=AC=,∵∠ADC=90°,∴∠DAC+∠ACD=90°,∵DE⊥AC,∴∠AED=∠CED=90°,∴∠ADE+∠DAC=90°,∴∠ADE=∠ACD,∴△ADE∽△DCE,∴=,∴DE2=AE•CE=×=,故选:C.3.如图,在正方形ABCD内,以D点为圆心,AD长为半径的弧与以BC为直径的半圆交于点P,延长CP、AP交AB、BC于点M、N.若AB=2,则AP等于()A.B.C.D.解:如图,设点S为BC的中点,连接DP,DS,DS与PC交于点W,作PE⊥BC于点E,PF⊥AB于点F,∴DP=CD=2,PS=CS=1,即DS是PC的中垂线,∴△DCS≌△DPS,∴∠DPS=∠DCB=90°,∴DS===,由三角形的面积公式可得PC=,∵BC为直径,∴∠CPB=90°,∴PB==,∴PE=FB==,∴PF=BE==,∴AF=AB﹣FB=,∴AP==故选:B.4.如图,点P是⊙O的直径BA延长线上一点,PC与⊙O相切于点C,CD⊥AB,垂足为D,连接AC、BC、OC,那么下列结论中:①PC2=PA•PB;②PC•OC=OP•CD;③OA2=OD•OP;④OA(CP﹣CD)=AP•CD,正确的结论有()个.A.1B.2C.3D.4解:①∵PC与⊙O相切于点C,∴∠PCB=∠A,∠P=∠P,∴△PBC∽△PCA,∴PC2=PA•PB;②∵OC⊥PC,∴PC•OC=OP•CD;③∵CD⊥AB,OC⊥PC,∴OC2=OD•OP,∵OA=OC,∴OA2=OD•OP;④∵AP•CD=OC•CP﹣OA•CD,OA=OC,∴OA(CP﹣CD)=AP•CD,所以正确的有①,②,③,④,共4个.故选:D.5.如图,在Rt△ABC中,∠A=90°,AB=AC=8,点E为AC的中点,点F在底边BC上,且FE⊥BE,则CF长.解:作EH⊥BC于H,如图,∵∠A=90°,AB=AC=8,∴BC=AB=16,∠C=45°,∵点E为AC的中点,∴AE=CE=4,∵△CEH为等腰直角三角形,∴EH=CH==4,∴BH=12在Rt△ABE中,BE==4,在Rt△BEF中,∵EH⊥BF,∴BE2=BH•BF,即BF==,∴CF=BC﹣BF=16﹣=.故答案为.6.如图,在矩形ABCD中,点E在边AD上,把△ABE沿直线BE翻折,得到△GBE,BG 的延长线交CD于点F.F为CD的中点,连结CG,若点E,G,C在同一条直线上,FG=1,则CD的长为2+2,cos∠DEC的值为﹣1.解:∵四边形ABCD是矩形,∴AB=CD,AD∥BC,∠BCD=∠A=∠D=90°,∴∠AEB=∠EBC,∠BCG=∠DEC,由折叠的性质得:BG=BA,∠EGB=∠A=90°,∠GEB=∠AEB,∴CD=BG,∴∠EBC=∠GEB,∴BC=EC,∵点E,G,C在同一条直线上,∴∠CGF=90°,∠CGB=180°﹣∠EGB=90°,∵F为CD的中点,∴CF=DF,设CF=DF=x,则BG=CD=2x,∵∠CFG=∠BFC,∴△CFG∽△BFC,∴=,∴CF2=FG•BF,即x2=1×(1+2x),解得:x=1+或x=1﹣(舍去),∴CD=2x=2+2,∵∠DEC+∠ECD=90°,∠GFC+∠ECD=90°,∴∠DEC=∠GFC,∴cos∠DEC=cos∠GFC===﹣1,故答案为:2+2,﹣1.7.如图,在平面直角坐标系中,直线y=kx+1分别交x轴,y轴于点A,B,过点B作BC ⊥AB交x轴于点C,过点C作CD⊥BC交y轴于点D,过点D作DE⊥CD交x轴于点E,过点E作EF⊥DE交y轴于点F.已知点A恰好是线段EC的中点,那么线段EF的长是.解:因为AB的解析式为y=kx+1,所以B点坐标为(0,1),A点坐标为(﹣,0),由于图象过一、二、三象限,故k>0,又因为BC⊥AB,BO⊥AC,所以在Rt△ABC中,BO2=AO•CO,代入数值为:1=•CO,CO=k,同理,在Rt△BCD中,CO2=BO•DO,代入数值为:k2=1•DO,DO=k2又因为A恰好是线段EC的中点,所以B为FD的中点,OF=1+1+k2,Rt△FED中,根据射影定理,EO2=DO•OF,即(k++)2=k2•(1+k2+1),整理得(k﹣)(k+)(k2+2)(k2+1)=0,解得k=.根据中位线定理,EF=2GB=2DC,DC==,EF=2.8.