数轴教学设计教案
2.2 数轴(教学设计——精品教案)

2.2数轴教学目标【知识与技能】1.正确理解数轴的意义,理解数轴的三要素.2.掌握有理数在数轴上的表示法,以及利用数轴比较有理数的大小.3.理解相反数的意义及求法.【过程与方法】通过与温度计的类比认识数轴,初步感受数形结合的思想方法.【情感态度价值观】渗透数形结合的思想方法,培养学生的观察、归纳与概括的能力.教学重难点【教学重点】正确掌握数轴的画法;用数轴上的点表示有理数;求已知数的相反数.【教学难点】有理数和数轴上的的点的对应关系.课前准备课件教学过程一、情景引入:(1) 你会读温度计吗?完成课本43页最上面的读温度计的问题.(2) 我们能否用类似温度计的图形表示有理数呢?二、讲授新课:认真阅读课本第43页至45页,完成下列问题(1)画一条水平直线,在直线上取一点O (叫作▁▁▁),选取某一长度作为▁▁▁▁,规定向右的方向为▁▁▁,就得到了数轴.于是,+3可以用数轴上位于原点右边3个单位的点表示,-4可以用数轴上位于原点左边4个单位的点表示,在数轴上位于原点右边41点表示41,在数轴上位于原点左边1.5的点表示5.1 ,任何有理数都可以用数轴上的一个点来表示.三、例题讲解、巩固提高例1.如图,指出数轴上A ,B ,C 各点表示什么数,并指出数轴上表示2和-3.5的点.解:点A 表示3.5;点B 表示-5;点C 表示-2;表示2和-3.5的点分别是下图中的点D 和点E.练习:画出数轴并用数轴上的点表示下列个数:23 ,-5 ,0 ,5 ,-4 ,-23 . 四、继续探究2 与 -2有什么相同点与不同点?它们在数轴上的位置有什么关系?5 与 -5, 23 与 -23 呢? 如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数.特别地0的相反数是0.在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等.练习 : 1、5的相反数是▁▁;▁▁的相反数是-3.5.议一议数轴上的两个点,右边点表示的数与左边点表示的数有怎样的大小关系?数轴上表示的数,▁▁▁边的总比▁▁▁边的大;正数▁▁▁0,负数▁▁▁0,正数▁▁▁负数.练习:比较大小:-3▁5; 0▁-4 ;-3▁-2.5.五、合作交流(1) 什么是数轴?怎样画数轴.(2) 有理数与数轴上的点之间存在怎样的关系?(3) 什么是相反数?怎样求一个数的相反数?(4) 如何利用数轴比较有理数的大小?六、随堂练习:(1)下列说法正确的是( )A 、 数轴上的点只能表示有理数B 、 一个数只能用数轴上的一个点表示C 、 在1和3之间只有2D 、 在数轴上离原点2个单位长度的点表示的数是2(2)语句:①-5是相反数、②-5与+3互为相反数③-5是5的相反数④-5和5互为相反数⑤0的相反数是0⑥-0=0.上述说法中正确的是( )A.①②⑥B.②③⑤C.①④D.③④⑤⑥(3)大于-4而小于4的整数有▁▁▁▁▁▁.(4)用“﹤”或“﹥”号填空①-5▁▁-7②0 ▁▁-2③0.01▁▁▁-0.1(5)写出下列各数的相反数3.4,-3,0,a ,2a-3.七、板书设计八、教学反思数轴是数形转化、结合的重要桥梁,创设问题情境,激发学生的学习热情,发现生活中的数学.让学生通过观察、思考来体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的概括能力.。
最新人教版《数轴》七年级数学教学设计教案

第一章有理数1.2 有理数1.2.2 数轴一、教学目标【知识与技能】1.通过与温度计的类比,了解数轴的概念,会画数轴.2.知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应.【过程与方法】1.从直观认识到理性认识,从而建立数轴概念。
2.通过数轴概念的学习,初步体会对应的思想、数形结合的思想方法。
3.会利用数轴解决有关问题。
【情感态度与价值观】通过对数轴的学习,体会到数形结合的思想方法,进而初步认识事物之间的联系性.二、课型新授课三、课时1课时四、教学重难点【教学重点】1.数轴的概念.2.能将已知数在数轴上表示出来,说出数轴上已知点所表示的数.【教学难点】从直观认识到理性认识,从而建立数轴的概念五、课前准备教师:课件、直尺、温度计等。
