九年级数学射影定理
中考数学射影定理实例解析

中考数学射影定理实例解析1.如图,在Rt△ABC中,∠C=90°,CD⊥AB,BE平分∠ABC交CD于F,EH⊥CD于H,则下列结论正确的结有():①CD²=AD·BD;②AC²+BD²=BC²+AD²;③B+B B=1④若F为BE中点,则AD=3BDA.1个B.2个C.3个D.4个解:①∵∠ACB=90°,CD⊥AB,∴△ACD~△CBD,即CD²=AD-DB,故①正确②∵AC²-AD²=BC²-BD²=CD²∴AC²+BD²=BC²+AD²故②正确③作EM⊥AB,则BD+EH=BM∵BE平分∠ABC,ABCE=△BEM∴BC=BM=BD+EH,所以B+B B=1故③正确:④若F为BE中点,则CF=EF=BF,∴∠BCD=∠CBF=∠DBF=30°,∠A=30°∴AB=2BC=4BD∴AD=3BD。
答案:D2.如图,PA、PB是⊙O的切线,A、B为切点,OP交AB于点D,交⊙O于点C,在线段AB、PA、PB、PC、CD中,已知其中两条线段的长,但还无法计算出⊙O直径的两条线段是() A.AB,CD B.PA,PC C.PA,AB D.PA,PB解:A、构造一个由半径、半弦、弦心距组成的直角三角形,根据垂径定理以及勾股定理即可计算:B、根据切割线定理即可计算;C、首先根据垂径定理计算AD的长,再根据勾股定理计算PD的长,连接OA,根据射影定理计算OD的长,最后根据勾股定理即可计算其半径;D、根据切线长定理,得PA=PB.相当于只给了一条线段的长,无法计算出半径的长答案:D3.如图,AB是半圆O的直径,点D是AB上任意一点(不与点A,B重合),作CD⊥AB与半圆交于点C,设AD=a,BD=b,则下列选项正确的是()A.r2>BB.r2≥BC.r2<BD.r2≤B解:连接AC,BC,∵AB为直径,AB=AD+BD=a+b.∴∠ACD=90°∴∠A+∠B=90°∵CD⊥AB,∴∠ACD=∠CDB∴∠A+∠ACD=90°,∴∠ACD=∠B.∴△ACD~△CBD∴B B=B B即B=B∴CD=B答案:B4.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是弧AD的中点,弦CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q,连接AC,给出下列结论:①∠DAC=∠ABC:②AD=CB:③点P是ACQ的外心:④AC²=AE·AB;⑤CB||GD,其中正确的结论是()A.①③⑤B.②④⑤C.①②⑤D.①③④解∵在⊙O中,点C是AD的中点,∴AC=CD∴∠CAD=∠ABC,故①正确;∵AC≠BD,∴AD≠BC.∴AD≠BC,故②错误∵∠ACQ=90°,∵AB是OO的直径,∴∠ACB=90°又·*CE⊥AB,∴∠ACE+∠CAE=∠ABC+∠CAE=90°∴∠ACE=∠ABC又∵C为AD的中点,∴AC=CD∴∠CAP=∠ABC∴∠ACE=∠CAP,∴AP=CP,∴∠ACP+∠PCQ=∠CAP+∠POC=90°∴∠PCQ=∠POC,∴PC=PQ∴AP=PQ,即P为Rt△ACQ斜边AQ的中点∴P为Rt△4CQ的外心,故③正确;∵AB是OO的直径,∴∠ACB=90°,又∵CE⊥AB∴根据射影定理,可得AC²=AE-AB,故④正确如图,连接BD,则∠ADG=∠ABD∵AC≠BD.∴AD≠BC,∴∠ABD≠∠BAC,∴∠ADG≠∠BAC又∵∠BAC=∠BCE=∠PQC,∴∠ADG≠∠PQC∴CB与GD不平行,故⑤错误.答案:D5.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,AC=8,AB=10,则AD等于()A.4.4B.5.5C.6.4D.7.4解:∵∠ACB=90°,CD⊥AB,∴AC²=AD·AB∴AD=8·810=6.4答案:C6.如图所示,在△ABC中,∠C=90°,D为BC边的中点,DE⊥AB于E,则AE²-BE²等于()A.AC²B.BD²C.BC²D.DE²解:作AB的中点F,连接DF,则DF||AC DF=12AC在RT△BDF中,又DE⊥AB,得△DEF~△BDF∴E E=E E即EF·BF=DF2=14AC2∴AE²-BE²=(AE+BE)·(AE-BE)=AB·2EF=4EF·BF=AC²答案:A7.