如图,在菱形ABCD中,过点D作DE⊥CD交对角线AC于点E,连接BE,点P是线段BE上一动点,作P关于直线DE的对称点P',点Q是AC上一动点,连接P'Q,DQ.若AE=14,CE=18,则DQ﹣P'Q的最大值为.解:如图,连接BD交AC于点O,过点D作DK⊥BC于点K,延长DE交AB于点R,连接EP′并延长,延长线交AB于点J,作EJ关于AC的对称线段EJ′,则点P′的对应点P″在线段EJ′上.当点P是定点时,DQ﹣QP′=DQ﹣QP″,当D,P″,Q共线时,QD﹣QP′的值最大,最大值是线段DP″的长,当点P与B重合时,点P″与J′重合,此时DQ﹣QP′的值最大,最大值是线段DJ′的长,也就是线段BJ的长.∵四边形ABCD是菱形,∴AC⊥BD,AO=OC,∵AE=14.EC=18,∴AC=32,AO=OC=16,∴OE=AO﹣AE=16﹣14=2,∵DE⊥CD,∴∠DOE=∠EDC=90°,∵∠DEO=∠DEC,∴△EDO∽△ECD,∴DE2=EO•EC=36,∴DE=EB=EJ=6,∴CD===12,∴OD===4,∴BD=8,=×OC×BD=BC•DK,∵S△DCB∴DK==,∵∠BER=∠DCK,∴sin∠BER=sin∠DCK===,∴RB=BE×=,∵EJ=EB,ER⊥BJ,∴JR=BR=,∴JB=DJ′=,∴DQ﹣P'Q的最大值为.解法二:DQ﹣P'Q=BQ﹣P'Q≤BP',显然P'的轨迹EJ,故最大值为BJ.勾股得CD,OD.△BDJ∽△BAD,BD2=BJ*BA,可得BJ=.故答案为:.9.在矩形ABCD中,点E为射线BC上一动点,连接AE.(1)当点E在BC边上时,将△ABE沿AE翻折,使点B恰好落在对角线BD上点F处,AE交BD于点G.①如图1,若BC=AB,求∠AFD的度数;②如图2,当AB=4,且EF=EC时,求BC的长.(2)在②所得矩形ABCD中,将矩形ABCD沿AE进行翻折,点C的对应点为C',当点E,C',D三点共线时,求BE的长.解:(1)①∵四边形ABCD是矩形,∴AD=BC,∠BAD=90°,∵BC=AB,∴AD=AB,∴tan∠ABD==,∴∠ABD=60°,由折叠的性质得:AF=AB,∴△ABF是等边三角形,∴∠AFB=60°,∴∠AFD=180°﹣∠AFB=120°;②由折叠的性质得:BF⊥AE,EF=EB,∵EF=EC,∴EF=EB=EC,∴BC=2BE,∵四边形ABCD是矩形,∴∠ABC=90°,AD=BC=2BE,AD∥BC,∴△ADG∽△EBG,∴==2,∴AG=2EG,设EG=x,则AG=2x,∴AE=3x,在△ABE中,BG⊥AE,∴AB2=AG•AE(射影定理),即42=2x•3x,解得:x=(负值已舍去),∴AE=3x=2,∴BE===2,∴BC=2BE=4,即BC的长为4;(2)当点E,C',D三点共线时,如图3,由②可知,BC=4,∵四边形ABCD是矩形,∴∠ABC=∠BCD=90°,AD=BC=4,CD=AB=4,AD∥BC,∴∠DCE=90°,∠CED=∠B'DA,由折叠的性质得:AB'=AB=4,∠B'=∠ABC=90°,∴∠DCE=∠B',DC=AB',∴△CDE≌△B'AD(AAS),∴DE=AD=4,∴CE===4,∴BE=BC+CE=4+4.10.如图,已知⊙O的半径为2,AB为直径,CD为弦,AB与CD交于点M,将弧CD沿着CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC.(1)求证:PC是⊙O的切线;(2)点G为弧ADB的中点,在PC延长线上有一动点Q,连接QG交AB于点E,交弧BC于点F(F与B、C不重合).问GE▪GF是否为定值?如果是,求出该定值;如果不是,请说明理由.解:(1)∵PA=OA=2,AM=OM=1,CM=,又∵∠CMP=∠OMC=90°,∴PC==2,∵OC=2,PO=4,∴PC2+OC2=PO2,∴∠PCO=90°,∴PC与⊙O相切;(2)GE•GF为定值,理由如下:如图2,连接GA、AF、GB,∵点G为弧ADB的中点,∴,∴∠BAG=∠AFG,∵∠AGE=∠FGA,∴△AGE∽△FGA,∴,∴GE•GF=AG2,∵AB为直径,AB=4,∴∠BAG=∠ABG=45°,∴AG=2,∴GE•GF=AG2=8.11.