学生:直尺、练习本、铅笔、圆珠笔或钢笔。
六、教学过程(一)导入新课请读出下面温度计所表示的温度:(出示课件2-3)思考:一支温度计能够主观地读出温度的大小,其温度值有正数、0、负数,那么从外观上看,温度计具有哪些不可缺少的特征呢?师生共同解答如下:形状是直的、0刻度、单位刻度.(二)探索新知1.师生互动,探究数轴的概念在上新课之前,我们看下面的问题欣欣感冒了,医生用体温计测量了她的体温,并说:“37.8度”.教师问1:医生为什么通过体温计就可以读出任意一个人的体温?学生回答:体温计上的刻度教师问2:那么要测量这种气温所需要的温度计的刻度应该如何安排?需要用到哪些数?学生回答:正数、零、负数教师问3:在一条东西向的马路上,有一个汽车站,汽车站东3 m和7.5m 处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(出示课件5)学生回答:如下图:教师问4:图中没有表示出来东西方向,那我们怎样表示出东西方向呢?(出示课件6)学生讨论后回答:东西方向可以用前面我们学过的相反意义的量来表示.教师问5:怎样简明地表示这些树、电线杆与汽车站牌的相对位置关系(方向、距离)?(出示课件7)学生讨论后回答:为了使表达更清楚,我们规定向东为正,把汽车站牌左右两边的数分别用负数和正数表示.上边的问题表示如下:教师讲解:这样,我们就用负数、0、正数表示出了一条直线上的点.教师问6:观察右图的温度计,回答下列问题:(出示课件8)(1)点A表示多少摄氏度?点B呢?点C呢?(2)温度计刻度的正负是怎样规定的?以什么为基准?(3)每摄氏度两条刻度线之间的距离有什么特点?学生回答:(1)点A表示0摄氏度,点B表示20摄氏度,点C表示-5摄氏度.(2)0℃以上为正数,0℃以下为负数,以0℃为基准.(3)每摄氏度两条刻度线之间的距离都相等.教师问7:把温度计平放,我们能从中发现什么?(出示课件9)师生共同解答如下:教师问8:你能借鉴温度计,用一条直线上的点表示有理数吗?学生回答:可以.教师问9:可以表示有理数的直线必须满足什么条件?师生共同解答如下:原点、正方向、单位长度总结点拨:(出示课件10)画一条水平直线,在直线上取一点表示0,并把这个点叫作原点,选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到下面的数轴.教师问10:如何画数轴呢?师生共同解答如下:(出示课件11)1. 画一条水平直线,定原点(如图),原点表示0.2. 规定从原点向右为正方向,那么相反的方向(从原点向左)则为负方向.3. 选择适当的长度为单位长度.总结点拨:(出示课件13)画数轴注意事项:(1)原点、单位长度和正方向三要素缺一不可;(2)直线一般画水平的;(3)正方向用箭头表示,一般取从左到右;(4)取单位长度应结合实际需要,但要做到刻度均匀.教师问11:观察下面数轴,哪些数在原点的左边,哪些数在原点的右边,由此你有什么发现?(出示课件13)学生回答:负数在原点的左边,正数在原点的右边,负数小于0,正数大于0.教师问12:每个数到原点的距离是多少?由此你又有什么发现?师生共同解答如下:对于一个正数a,正数a到原点的距离是a,-a到原点的距离是a.总结点拨:(出示课件18)任何一个有理数都可以用数轴上的一个点来表示.一般地,设a是一个正数,则数轴上表示数a在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度.教师问13:如何用数轴上的点来表示分数或小数,如1.5,……?学生回答:如下图所示:−21.53例1:在所给数轴上画出表示下列各数的点.(出示课件16)1,-5,-2.5,,0师生共同解答如下:解:如下图所示:总结点拨:①在数轴上用实心圆点表示所要表示的数;②把点标在线上;③把数标在点的上方,以便观看.例2:在下面数轴上,A、B、C、D各点分别表示什么数?