如图,在正方形ABCD内,以D点为圆心,AD长为半径的弧与以BC为直径的半圆交于点P,延长CP、AP交AB、BC于点M、N.若AB=2,则AP等于()解:如图,设点S为BC'的中点,连接DP,DS,DS与PC'交于点H,作PE⊥BC于点E,PF⊥AB于点F,∴DP=CD=2,PS=CS=1即DS是PC的中垂线∴△DCS=△DPS∴∠DPS=∠DCB=90°.∴DS=DC²+CS²=2²+1=5∵BC为直径∴∠CPB=90°∴PB=B C²+P C²=255∴PE=FB=B·B B=45∴PF=BE=PB²+PE²=25∴AF=AB-FB=65∴AP=AF²+PF²=答案:B8.如图,点P是OO的直径BA延长线上一点,PC与OO相切于点C,CD⊥AB,垂足为D,连接AC、BC、OC,那么下列结论:①PC²=PA·PB:②PC·OC=OP·CD③OA²=OD·OP;④OA(CP-CD)=AP·CD,正确的结论有()个。
2023初中数学专题《射影定理模型》试卷含答案解析

1.射影定理定义①直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项.②每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.2.如图在Rt △ABC 中,∠BAC =90°,AD 是斜边BC 上的高,有射影定理如下:注意:直角三角形斜边上有高时,才能用射影定理!【例1】.在矩形ABCD 中,BE ⊥AC 交AD 于点E ,G 为垂足.若CG =CD =1,则AC 的长是 .模型介绍例题精讲解:∵四边形ABCD 是矩形,∴AB =CD =1,∠ABC =90°,∵BE ⊥AC ,∴∠AGB =90°=∠ABC ,∵∠BAG =∠CAB ,∴△ABG ∽△ACB ,∴=,∴AG •AC =AB 2(射影定理),即(AC ﹣1)•AC =12,解得:AC =或AC =(不合题意舍去),即AC 的长为,故答案为:.【例2】.如图:二次函数y =ax 2+bx +2的图象与x 轴交于A 、B 两点,与y 轴交于C 点,若AC ⊥BC ,则a 的值为( )A .﹣B .﹣C .﹣1D .﹣2解:设A (x 1,0)(x 1<0),B (x 2,0)(x 2>0),C (0,t ),∵二次函数y =ax 2+bx +2的图象过点C (0,t ),∴t =2;∵AC ⊥BC ,∴OC 2=OA •OB (射影定理),即4=|x 1x 2|=﹣x 1x 2,根据韦达定理知x 1x 2=,∴a =﹣. 故选:A .【例3】.将沿弦BC 折叠,交直径AB 于点D ,若AD =4,DB =5,则BC 的长是( )A.3B.8C.D.2解:连接CA、CD;根据折叠的性质,知所对的圆周角等于∠CBD,又∵所对的圆周角是∠CBA,∵∠CBD=∠CBA,∴AC=CD(相等的圆周角所对的弦相等);∴△CAD是等腰三角形;过C作CE⊥AB于E.∵AD=4,则AE=DE=2;∴BE=BD+DE=7;在Rt△ACB中,CE⊥AB,根据射影定理,得:BC2=BE•AB=7×9=63;故BC=3.故选:A.变式训练【变式1】.如图,在△ABC中,若AB=AC,BC=2BD=6,DE⊥AC,则AC•EC的值是 9 .解:如图,∵在△ABC中,若AB=AC,BC=2BD=6,∴AD⊥BC,CD=BD=3.又DE⊥AC,∴∠CED=∠CDA=90°.∵∠C=∠C,∴△CDE∽△CAD.∴=,即AC•EC=CD2=9.(射影定理)故答案是:9.【变式2】.如图所示,在矩形ABCD中,AE⊥BD于点E,对角线AC,BD交于O,且BE:ED=1:3,AD=6cm,则AE= cm.解:设BE=x,因为BE:ED=1:3,故ED=3x,根据射影定理,AD2=3x(3x+x),即36=12x2,x2=3;由AE2=BE•ED,AE2=x•3x;即AE2=3x2=3×3=9;AE=3.【变式3】.如图,若抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,若∠OAC=∠OCB.