如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE;(2)如图2,当点E运动到AB中点时,连接DG,求证:DC=DG;(3)如图3,在(2)的条件下,过点C作CM⊥DG于点H,分别交AD,BF于点M,N,求的值.(1)证明:∵BF⊥CE,∴∠CGB=90°,∴∠GCB+∠CBG=90,∵四边形ABCD是正方形,∴∠CBE=90°=∠A,BC=AB,∴∠FBA+∠CBG=90,∴∠GCB=∠FBA,∴△ABF≌△BCE(ASA);(2)证明:如图2,过点D作DH⊥CE于H,设AB=CD=BC=2a,∵点E是AB的中点,∴EA=EB=AB=a,∴CE=a,在Rt△CEB中,根据面积相等,得BG•CE=CB•EB,∴BG=a,∴CG==a,∵∠DCE+∠BCE=90°,∠CBF+∠BCE=90°,∴∠DCE=∠CBF,∵CD=BC,∠CHD=∠CGB=90°,∴△CHD≌△BGC(AAS),∴CH=BG=a,∴GH=CG﹣CH=a=CH,∵DH=DH,∠CHD=∠GHD=90°,∴△DGH≌△DCH(SAS),∴CD=GD;(3)解:如图3,过点D作DQ⊥CE于Q,S△CDG=•DQ•CG=CH•DG,∴CH==a,在Rt△CQD中,CD=2a,∴DH==a,∵∠MDH+∠HDC=90°,∠HCD+∠HDC=90°,∴∠MDH=∠HCD,∴△CHD∽△DHM,∴=,∴HM=a,在Rt△CHG中,CG=a,CH=a,∴GH==a,∵∠MGH+∠CGH=90°,∠HCG+∠CGH=90°,∴∠CGH=∠CNG,∴△GHN∽△CHG,∴,∴HN==a,∴MN=HM﹣HN=a,∴=12.在平面直角坐标系中,已知A(﹣4,0),B(1,0),且以AB为直径的圆交y轴的正半轴于点C(0,2),过点C作圆的切线交x轴于点D.(1)求过A,B,C三点的抛物线的解析式;(2)求点D的坐标;(3)设平行于x轴的直线交抛物线于E,F两点,问:是否存在以线段EF为直径的圆,恰好与x轴相切?若存在,求出该圆的半径;若不存在,请说明理由.解:(1)令二次函数y=ax2+bx+c,则,∴,∴过A,B,C三点的抛物线的解析式为y=﹣x2﹣x+2.(2)以AB为直径的圆的圆心坐标为O′(﹣,0),∴O′C=,OO′=;∵CD为⊙O′切线∴O′C⊥CD,∴∠O′CO+∠OCD=90°,∠CO'O+∠O'CO=90°,∴∠CO'O=∠DCO,∴△O'CO∽△CDO,∴=,即=,∴OD=,∴D坐标为(,0).(3)存在,抛物线对称轴为x=﹣,设满足条件的圆的半径为r,则E的坐标为(﹣+r,|r|)或F(﹣﹣r,|r|),而E点在抛物线y=﹣x2﹣x+2上,∴|r|=﹣(﹣+r)2﹣(﹣+r)+2;∴r1=﹣1+,r2=﹣1﹣(舍去),r3=1+,r4=1﹣(舍去);故以EF为直径的圆,恰好与x轴相切,该圆的半径为或1+.。
2024年上海数学中考一轮复习 重难点5相似三角形中的“内接矩形”含详解

ABC D EF G H T 重难点专项突破05相似三角形中的“内接矩形”【知识梳理】相关模型:常用结论:AT DE AH BC =.【考点剖析】例1.如图,正方形DEFG 的边EF 在ABC ∆的边BC 上,顶点D 、G 分别在边AB 、AC 上,AH 是ABC ∆的高,BC =60厘米,AH =40厘米,求正方形DEFG 的边长.AB CD E F GH P 例2.ABC ∆中,正方形EFGH 的两个顶点E 、F 在BC 上,另两个顶点G 、H 分别在AC 、AB 上,BC =15,BC 边上的高AD =10,求正方形EFGH 的面积.AB CH GF E D 例3.如图,在ABC ∆中,矩形DEFG 的一边DE 在BC 边上,顶点G 、F 分别在AB 、AC 边上,AH 是BC 边上的高,AH 与GF 交于点K .若32AH cm =,48BC cm =,矩形DEFG 的周长为76cm ,求矩形DEFG 的面积.AB CD E FG H K 例4.在锐角∆ABC 中,矩形DEFG 的顶点D 在AB 边上,顶点E 、F 在BC 边上,顶点G 在AC 边上,如果矩形DEFG 的长为6,宽为4,设底边BC 上的高为x ,∆ABC 的面积为y ,求y 与x的函数关系式.