(出示课件19)师生共同解答如下:解:(1)A点表示2;(2) B点表示0.25;(3)C点表示-0.75;(4) D点表示-1.5总结点拨:在确定数字时,要认真观察已知点是在原点的左边还是右边,对于A、D这种情况,要注意它们所表示的数是在哪两个数之间.例3:从数轴上表示-1的点出发,向左移动两个单位长度到点B,则点B表示的数是_______,再向右移动5个单位长度到达点C,则点C表示的数是________.(出示课件21)师生共同解答如下:解析:如图,答案:-3, 2.(三)课堂练习(出示课件23-29)1. 如图,在数轴上,点A表示的数为-1,点B表示的数为4,点C是点B 关于点A的对称点,则点C表示的数为_______.2. 如图,数轴上点P对应的数为p,则数轴上与数对应的点为()A. 点AB. 点BC. 点CD. 点D3. 下列说法中正确的是( )A. 在数轴上的点表示的数不是正数就是负数B. 数轴的长度是有限的C. 一个有理数总可以在数轴上找到一个表示它的点D. 所有整数都可以用数轴上的点表示,但分数就不一定能找到表示它的点4.与原点距离是2.5个单位长度的点所表示的有理数是( )A. 2.5 B.-2.5C.±2.5 D.这个数无法确定5.在数轴上表示数6的点在原点_____侧,到原点的距离是_____个单位长度,表示数-8的点在原点的_____侧,到原点的距离是_____个单位长度.表示数6的点到表示数-8的点的距离是______个单位长度.6. 在数轴上到表示-2的点相距8个单位长度的点表示的数为________.7. 如图,写出数轴上点A、B、C、D、E表示的数.8. 如图,已知数轴上的点A、B、C、D分别表示-2,1,2,3,则表示的点P应落在线段()A. AD上B.OB上C. BC上D. CD上9. 如图,已知A、B两点在数轴上,点A表示的数为﹣10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)(1)数轴上点B对应的数是________.(2)经过几秒,点M、点N分别到原点O的距离相等?参考答案:1.-6 解析:∵数轴上A、B两点表示的数分别为-1和4,点B关于点A的对称点是点C,∴AB的长度是5个单位,根据题意AB=AC,∴AC的长度也是5个单位,也就是点A向左移动5个单位,∵点A表示-1,∴点C表示-6.2.B3.C4.C5.右,6;左,8;146. -10或67. 解:点A、B、C、D、E表示的数分别是0,-2,1,2.5,-3.8.B.9. 解:(1)∵OB=3OA=30,∴B对应的数是30.(2)设经过x秒,点M、点N分别到原点O的距离相等,此时点M对应的数为3x﹣10,点N对应的数为2x.①当点M、点N在点O两侧时,则10﹣3x=2x,解得x=2;②当点M、点N重合时,则3x﹣10=2x,解得x=10.所以经过2秒或10秒,点M、点N分别到原点O的距离相等.(四)课堂小结今天我们学了哪些内容:数轴是非常重点的数学工具,它的出现对数学的发展起了重要作用,它揭示了数和形之间的内在联系,很多数学问题都可以以它为基础,借助图直观地表示,为研究问题提供了新方法.(五)课前预习预习下节课(1.2.3)的相关内容。
初中数学数轴教案

初中数学数轴教案教学目标:1. 了解数轴的概念,能用数轴上的点准确地表示有理数。
2. 通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。
3. 在数与形结合的过程中,体会数学学习的乐趣。
教学重难点:1. 数轴的三要素,用数轴上的点表示有理数。
2. 数形结合的思想方法。
教学准备:1. 数轴图示2. 教学卡片教学过程:一、引入新课1. 利用温度计的实例,引导学生思考数学中是否有类似的表示数的工具。
2. 引导学生思考如何用数表示东西向马路上杨树、柳树、汽车站牌的相对位置。
二、探索新知1. 教师引导学生小组讨论,用画图的形式表示东西向马路上杨树、柳树、汽车站牌三者之间的关系。
2. 教师提问:如何用数表示这些树、电线杆与汽车站牌的相对位置?3. 教师引导学生思考0的意义,以及数的符号的实际意义。
4. 教师给出数轴的定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴。