则ac的值为( )A.﹣1B.﹣2C.D.解:设A(x1,0),B(x2,0),C(0,c),∵二次函数y=ax2+bx+c的图象过点C(0,c),∴OC=c,∵∠OAC=∠OCB,OC⊥AB,∴△OAC∽△OCB,∴,∴OC2=OA•OB(即射影定理)即|x1•x2|=c2=﹣x1•x2,令ax2+bx+c=0,根据根与系数的关系知x1•x2=,∴,故ac=﹣1,故选:A.【变式4】.如图,正方形ABCD中,E为AB上一点,AF⊥DE于点F,已知DF=5EF=5,过C、D、F的⊙O与边AD交于点G,则DG=____________.解:连接CF、GF,如图:在正方形ABCD中,∠EAD=∠ADC=90°,AF⊥DE,∴△AFD∽△EAD,∴=,又∵DF=5EF=5,∴AD====CD,在Rt△AFD中,AF===,∵∠CDF+∠ADF=90°,∠DAF+∠ADF=90°,∴∠DAF=∠CDF,∵四边形GFCD是⊙O的内接四边形,∴∠FCD+∠DGF=180°,∵∠FGA+∠DGF=180°,∴∠FGA=∠FCD,∴△AFG∽△DFC,∴=,∴=,∴AG=,∴DG=AD﹣AG=﹣【变式5】.如图,在△ABC中,以AC边为直径的⊙O交BC于点D,过点B作BG⊥AC交⊙O于点E、H,连AD、ED、EC.若BD=8,DC=6,则CE的长为 2 .解:∵AC为⊙O的直径,∴∠ADC=90°,∵BG⊥AC,∴∠BGC=∠ADC=90°,∵∠BCG=∠ACD,∴△ADC∽△BGC,∴=,∴CG•AC=DC•BC=6×14=84,连接AE,∵AC为⊙O的直径,∴∠AEC=90°,。
九年级数学射影定理

棋牌微信群 肾病综合征患者激素冲击治疗后尿量无明显增多,此时应A.再次行激素冲击治疗B.撤掉激素,单以细胞毒药物治疗C.增加利尿剂加强利尿消肿D.消除患者高凝、高脂、感染等状态,改用口服激素治疗,根据肾脏病理改变决定是否加用细胞毒药物E.改用其他免疫抑制剂治疗 视空间失认的表现是A.颜色匹配错误B.形状辨认错误C.环境音辨认错误D.方向辨认错误E.面容辨认错误 药材"二杠茸"指的是A.有2个侧枝的梅花鹿茸B.有1个侧枝的梅花鹿茸C.有2个侧枝的马鹿茸D.有2个侧枝的花鹿茸E.有3个侧枝的花鹿茸 催化剂架桥 中国高胆固醇血症的诊断标准是A.TC>5.72mmol/L(220mg/dl)B.TC>5.20mol/L(200mg/dl)C.TC>4.68mmol/L(180mg/dl)D.TC>6.24mol/L(240mg/dl)E.TC>7.02mol/L(270mg/dl) 在工程进度款结算过程中,除了对承包商超出设计图纸范围而增加的工程量,监理不予计量之外,还包括。A.因发包人原因造成返工的工程量B.因承包商原因造成返工的工程量C.因不可抗力造成返工的工程量D.因不利施工条件造成返工的工程量 中国证监会按照授权和依照相关法律法规对证券市场进行集中、统一监管。A.国务院B.全国人民代表大会C.全国人大常务委员会D.中国人民银行 成团脱落的纤毛柱状上皮细胞可呈()A.嵌铺砖状B.融合体样C.蜂窝状D.扁平铺鹅卵石样E.腺腔群 水痘的临床特征有.A.疹退后脱皮,不留瘢痕B.同时期丘疹、疱疹、干痂并见C.病后终免疫D.发热一二天内出疹E.以四肢较多 配制含100kcal热能100ml奶中应加糖A.4%B.6%C.7%D.8%E.10% 下列情况中,能引起肾小球滤过率减少的是A.血浆胶体渗透压减低B.血浆胶体渗透压升高C.血浆晶体渗透压降低D.血浆晶体渗透压升高E.肾小球毛细血管血压升高 催化剂使用寿命短,操作较短时间就要更新或活化的反应,比较适用反应器。A、固定床B、流化床C、管式D、釜式 韦伯认为的行政体系特点不包括A.明确组织分工B.合理任用人员C.建立管理人员制度D.建立思想的行动准则E.严格规则和纪律 汗液形成的基本条件是津液和阳气。A.正确B.错误 活跃期延长是指从宫口扩张3cm至宫口开全时限超过多少小时。A.4hB.6hC.8hD.10hE.16h 下列叙述不符合血液学发展史的是()A.1673年发现红细胞B.1749年发现白细胞C.1942年发现血小板D.