例5.如图,矩形DEFG 的边EF 在ABC ∆的边BC 上,顶点D 、G 分别在边AB 、AC 上,AH 为BC 边上的高,AH 交DG 于点P ,已知3AH =,5BC =,设DG 的长为x ,矩形DEFG 的面积为y ,求y 关于x 的函数解析式及其定义域.AB CE F GD H P 例6.一块直角三角形木板的一条直角边AB 长为1.5m ,面积为1.5m 2,现需把它加工成一个面积最大的正方形桌面,请甲、乙两位同学设计加工方案,甲设计方案如图(1),乙设计方案如图(2).你认为哪位同学设计的方案较好?请说明理由(加工损耗忽略不计,计算结果中可保留分数).【过关检测】一、单选题1.(2023·上海浦东新·统考二模)如图,已知正方形DEFG 的顶点D 、E 在ABC 的边BC 上,点G 、F 分别在边AB AC 、上,如果8BC =,ABC 的面积是32,那么这个正方形的边长是()A .4B .8C .83D .1632.(2022秋·上海奉贤·九年级校考期中)如图,正方形DEFG 的边EF 在ABC 的边BC 上,顶点D 、G 分别在边AB AC 、上,已知ABC 的边BC 长15厘米,高AH 为10厘米,则正方形DEFG 的边长是()A .4厘米B .5厘米C .6厘米D .8厘米二、填空题3.(2021秋·上海·九年级校考阶段练习)如图,在ABC 中,90C ∠=︒,正方形DEFG 的边GF 在AB 边上,顶点D 、E 分别在AC 、BC 上,12AB =,若ABC 的面积为36,则DE 的长为______.4.(2021秋·上海闵行·九年级统考期中)如图,已知正方形DEFG 的顶点D 、E 在△ABC 的边BC 上,顶点G 、F分别在边AB 、AC 上,如果BC =4,BC 边上的高是6,那么这个正方形的边长是____.5.(2023·上海长宁·统考一模)如图,在ABC 中,90C ∠=︒,正方形EFGH 的边FG 在ABC 的边AB 上,顶点E 、H 分别在边AC 、BC 上,如果其面积为24,那么AF BG ⋅的值为______.6.(2022秋·上海·九年级上外附中校考阶段练习)如图,矩形DEFG 为ABC 的内接矩形,点G ,F 分别在,AB AC 上,AH 是BC 边上的高,10,6,:2:5BC AH EF GF ===,则矩形DEFG 的面积为___________.7.(2022秋·上海青浦·九年级校考期中)如图,矩形DEFG 内接于ABC ,6cm BC =,4cm DE =,2cm EF =,则BC 边上的高的长是______8.(2022秋·上海静安·九年级校考期中)如图,已知在ABC 中,边5BC =,高2AD =,正方形EFGH 的顶点F 、G 在边BC 上,顶点E 、H 分别在边AB 和AC 上,那么这个正方形的面积等于________.9.(2022秋·上海松江·九年级校考期中)如图:正方形DGFE 的边EF 在ABC 边BC 上,顶点D 、G 分别在边AB 、AC 上,AH BC ⊥于H ,交DG 于P ,已知20BC =,16AH =,那么正方形DGFE 的边长为___________.10.(2022秋·上海浦东新·九年级校考期中)如图,正方形DEFG 的边EF 在ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上.已知BC 长为40厘米,若正方形DEFG 的边长为25厘米,则ABC 的高AH 为________厘米.11.(2022秋·上海·九年级校考期中)如图,已知正方形EDFG 的顶点D 、G 分别在ABC 的边AB 、AC 上,顶点E 、F 在ABC 的边BC 上,若4BC =,10ABC S =△,那么这个正方形的边长是________.12.(2023·上海徐汇·统考一模)如图,在Rt ABC △中,90C ∠=︒,2AC =,1BC =,正方形DEFG 内接于ABC ,点G 、F 分别在边AC 、BC 上,点D 、E 在斜边AB 上,那么正方形DEFG 的边长是______.13.(2022春·上海·八年级专题练习)如图,矩形DEFG 的边DE 在△ABC 的边BC 上,顶点G 、F 分别在边AB 、AC 上,已知BC =6cm ,DE =3cm ,EF =2cm ,那么边BC 上的高的长是___cm .14.