数轴的三要素是原点、正方向和单位长度。
三、实例讲解1. 教师利用数轴图示,讲解数轴的三要素。
2. 教师通过实际操作,展示如何用数轴上的点表示有理数。
3. 教师举例说明,如何判断两个有理数的大小关系。
四、练习巩固1. 学生独立完成教学卡片上的练习题。
2. 学生分组讨论,互相讲解解题过程。
五、总结拓展1. 学生总结数轴的概念和应用。
2. 教师提出拓展问题,引导学生思考数轴在实际生活中的应用。
教学反思:本节课通过实例引入数轴的概念,引导学生思考数的表示方法,让学生在实际操作中理解数轴的三要素和有理数与数轴上的点的对应关系。
在教学过程中,注意引导学生思考,激发学生的学习兴趣。
通过练习题和分组讨论,巩固所学知识,提高学生的实际应用能力。
总体来说,本节课达到了预期的教学目标。
小学数学数轴教案范文

小学数学是孩子们学习的第一门学科,也是十分重要的一门学科,数轴是小学数学中的一个重要知识点。
在初学数轴的过程中,良好的教案对孩子们的学习起到了很大的帮助。
因此,本文将为大家介绍一篇优秀的小学数学数轴教案。
一、教案设想1、教学目标:(1)掌握数轴的概念及其用法。
(2)学会在数轴上数值的正负及大小关系。
(3)通关数轴解题思路,解决数轴上的加减乘除。
2、教学重点:掌握数轴解题的方法和技巧,理解数轴上数值的正负,判断数值的大小关系。
3、教学难点:学会在数轴上进行加减乘除,掌握数轴的正负规则。
4、教具准备:教材、白板、马克笔、数轴、笔、本子等。
二、教学内容:1、引入:学生们对数轴还不是很熟悉,需要老师引入相关内容:(1)数轴的意义:我们可以将数轴比作一条直线,在它上面用一定的方式标出整数,可以使我们更直观地了解数的大小、正负和数量关系。
(2)数轴的构成:数轴由两部分组成,一是数轴上的数值,二是表示数轴坐标轴的垂线。
2、数轴的正负(1)在数轴上标出原点,并让学生们国际表示法。
(2)教师引导学生们步骤如下:从原点“0”向右走,第一个数是“1”,第二个数是“2”,第三个数是“3”,第四个数是“4”…以此为类推,向左走,依次标出“-1”、“-2”、“-3”、“-4”等。
(3)在数轴上标出正数“5”和负数“-5”,并让学生们把它们排列在一起观察正数和负数互相独立的特点。
3、数轴的大小关系(1)通过教师的引导和实际操作,让学生掌握在数轴上判断数值大小的方法和技巧。
(2)教师先出一组数并让学生在数轴上标出来,学生依次标出后,在数轴上互相对比,根据数轴大小关系判断每个数的大小关系。
(3)在数轴上给出两个数问学生它们的大小关系,教师引导学生从数轴上的位置出发判断两个数的大小关系,以帮助学生掌握数轴上数值大小的判断方法。
4、数轴解题方法(1)在数轴上对比数值大小(2)在数轴上进行加减(3)在数轴上进行乘除5、教学实验:通过练习题目,巩固学生对数轴的掌握以及应用技能,并让学生能够自主解题。
初中数学初一数学上册《数轴》教案、教学设计

一、教学目标
(一)知识与技能
1.理解数轴的概念,掌握数轴的三要素(原点、正方向、单位长度),并能在数轴上表示各种数。
2.能够利用数轴比较数的大小,进行加减运算,并解决相关的实际问题。
3.通过数轴的学习,培养学生的数感,提高他们运用数学工具解决问题的能力。
(二)过程与方法
6.预习下一节课内容:数轴上的乘法和除法运算。思考如何利用数轴解决乘除运算问题。
作业要求:
1.作业需独立完成,要求书写工整、步骤清晰。
2.家长签字确认,加强对学生学习情况的了解和监督。
3.提交作业时,请同学们认真检查,确保答案正确。
4.遇到问题,及时与同学、老师交流,共同解决问题,提高自己的数学能力。
4.提醒学生课后复习,巩固所学知识,并预习下一节课的内容。
五、作业布置
为了巩固本节课所学知识,培养学生的自主学习和思考能力,特布置以下作业:
1.请同学们绘制一条数轴,并在数轴上表示出以下数:-3、2、0、5、-1。要求准确标注原点、正方向和单位长度。
2.利用数轴比较以下数的大小:-2、3、-5、1、4。请同学们用自己的语言说明比较方法,并解释为什么。
(三)学生小组讨论
1.将学生分成小组,每组讨论以下问题:
a.如何在数轴上表示正数、负数和0?