血液有形成分主要包括红细胞、白细胞和血小板E.显微镜的发明为血液学的发展开拓了新的前景 灰口铸铁是第一阶段和阶段石墨化过程都能充分进行时形成的铸铁。A、第二B、中间C、第三D、最后 工程量清单计价的工程造价应由()组成。A.间接费B.措施项目费C.其他项目费D.规费和税金E.分部分项工程费 要使文字同时显示为粗体和斜体,应使用语句。 [单选,共用题干题]Microsoft'sCOMisasoftware(1)istheunderlyingarchitecturethatformsthefoundationforhigherlevelsoftwareservices,definesabinarystandardforfunctioncallingbetweencomponents,awayforcomponentstodynarmicallydiscovertheinterfacesimplementedbyothercomponents,andamechanismtoidentifycomponentsandtheirinterfacesuniquely.O LEisacompound(2)standarddevelopedbyMicrosoft.OLEmakesitpossibletocreate(3)withoneapplicationandlinkorembedtheminasecondapplication.Embeddedobjectsretaintheiroriginalformatand(4) totheapplicationthatcreatedthem.SupportforOLEisbuiltintotheWindowsandMacOSOperatingSystems.A(5)compounddocumentstandarddevelopedmainlybyAppleandIBMiscalledOpenDoc.空白(1)处应选择A.architectureB.protocolC.procedureD.structure 形成腹股沟管外环是。A.联合肌腱B.腹横肌C.腹内斜肌D.腹外斜肌腱膜E.皮下浅筋膜 男性30岁,因半日来腹泻,2h前出现烦躁不安,于8月5日入院。腹泻次数频繁,约20余次,量较多,呈水样,伴呕吐。2天前从有腹泻患者的农村回来,在农村常喝生水。进城后曾与同伴6人共同进餐,吃过变质蛋白类食品,同食者未发病。体检:BP:50/0mmHg,脉弱, 重度脱水貌。外周血白细胞16.0×109/L,中性粒细胞76%,粪便白细胞0~1/HP。诊断应首选考虑A.中毒性痢疾B.病毒性肠炎C.沙门菌感染D.嗜盐菌感染E.霍乱 房屋修缮管理是中的一个重要环节。A.房地产经营B.房地产销售C.房地产管理D.房地产开发 转炉的经济炉龄 下列属于机械性肠梗阻的是。A.肠道功能紊乱引起的肠梗阻B.由于慢性铅中毒肠痉挛引起的肠梗阻C.由于肠系膜血管栓塞引起的肠梗阻D.先天性肠道闭锁引起的肠梗阻E.由于急性弥漫性腹膜炎而引起的肠梗阻 窒息法灭火时减少切断助燃的氧气进入到燃烧现场。A.正确B.错误 支气管扩张主要的诊断依据是A.痰涂片或细菌培养B.胸部X线检查CT检查D.纤维支气管镜检查E.支气管造影 男,20岁。因3天来高热、腹痛、腹泻,1天来头晕入院。查体:T39.4℃,面部潮红、球结膜充血,有出血斑且水肿,皮肤有细小出血点,BP60/40mmHg,血WBC16×109/L,Hb165g/L,尿蛋白(+++),大便水样,镜检WBC0~2/HP。本病人抗病毒药物治疗多选 用A.干扰素B.利巴韦林C.阿糖腺苷D.拉夫米定E.硫唑嘌呤 在公司管线中为安全消防线;为水线;为油品线。 按照机器的用途,可分为和工作机两种。A、发动机B、电动机C、驱动机D、发电机 下列不是管理方法的是A.行政方法B.法律方法C.民主方法D.思想教育方法E.社会心理学方法 一般土壤含水量越高,空气含量就。 盐化土壤 关于自动化间断测压法错误的是()A.基本原理是采用振荡技术B.不能反映每一心动周期的血压C.无创性、重复性好D.有动脉压波形显示E.低温、血容量不足时均会影响测量结果 饱和温度与饱和压力的关系是什么? 需求拉起的通货膨胀()A.通常用于描述某种供给因素所引起的价格波动B.通常用于描述某种总需求的增长所引起的价格波动C.表示经济制度已调整过的预期通货膨胀率D.以上均不是 催化剂总藏量 暗室激发试验前后眼压升高差值超过多少为阳性()A.2mmHgB.5mmHgC.8mmHgD.10mmHgE.12mmHg DSA检查常用的器械不包括A.消毒手术包B.皮肤缝合针C.扩张器D.导管E.导丝 病灶部位在优势侧颞叶峡部、岛叶皮质下的弓状束和联络纤维,属于()A.传导性失语B.命名性失语C.经皮质运动性失语D.运动性失语E.完全性失语