(2021秋·上海闵行·九年级统考期中)如图,已知正方形DEFG 的顶点D 、E 在ABC 的边BC 上,顶点G 、G 分别在边AB 、AC 上,如果4BC =,BC 边上的高是6,那么这个正方形的边长是______.15.(2021秋·上海浦东新·九年级校考阶段练习)如图:正方形DGFE 的边EF 在△ABC 边BC 上,顶点D 、G 分别在边AB 、AC 上,AH ⊥BC 于H ,交DG 于P ,已知BC =48,AH =16,那么S 正方形DGEF =_____.16.(2022秋·上海徐汇·九年级上海市田林第三中学校考期中)在ABC 中,矩形DEFG 的一边DE 在BC 边上,顶点G 、F 分别在AB AC 、上,AH 是BC 边上的高,AH 与GF 交与点K ,若3248AH BC ==,,矩形DEFG 周长为76,则DG =_________.17.(2022秋·上海黄浦·九年级统考期中)如图,正方形EFGH 内接于Rt ABC △,9012A BC ∠=︒=,,若ABC 的面积是36,则EH 的长是___________.18.(2022秋·上海嘉定·九年级统考期中)如图,已知在ABC ∆中,边6BC =,高3AD =,正方形EFGH 的顶点E 、F 在边BC 上,顶点H 、G 分别在边AB 和AC 上,那么这个正方形的边长等于___________.19.(2022秋·上海宝山·九年级统考期中)如图,矩形DEFG 的边DE 在ABC 的边BC 上,顶点G 、F 分别在边AB 、AC 上.已知6cm BC =,3cm DE =,2cm EF =,那么ABC 的面积是________2cm .20.(2022秋·上海长宁·九年级校考期中)如图,在ABC 中,10BC =,BC 上的高4=AD ,矩形EFGH 的顶点E 、F 在边BC 上,G 、H 分别在边AC 、AB 上,:3:2EF FG =,则该矩形的面积为________.三、解答题(1)如果AB=2AC ,求证:四边形(2)如果2AB AC =,且BC=1,连结23.(2022·上海·九年级专题练习)一块三角形的余料,底边BC长1.8米,高AD=1米,如图.要利用它裁剪一个长宽比是3∶2的长方形,使长方形的长在BC上,另两个顶点在AB、AC上,求长方形的长EH和宽EF的长.∆的边BC上,顶点D、24.(2022秋·上海·九年级上海市市北初级中学校考期中)如图,矩形DEFG的边EF在ABCBC=,8AH=.⊥,垂足为H.已知12G分别在边AB、AC上,AH BC(1)当矩形DEFG为正方形时,求该正方形的边长;(2)当矩形DEFG面积为18时,求矩形的长和宽.的边BC上,顶点D、25.(2022秋·上海静安·九年级上海市民立中学校考期中)如图,矩形DEFG的边EF在ABCG 分别在边AB 、AC 上,60BC =,高40AH =,如果2DE DG =,求矩形DEFG 的周长.ABC D EF G H T 重难点专项突破05相似三角形中的“内接矩形”【知识梳理】相关模型:常用结论:AT DE AH BC =.【考点剖析】例1.如图,正方形DEFG 的边EF 在ABC ∆的边BC 上,顶点D 、G 分别在边AB 、AC 上,AH 是ABC ∆的高,BC =60厘米,AH =40厘米,求正方形DEFG 的边长.ABCD E F GH P 【答案】24.【解析】设正方形EFGD 的边长为x ,//DG BC ,DG AD AP BC AB AH∴==.406040x x -∴=,24x ∴=,∴正方形EFGD 的边长为24.【总结】本题考查三角形内接正方形的相关知识,主要还是通过比例相等来列式建立关系.例2.ABC ∆中,正方形EFGH 的两个顶点E 、F 在BC 上,另两个顶点G 、H 分别在AC 、AB 上,BC =15,BC 边上的高AD =10,求正方形EFGH 的面积.AB CH GF E D 【答案】36.【解析】设正方形EFGH 的边长为a ,易知:////HE AD HG BC ,.HE BH AD BA ∴=,HG AH BC AB=.1HE HG AD BC ∴+=,11015a a ∴+=,6a ∴=,∴正方形EFGH 的面积为36.