b.数轴上数的大小比较规则是什么?
c.数轴上的加减运算该如何进行?
2.学生讨论过程中,教师巡回指导,解答学生的疑问。
3.各小组汇报讨论成果,教师点评并总结。
(四)课堂练习
1.设计数轴相关的练习题,包括填空题、选择题和解答题。
7.课后作业:布置数轴相关的练习题,巩固所学知识,提高学生的运用能力。
数学《数轴》教案

数学《数轴》教案教案标题:《数轴》教学内容:一、知识目标:1.掌握数轴的定义和相关术语。
2.能够在数轴上表示各种数及其相互关系。
3.能够解决与数轴相关的实际问题。
二、能力目标:1.提高学生的观察力和空间想象力。
2.培养学生对数轴的分析与判断能力。
3.培养学生解决实际问题的能力。
三、情感目标:1.培养学生合作学习和互助学习的能力。
2.培养学生乐于观察和探索的精神。
3.培养学生对数学的兴趣和自信心。
四、教学重点:1.数轴的定义和相关术语的掌握。
2.各种数在数轴上的表示方法。
五、教学难点:1.解决与数轴相关的实际问题。
2.培养学生的分析与判断能力。
教学过程:一、导入与引入活动(5分钟)1.引入活动:教师给学生展示一些实物并要求学生分辨它们的大小,引导学生思考如何准确地比较这些实物的大小。
2.导入活动:教师提问学生,有没有一种方法可以准确地比较数的大小?学生可能会提到数轴。
二、理论知识讲授(15分钟)1.讲解数轴的定义和相关术语:数轴是由一条直线和一个原点组成的,用于表示各种数及其相互关系;原点是数轴上的零点,它将数轴分为正半轴和负半轴;数轴上的点与实数一一对应。
2.讲解如何在数轴上表示各种数:正数和负数在数轴上的表示方法;整数、分数和小数在数轴上的表示方法。
三、案例分析与讨论(15分钟)1.案例一:小明家离学校有5千米,小红家离学校有8千米,请用数轴比较两者之间的距离。
2.案例二:小明和小红同时从学校出发,小明向正方向走了6千米,小红向负方向走了3千米,请用数轴表示两者的位置。
3.学生分组进行讨论,并分享各自的答案。
教师与学生共同分析得出正确答案。
四、练习与训练(15分钟)1.练习一:请用数轴表示下列数的位置,并判断它们的正负关系:-3,0,2.5,72.练习二:小明离小红比较远,请用数轴表示他们之间的距离,已知小明到小红的距离是6,小红到小明的距离是3五、拓展与应用(20分钟)1.拓展一:你能想到其他实际问题,并运用数轴解决吗?2.拓展二:请用数轴表示温度的变化,并解决以下问题:今天上午气温是10摄氏度,下午升高了12摄氏度,晚上降低了8摄氏度,最后的气温是多少度?六、归纳与总结(10分钟)1.教师对本节课的内容进行总结,并强调重点和难点。
《数轴》教学设计方案

一、教学目标1. 知识与技能:理解数轴的概念,掌握数轴上的点与实数之间的一一对应关系,能够正确地在数轴上表示数。
2. 过程与方法:通过观察、操作、讨论等活动,培养学生数形结合的思想,提高学生解决问题的能力。
3. 情感态度与价值观:激发学生对数学学习的兴趣,培养学生严谨、求实的科学态度。
二、教学重点与难点1. 教学重点:数轴的概念、数轴上的点与实数之间的一一对应关系。
2. 教学难点:数轴上的点与实数之间的一一对应关系,以及数轴上点的平移规律。
三、教学过程(一)导入1. 教师展示生活中的尺子,引导学生回顾尺子的用途。
2. 提问:如果我们要在尺子上表示一些数,应该如何表示呢?3. 引出数轴的概念,激发学生学习兴趣。
(二)新课讲授1. 数轴的概念(1)教师引导学生观察数轴,介绍数轴上的各个部分,如原点、正半轴、负半轴等。