九年级数学射影定理

射影定理的推导过程

射影定理的推导过程射影定理是数学中的一个重要定理,它在几何学和代数学中都有广泛的应用。
下面我将以人类的视角,用自然流畅的语言来描述射影定理的推导过程。
假设我们有一个平面上的点A和一条直线L,我们希望得到点A到直线L的距离。
首先,我们需要找到点A关于直线L的射影点B。
为了找到射影点B,我们可以从点A引一条垂直于直线L的线段,假设这条线段与直线L的交点为B。
现在我们可以看到,点A、B 和直线L形成了一个直角三角形。
根据直角三角形的性质,我们可以利用勾股定理来计算点A到直线L的距离。
假设直线L的方程为ax + by + c = 0,点A的坐标为(x0, y0),则点B的坐标为(x1, y1)。
由于点B是点A关于直线L的射影点,因此直线AB与直线L垂直。
根据直线的斜率性质,我们可以得到直线AB的斜率为-k/a,其中k 是直线L的斜率。
接下来,我们可以利用点斜式来表示直线AB的方程。
假设直线AB 的方程为y = mx + d,其中m是直线AB的斜率,d是直线AB与y 轴的交点。
由于点A在直线AB上,所以点A的坐标(x0, y0)满足直线AB的方程。
将点A的坐标代入直线AB的方程,我们可以得到y0 = m*x0 + d。
将直线AB的方程和直线L的方程联立,我们可以得到一个关于m 和d的方程组。
解出m和d的值后,我们就得到了直线AB的方程。
现在,我们可以计算点A到直线L的距离了。
根据点到直线的距离公式,点A到直线L的距离等于点A到射影点B的距离。
利用两点间距离的公式,我们可以得到点A到射影点B的距离为:distance = sqrt((x0 - x1)^2 + (y0 - y1)^2)至此,我们成功地推导出了射影定理的计算公式。
射影定理的推导过程虽然涉及了一些几何和代数的知识,但通过合理的描述和逻辑推理,我们可以用生动的语言将其阐释清楚。
希望这段文字能够帮助你更好地理解射影定理的推导过程。
初中数学射影定理应用教案

初中数学射影定理应用教案教学目标:1. 理解射影定理的概念和意义。
2. 学会运用射影定理解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
教学内容:1. 射影定理的定义和表达式。
2. 射影定理的应用实例。
教学步骤:一、导入(5分钟)1. 引导学生回顾三角形的基本概念和性质。
2. 提问:你们听说过射影定理吗?射影定理是什么?二、讲解射影定理(15分钟)1. 给出射影定理的定义和表达式。
2. 通过图示和实例解释射影定理的意义。
3. 引导学生理解射影定理中的各个术语和符号的含义。
三、应用实例(15分钟)1. 给出几个应用实例,让学生尝试运用射影定理解决问题。
2. 引导学生步骤性地解题,注意运用射影定理的正确性。
3. 让学生展示自己的解题过程和答案,互相交流和讨论。
四、练习与拓展(15分钟)1. 给出一些练习题,让学生独立完成,巩固对射影定理的理解和应用。
2. 引导学生思考:射影定理在实际生活中有哪些应用?五、总结与反思(5分钟)1. 让学生回顾本节课所学的内容,总结射影定理的概念和应用。
2. 提问:你们觉得射影定理在解决数学问题中有何作用?教学评价:1. 课后对学生的练习进行评分,了解学生对射影定理的掌握程度。
2. 在下一节课开始时,让学生分享自己在生活中运用射影定理的经历,以此评估学生对射影定理的应用能力。
教学资源:1. 投影片或黑板,用于展示射影定理的图示和实例。
2. 练习题,用于巩固学生的理解和应用能力。
教学建议:1. 在讲解射影定理时,尽量用图示和实例来说明,让学生更容易理解和接受。