【总结】本题考查三角形内接正方形的模型,熟练掌握此题涉及的知识点.例3.如图,在ABC ∆中,矩形DEFG 的一边DE 在BC 边上,顶点G 、F 分别在AB 、AC 边上,AH 是BC 边上的高,AH 与GF 交于点K .若32AH cm =,48BC cm =,矩形DEFG 的周长为76cm ,求矩形DEFG 的面积.AB CD E FG H K 【答案】2360cm .【解析】解:设DG xcm =,()38FG x cm=- 矩形DEFG ,//90GF BC GDB ∴∠= ,,GF AG BC AB∴=,又 AH 是高,90AHB ∴∠= ,GDB AHB ∴∠=∠//DG AH ∴,DG BG AH AB ∴=,1DG GF AH BC∴+=,3813248x x -∴+=,20x ∴=,∴20DG cm =,18FG cm =,2360DEFG S cm ∴=矩形.【总结】本题考查三角形一边的平行线定理,矩形的周长面积等知识.例4.在锐角∆ABC 中,矩形DEFG 的顶点D 在AB 边上,顶点E 、F 在BC 边上,顶点G 在AC 边上,如果矩形DEFG 的长为6,宽为4,设底边BC 上的高为x ,∆ABC 的面积为y ,求y 与x 的函数关系式.【答案】23(4)4x y x x =>-.【解析】解:如图, 矩形DEFG ,//90GD BC DEC ∴∠= ,,GD AD BC AB∴=.又 AH 是高,90AHC ∴∠= .DEC AHC ∴∠=∠,//DE AH ∴,DE BD AH AB ∴=,1DG DE BC AH ∴+=,641BC x ∴+=,64x BC x ∴=-,又 12ABC S y BC AH ∆== ,∴()2344x y x x =>-.【总结】本题考查三角形一边的平行线定理,矩形的面积等知识.例5.如图,矩形DEFG 的边EF 在ABC ∆的边BC 上,顶点D 、G 分别在边AB 、AC 上,AH 为BC 边上的高,AH 交DG 于点P ,已知3AH =,5BC =,设DG 的长为x ,矩形DEFG 的面积为y ,求y 关于x 的函数解析式及其定义域.AB CE F GD H P 【答案】()233055y x x x =-+<<.【解析】解: 矩形DEFG ,//,90GD BC DEC ∴∠= ,GD AD BC AB∴=,又 AH 是高,90AHC ∴∠= ,DEC AHC ∴∠=∠,//DE AH ∴,DE BD AH AB ∴=,1DG DE BC AH∴+=,153x DE ∴+=,又 DEFG S y x DE ==∙矩形,20x ∴=,∴y DE x=,153x y x ∴+=,∴()233055y x x x =-+<<.【总结】本题考查三角形一边的平行线定理,矩形的面积等知识.例6.一块直角三角形木板的一条直角边AB 长为1.5m ,面积为1.5m 2,现需把它加工成一个面积最大的正方形桌面,请甲、乙两位同学设计加工方案,甲设计方案如图(1),乙设计方案如图(2).你认为哪位同学设计的方案较好?请说明理由(加工损耗忽略不计,计算结果中可保留分数).【答案】甲同学方案好,理由略.A B CD E F A BCD EF G H 【解析】解:21 1.52ABC S AB BC m ∆=∙=,又 1.5AB m =,2CB m ∴=∴在Rt ABC ∆中, 2.5AC m =.1按甲的设计:设DE x =, 正方形DEFB ,//,//ED BF EF CB ∴,DE CE AB CA ∴=,EF AE CB AC =,1DE EF BA CB ∴+=,11.52x x ∴+=,67x m ∴=,23649DEFB S m ∴=正;②按乙的设计:过点B 作BH AC ⊥交AC 于点H ,得//DG BH ,DG AD BH AB ∴=,设DE x =,则DG x =, 正方形DGFE ,//ED AC DE DG ∴=,,DE BD AC BA ∴=,1DE DG CA HB∴+=, 1122ABC S AB BC AC BH ∆=∙=∙,65BH m ∴=,162.55x x ∴+=,3037x m ∴=,29001369DGFE S m ∴=正;综上,甲设计方案好.【总结】本题考查了三角形一边的平行线,正方形的面积等知识,本题考查了最优化问题.