(2)讲解数轴上的点与实数之间的一一对应关系,强调数轴是表示实数的一种方法。
2. 数轴上的点与实数之间的对应关系(1)教师通过举例,让学生体会数轴上点与实数之间的对应关系。
(2)学生分组讨论,总结出数轴上点的表示方法。
3. 数轴上的点的平移规律(1)教师展示数轴上点的平移现象,引导学生观察平移规律。
(2)学生通过操作、讨论,总结出数轴上点的平移规律。
(三)巩固练习1. 教师给出一些数轴上的点,要求学生在数轴上表示出来。
2. 学生独立完成练习,教师巡视指导。
3. 教师选取部分学生作品进行展示,引导学生总结解题思路。
(四)课堂小结1. 教师引导学生回顾本节课所学内容,强调数轴的概念、数轴上的点与实数之间的对应关系以及数轴上点的平移规律。
2. 学生总结本节课的收获,提出疑问。
(五)布置作业1. 完成课后练习题,巩固所学知识。
2. 搜集生活中与数轴相关的事例,下节课分享。
四、教学反思1. 本节课通过多种教学手段,激发学生的学习兴趣,使学生更好地理解数轴的概念。
2. 教师应注重引导学生观察、操作、讨论,培养学生的数形结合思想。
数轴教学设计及教案

数轴教学设计及教案第一章:数轴的引入与概念1.1 教学目标让学生理解数轴的定义和基本性质。
让学生掌握数轴上的点与数的关系。
让学生能够绘制和解读简单的数轴。
1.2 教学内容数轴的定义和基本性质。
数轴上的点与数的关系。
数轴的绘制和解读。
1.3 教学方法采用问题引导法,通过提问引导学生思考数轴的定义和性质。
通过示例和练习,让学生掌握数轴上的点与数的关系。
利用数轴模型或电子白板,进行数轴的绘制和解读。
1.4 教学评估通过课堂提问和练习,评估学生对数轴定义和性质的理解。
通过数轴绘制和解读的练习,评估学生对数轴上的点与数的关系的掌握。
第二章:数轴上的运算2.1 教学目标让学生掌握数轴上的加减乘除运算。
让学生能够解决实际问题,运用数轴上的运算。
2.2 教学内容数轴上的加减乘除运算规则。
实际问题的解决。
2.3 教学方法通过示例和练习,让学生掌握数轴上的加减乘除运算规则。
提供实际问题,让学生运用数轴上的运算解决。
2.4 教学评估通过运算练习题,评估学生对数轴上的运算规则的掌握。
通过实际问题的解决,评估学生对数轴上的运算的应用能力。
第三章:数轴与不等式3.1 教学目标让学生理解不等式的概念和性质。
让学生掌握数轴上的不等式的表示和解决方法。
3.2 教学内容不等式的概念和性质。
数轴上的不等式的表示和解决方法。
3.3 教学方法通过示例和练习,让学生理解不等式的概念和性质。
利用数轴,让学生掌握数轴上的不等式的表示和解决方法。
3.4 教学评估通过不等式的练习题,评估学生对不等式的概念和性质的理解。
通过数轴上的不等式的表示和解决的练习,评估学生对数轴与不等式的掌握。
第四章:数轴与函数让学生理解函数的概念和性质。
让学生掌握数轴上的函数的表示和解决方法。
4.2 教学内容函数的概念和性质。
数轴上的函数的表示和解决方法。
4.3 教学方法通过示例和练习,让学生理解函数的概念和性质。
利用数轴,让学生掌握数轴上的函数的表示和解决方法。
4.4 教学评估通过函数的练习题,评估学生对函数的概念和性质的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数轴教学设计教案 Modified by JEEP on December 26th, 2020.