2. 在应用实例中,鼓励学生步骤性地解题,注意运用射影定理的正确性。
3. 在课后,鼓励学生在生活中尝试运用射影定理,增强对数学知识的认识和兴趣。
射影定理结论

射影定理结论射影定理(ProjectiveTheorem)是一种数学定理,它以简洁的方式描述了空间中的点、线和平面的关系。
它揭示了空间中某个点会在线或平面上给出对应的点,也就是说,它提出了射影映射这一结果。
这个定理是著名的法国数学家宗撰写的,他于1822年在他的著作《试论平面曲线理论》中提出了射影定理。
射影定理的结论如下:空间中的任意一点都可以在其他点、线或平面上项给出对应的点,这种对应的点即射影映射(Projection Mapping)。
射影映射有着多种应用。
首先,在从一维空间到二维空间之间的映射过程中,它广泛地用于平面绘图,其中每个像素点都可以进行射影映射。
此外,在从二维空间到三维空间间的映射中,它也可以被用于立体化模型绘制。
在三维空间绘制模型的时候,点和线的对应关系可以很容易地通过射影定理得出。
此外,即使是在从多维空间到多维空间之间的映射过程中,也可以使用射影定理,这种映射也可以应用于复杂的物理过程,例如粒子发射过程。
射影定理的另一个重要优势在于它能够提供一种数学工具,可以用于探究空间中相互关联的点对象,而不需要考虑它们之间的相对位置。
例如,假设有一条直线,它分割开空间中的两个物体,这时,只要通过使用射影定理,就可以轻松地获得物体之间的关联性,而不需要考虑它们的相对位置。
射影定理也能够用来解释很多不同的科学过程,因为它能够提供一种数学方法来分析这些过程中的物理变化。
例如,它可以分析视角变换的物理过程,也能够解释空间中的光的反射和折射过程。
最后,它也可以用于研究立体视觉的结构,这种结构通常是非常复杂的,尤其是在实践活动中。
综上所述,射影定理是一种数学定理,它以简洁的方式描述了空间中的点、线和平面的关系,它提出了平面投影映射这一结果,它能够广泛地用于从一维空间到多维空间之间的映射,能够用于研究物理过程和立体视觉结构。
初三数学知识点剖析—期末冲刺:射影定理

即 DE2 = BE CE . 【点评】此题主要考查了相似三角形的判定与性质,根据已知得出∠B=∠1 是解题关键.
例 4:【分析】要证线段乘积式相等,常常先证比例式成立,要证比例式,须有三角形相似,要证三角形相 似,须根据已知与图形找条件就可.
【解答】 证明:连接 PC, ∵AB=AC,AD 是中线, ∴AD 所在直线是△ABC 的垂直平分线. ∴PC=PB,∠PCE=∠ABP. ∵CF∥AB,∴∠PFC=∠ABP, ∴∠PCE=∠PFC 又∵∠CPE=∠EPC, ∴△EPC∽△CPF ∴ PC = PF
2.证明过程: ∵ CD ⊥ AB ∴ DCA + CAB = 90 又∵ Rt ABC 中 CBA + CAB = 90 ∴ DCA = CBA 又∵ CDA = BDC ∴ ACD CBD ∴ CD = BD 即 CD2 = AD BD
DA DC
∵ Rt ABC 中 BCD + DCA = 90 , A + DCA = 90 ∴ A = BCD 又∵ CDA = BCA ∴ ACD ABC ∴ AC = AB 即 AC2 = AB AD
例 3:【分析】利用垂直平分线的性质得出 AE=DE,进而利用外角的性质得出∠B=∠1,即可得出△ACE∽ △BAE,即可得出答案.
【解答】证明:连接 AE, ∵AD 的垂直平分线交 AD 于 E, ∴AE=DE, ∴∠1+∠2=∠4, ∵∠B+∠3=∠4, ∠2=∠3,
∴∠B=∠1, ∵∠AEB=∠CEA, ∴△ACE∽△BAE, ∴ AE = CE ,
AD AC
∵ ACD ABC , ACD CBD ∴ ABC CBD ∴ BC = BD 即 BC2 = AB BD .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
D
B
4、如图,以Rt△ABC的BC边为直 径的圆交斜边AB于D,若AD、BD 2 的长是以x为未知数的方程x 6x+n2=0(n>0)的两根,
2 2 且AD +DB =20,
C
求CD的长.