【过关检测】一、单选题A .4B .8【答案】A 【分析】过点A 作AH BC ⊥边长为x ,则,GF x MH x ==的方程即可.∵ABC 的面积是32,BC ∴2132BC AH ⋅=,∴8AH =,设正方形DEFG 的边长为x ∵GF BC ∥,A .4厘米B .5厘米【答案】C 【分析】由DG BC ∥得ADG △【详解】解:设正方形的边长为x ∵正方形DEFG 得,二、填空题3.(2021秋·上海·九年级校考阶段练习)如图,在ABC 中,90C ∠=︒,正方形DEFG 的边GF 在AB 边上,顶点D 、【答案】4【分析】过点C 作CH AB ⊥于点H ,交证明CDE CAB ∽△△,则CM DE CH AB=,列方程即可求得答案.【详解】解:过点C 作CH AB ⊥于点设正方形DEFG 的边长为x ,∵ABC 的面积为36,12AB =,∴6CH =,∵DE AB ∥,12【答案】6cm /6厘米【分析】过点A 作证AGF ABC ∽△△【详解】解:如图,过点 矩形DEFG 中,2cm EF MN ==∴AN FG ∴⊥,FG DE ∥,AGF B ∴∠=∠,∠AGF ABC ∴△∽△AN GF【答案】2003/21983【分析】由DG BC ∥得ADG 【详解】解:设ABC 的高AH 由正方形DEFG 得,DG EF ∥【答案】209【分析】作高AH 交DG 于M △∽△ADG ABC ,即可得到【详解】解:作高AH 交DG ∵4BC =,10ABC S =△,∴5AH =,设正方形DEFG 的边长为x 则DE MH x ==,【答案】257/257【分析】过点C 作CM AB ⊥于点可证得CGF CAB ∽,再根据相似三角形的性质,即可得出答案.Rt ABC △中,90C ∠=︒,AC 2222215AB AC BC ∴=+=+=1122ABC S AC BC AB CM =⋅=⋅△【答案】4【分析】由题意过A作AH △AGF∽△ABC,求出AM∵AH⊥BC,四边形DEFG ∴四边形HEFM是矩形,∴△AGF∽△ABC,∴AM AH【答案】20【分析】设DG为x,根据矩形的性质得出各线段代入求解即可.【详解】解:设DG为x,【答案】4【分析】易证AEH ABC ∽△△,可得:AE AM AB AD =,即可得出DEH BC AM A =,可求解AD BC ⊥∵ABC 的面积是36,12BC =,∴1362BC AD ⨯=,∴112362AD ⨯⨯=,6AD =【答案】2【分析】利用正方形的性质可知似三角形的性质可得比例线段,利用比例线段可求正方形的边长.【详解】解:如图所示:四边形EFMN是正方形,【答案】758/398【分析】如图,证明AGH △【详解】解:∵:3:EF FG =∴设3EF k =,则2FG k =;由题意得:HG BC ∥,2KD FG k HG ==,∴AGH ACB ∽△△,而AD ⊥三、解答题21.(2022秋·上海浦东新·九年级校考期中)一块三角形余料ABC ,它的边长12BC =厘米,高8AD =厘米,要把它加工成正方形零件PQMN ,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上,则加工成的零件边长为多少厘米?【答案】加工成的零件边长为4.8厘米【分析】根据正方形边的平行关系,得出对应的相似三角形,即APN ABC △△∽,从而得出边长之比,进而求出正方形的边长;【详解】解:设正方形零件的边长为a ,在正方形PNMQ 中,PN BC ∥,90PQM QPN ∠=∠=︒,∵AD 是ABC 的高,即AD BC ⊥,∴90ADQ ∠=︒,∴PQM QPN ADQ ∠=∠=∠,∴四边形PQDE 为矩形,∴PQ DE a ==,∴8AE AD DE a =-=-,∵PN BC ∥,∴90AEP ADB ∠=∠=︒,(1)如果AB=2AC,求证:四边形(2)如果2AB AC=,且BC=1,连结【答案】(1)见解析(2)23DE=【分析】(1)因为BD=2AD,AE=可以推出EF=DF,故四边形ADFE(2)利用两边对应成比例且夹角相等证明【详解】(1)证:∵BD=2AD,AE=∴BD AE AD EC=,∵DF//AC,∴BD BF AD FC=,∴BF AE FC EC=,∵BD=2AD,AE=2EC,∴AD=13AB,AE=23AC,∴222 AD ABAE AC==,∵22 ACAB=,∴AD AC AE AB=,∵∠A=∠A,∴△ADE∽△ACB,∴23 DE AEBC AB==,∴DE=2 3.