教学准备
1.教学目标
1. 认识数轴,知道数轴的三要素。
2. 能在数轴上用点表示相应的正、负数的位置。
3. 能按要求画数轴。
2.教学重点/难点
能够按照要求画出需要的数轴
3.教学用具
教学课件
4.标签
教学过程
1.这是我们以前学习的数射线,说说数射线由什么组成在这条数射线上最小的数是几
2.在数射线上找出下列正数。
、、7。
小结:像这条从0出发沿正方向延长的射线,我们可以称它为数射线。
正数都可以用数射线上“0”点右边的点表示出来。
二、新课探索:
㈠探究一
1.揭示课题。
师:从数射线上的“0”点出发,向相反方向(左)延长,它就会变成一条“数轴”。
今天这节课我们就一起来学习数轴》。
1.认识数轴。
出示P12数轴。
观察数轴与数射线有什么相同与不同
相同:箭头、数、单位长度。
不同:数射线上只有正数、数轴上有负数,它们以0作分界点。
数射线是一条射线,数轴是一条直线,两端都能延长。
小结:数轴上的箭头表示方向;相邻两数之间的距离称为1个单位长
度,任何两相邻数之间的单位长度都相等;0作为正数与负数的点的分界点,0点也就是原点。
向这样规定了原点、正方向、单位长度的一条直线叫做数轴。
㈡探究二
1.学习数轴的画法。
⑴画一条直线(一边画水平位置的直线),在直线上任取一点表示原点。
⑵规定一个方向(一般取从左往右的方向)为正方向,用箭头表示,那么相反方向就是负方向。
⑶再选取适合的长度作为一个单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1、2、3、……;从原点向左,用类似方法依次表示-1、-2、-3、……。
学生看书自学数轴的画法,在自学的基础上通过教师的示范学习画数轴。
⑷说说画数轴时要注意些什么
小结:画数轴时,数轴的三要素原点、正方向、单位长度一个不能少,注意每个单位长度之间的距离都是相等的。
㈢探究三:正负数离原点的距离
+1、+2、-1、-2、…离原点的距离
⑴ +1在原点的右边,离开原点有几个单位长度在图中表示那一段
+2在原点的右边,离开原点有几个单位长度在图中表示那一段
-1、-2、这两个点分别离原点有几个单位长度
(2)从中你有什么发现
小结:+1与-1两个点分别在原点的两侧,离原点的距离相等,都是一个单位长度,…
(3)跟进练习:在数轴上标出下列各数,他们离原点有几个单位长度
-3、-4、+5、、+
小结:所有表示正数的点都在原点的右边,所有表示负数的点都在原点的左边。
⑵在这条数轴上找得到-10吗怎样找到这个点
(延长数轴,)在数轴上,还有哪个点的距离与它相等
⑶任何数都能在数轴上找到。
和+分别在原点的两边,它们离开原点都是个单位长度,原点是表示正数与负数的点的分界点。
三、课内练习
1.试一试/1
表示+3的点在原点的( )边,离开原点( )个单位长度。
表示-5的点在原点的( )边,离开原点( )个单位长度。
表示的点在原点的( )边,离开原点( )个单位长度。
表示+的点在原点的( )边,离开原点( )个单位长度。
1.试一试/2
在数轴上找出表示-4,+3,-1,+5,-6的点,并分别用字母A、B、C、D、E表示。
师:说说在哪里在哪里分别用字母F、G表示。
小结:在找这些数的时候,先确定它在原点的左边还是右边,然后再确定它离开原点有多少个单位长度。
1.试一试/3
写出下面数轴上A、B、C、D、E各点分别表示什么数。
1. 判断题:
⑴所有的数,都能在数轴上找到相对应的点。
()
⑵原点左边的数都是正数,右边的数都是负数。
()
⑶离开原点5个单位长度的数就是+5。
( )
⑷一个数离开原点的单位长度越多,这个数就越大。
( )
课堂小结
四、本课小结
今天,你学会了什么新的本领数轴有哪几部分组成画数轴时要注意什么
课后习题
五、课后作业
1、画出一条数轴
2、在数轴上找到表示+2、-1、+7、0、-4的点,并分别用字母A、B、C、D、E 表示。