A
O
D
B
5、如图,矩形ABCD中, E是BC上一点,且BE=4 EC,AE⊥DE,则AB/ BC= 。 F D A
wod19xqy
子的口气,应该是与20年前楚归国的一桩宫廷秘闻有关,我本想继续问下去,但萧公子没说什么,只是让我告诉你,必须保护 好公子。”“初月,我实话告诉你吧,我从萧煜痕那偷到一粒灵芝草配置的解毒丸,让玉瑶带回去了,只怕这会哥哥已经服下 了。”“这灵芝丸虽能解毒不假,但是60你这么做太冒险了。你知道萧煜痕为什么明明知道公子中了壮阳丸的毒,却迟迟不给 我们解药吗?”“难道不是他居心叵测,意图染指我们雪城吗?”“并非,初月之前就说过是有人故意为之栽赃给萧公子的, 您想想,萧公子平日呆在天香楼里,连我们素日都不知道雪城有这么一号人物,为什么在公子中毒后处处有关联。第二,公子 在进天香楼前已经是迷迷糊糊的状态,又是什么人能从天香楼给一个不省人事的人喂进这壮阳丸的呢?其次,我在萧煜痕处翻 了不少古籍资料,这壮阳丸之毒不是一两日就能积累成如此,想必自然是有府里的人在给公子服这种药,以达到不可告人的目 的。”“初月,你是不是已经知道是谁下的毒了?”“60,初月不敢妄加预言,60七窍玲珑心自然想得到是谁,只是若是处置 不当,势必会让雪城处在一个内忧外患的境地。”“初月,没想到我纪雪芙聪明一世,关键时候竟然还不如你想的透彻,我知 道是谁了,待我回雪城府,一定想个法子好好治治他。”第022章 还恩君莫急 “60,这灵芝丸的解药一旦给公子服下,就得 三个月药不能停,这是以毒攻毒的法子,只是60不知其药理仓促给公子服下,那下一丸药60又要如何取?”“什么?萧煜痕竟 如此卑鄙?”“60,这些日子在萧公子身边懂了很多,我们雪城之所以能任人鱼肉完全是因为我们太封闭的活在自己的世界里, 所以奴婢恳求60,让初月去萧公子的暗卫营里历练,强大自己再来保护60。”“初月,你这又是何苦?你我自幼一起长大,你 当我不知你对哥哥的心意吗?如今哥哥正在病中,你舍得就这么放下吗?”“60,初月自小就知道与公子60的身份差距,老太 爷公子和60都对初月极好,今生都无以为报,怎么还能肖想和公子在一起呢?初月的心意已决,还望60成全。”“唉,你当真 想好了?那萧煜痕又可愿意收你?”“60,且不论初月一心为雪城的赤胆忠心,连初月都能看出来萧公子对60的上心程度,若 是60肯去说,萧公子自然是不会拒绝的,只是60,萧公子真的不是您想的那种人,不论他对别人如何,对60怎样60自然是比奴 才清楚,能因为60你还能爱惜60您身边的丫鬟初月我,这种爱屋及乌的深情,60还是要早些明白才是。”“初月你不必再说了, 你知道我的命运的,我不论嫁给谁都是带有家族利益的,我是没有权利选择自己嫁给谁而不嫁给谁的,所以此话日后
B
E
C
6、已知梯形ABCD中,AD∥ BC, ∠ABC=Rt∠ ,对角 线AC⊥BD于P,AD:BC =3:4,则BD:AC = 。A D P
B
C
7、如图,已知AB=AC,AD ⊥ AB。若CD=7,AB=15, 求BC的长。
A
B
E
D
C
广州厂房网 /guangzhou/ 广州厂房网
1、如图,在Rt△ABC 0 中,∠C =90 ,CD⊥AB于D.若 AD = 2 cm , DB = 6cm , 求 CD,AC,BC 的长。
C
A
D
B
2 、如图 ,在⊿ ABC中, CD⊥AB 于D,DE ⊥ AC 于E , DF ⊥ BC 于F 。求证 : ⊿ CEF∽⊿ CBA
C
F
E
A
D
B
3、如图:已知,在Rt△ABC中,∠C 0 =90 ,CD⊥AB于D.若AD,BD是关于 2 x的方程x -10x+m=0的两个根,且 S△ABC=20,求m的值.