【点睛】本题考查菱形的判定,相似三角形的判定与性质,利用平行线分线段成比例的性质证明平行是解答本题的关键.23.(2022·上海·九年级专题练习)一块三角形的余料,底边【答案】90【分析】设DG EF x ==,则2GF DE ==问题可求解.【详解】解: 四边形DEFG 是矩形,DG BC ∴ ,AH BC ⊥,DG EF =,AK DG ∴⊥.。
射影定理

射影定理直角三角形射影定理,又称“欧几里德定理”,定理的内容是直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项,每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
公式表达为:如右图,在Rt△ABC中,∠ACB=90°,cd是斜边ab上的高,则有射影定理如下:①CD²;=AD·DB,②BC²=BD·BA ,③AC²=AD·AB ;④AC·BC=AB·CD(等积式,可用面积来证明)基表达式AC·BC=AB·CD射影定理直角三角形射影定理(又叫欧几里德(Euclid)定理):直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
公式Rt△ABC中,∠ACB=90°,cd是斜边ab上的高,则有射影定理如下:(1)(CD)^2;=AD·DB,(2)(BC)^2;=BD·BA ,(3)(AC)^2;=AD·AB 。
等积式(4)ACXBC=ABXCD(可用面积来证明)直角三角形的射影定理所谓射影,就是灯光投影。
直角三角形射影定理(又叫欧几里德(Euclid)定理):直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
[1]公式: 如图,Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射影定理如下:射影定理(1)BD²=AD·DC,(2)AB²=AD·AC ,(3)BC²=CD·CA。
等积式(4)AB×BC=AC×BD(可用“面积法”或相似来证明)(5)(AB)^2/(BC)^2=AD/CD[1]直角三角形射影定理的证明一、在△BAD与△BCD中,∵∠ABD+∠CBD=90°,且∠CBD+∠C=90°,∴∠ABD=∠C,又∵∠BDA=∠BDC=90°∴△BAD∽△CBD∴ AD/BD=BD/CD即BD²=AD·DC。
初中九年级(初三)数学课件 射影定理

所以:AC2 AB DA
A
DB
同理,得:CDB ∽ ACB CD DB CB CB2 AB DB
AC CB AB
ACD ∽ CBD AC CD AD CD2 BD AD
CB BD CD
直角三角形中的成比例线段
在RtABC中,CD是高,则有
C
AC是AD,AB的比例中项。
BC是BD,AB的比例中项。
原来学好数学,一点 都不难!
教 学
复
新
例
练
小
目 标
习
课
题
习
结
你知道吗?
直角三角形中的成比例线段
使学生了解射影的概念,掌握射影定理及其应用。
直角三角形中的比例线段定理在证题和实际计算中有较
多的应用。
例2证法有一定的技巧性。
直角三角形中的成比例线段
1.
已学习了相似三角形的判定及直角三角形相似的判定方 法。今天我们进一步学习直角三角形的特性。
CD是BD,AD的比例中项。
A
DB
那么AD与AC,BD与BC是什么关系呢? 这节课,我们先来学习射影的概念。
直角三角形中的成比例线段
1.射影:
(1)太阳光垂直照在A点,留在直线MN
上的影子应是什么?
B
(2)线段留在MN上的影子是什么? M B’
.A A’ N
定义:
B
A
过线段AB的两个端点分别作直线l的垂线, 垂足A’,B’之间的线段A’B’叫做线段AB在
C
分析:利用射影定理和勾股定理
CD2 AD DB 2 6 12,
解:
CD
12 2
3cm;
AD
B
AC2 AD AB 2 2 6 16,