数轴教学设计

合集下载

2.2 数轴(教学设计——精品教案)

2.2 数轴(教学设计——精品教案)

2.2数轴教学目标【知识与技能】1.正确理解数轴的意义,理解数轴的三要素.2.掌握有理数在数轴上的表示法,以及利用数轴比较有理数的大小.3.理解相反数的意义及求法.【过程与方法】通过与温度计的类比认识数轴,初步感受数形结合的思想方法.【情感态度价值观】渗透数形结合的思想方法,培养学生的观察、归纳与概括的能力.教学重难点【教学重点】正确掌握数轴的画法;用数轴上的点表示有理数;求已知数的相反数.【教学难点】有理数和数轴上的的点的对应关系.课前准备课件教学过程一、情景引入:(1) 你会读温度计吗?完成课本43页最上面的读温度计的问题.(2) 我们能否用类似温度计的图形表示有理数呢?二、讲授新课:认真阅读课本第43页至45页,完成下列问题(1)画一条水平直线,在直线上取一点O (叫作▁▁▁),选取某一长度作为▁▁▁▁,规定向右的方向为▁▁▁,就得到了数轴.于是,+3可以用数轴上位于原点右边3个单位的点表示,-4可以用数轴上位于原点左边4个单位的点表示,在数轴上位于原点右边41点表示41,在数轴上位于原点左边1.5的点表示5.1 ,任何有理数都可以用数轴上的一个点来表示.三、例题讲解、巩固提高例1.如图,指出数轴上A ,B ,C 各点表示什么数,并指出数轴上表示2和-3.5的点.解:点A 表示3.5;点B 表示-5;点C 表示-2;表示2和-3.5的点分别是下图中的点D 和点E.练习:画出数轴并用数轴上的点表示下列个数:23 ,-5 ,0 ,5 ,-4 ,-23 . 四、继续探究2 与 -2有什么相同点与不同点?它们在数轴上的位置有什么关系?5 与 -5, 23 与 -23 呢? 如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数.特别地0的相反数是0.在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等.练习 : 1、5的相反数是▁▁;▁▁的相反数是-3.5.议一议数轴上的两个点,右边点表示的数与左边点表示的数有怎样的大小关系?数轴上表示的数,▁▁▁边的总比▁▁▁边的大;正数▁▁▁0,负数▁▁▁0,正数▁▁▁负数.练习:比较大小:-3▁5; 0▁-4 ;-3▁-2.5.五、合作交流(1) 什么是数轴?怎样画数轴.(2) 有理数与数轴上的点之间存在怎样的关系?(3) 什么是相反数?怎样求一个数的相反数?(4) 如何利用数轴比较有理数的大小?六、随堂练习:(1)下列说法正确的是( )A 、 数轴上的点只能表示有理数B 、 一个数只能用数轴上的一个点表示C 、 在1和3之间只有2D 、 在数轴上离原点2个单位长度的点表示的数是2(2)语句:①-5是相反数、②-5与+3互为相反数③-5是5的相反数④-5和5互为相反数⑤0的相反数是0⑥-0=0.上述说法中正确的是( )A.①②⑥B.②③⑤C.①④D.③④⑤⑥(3)大于-4而小于4的整数有▁▁▁▁▁▁.(4)用“﹤”或“﹥”号填空①-5▁▁-7②0 ▁▁-2③0.01▁▁▁-0.1(5)写出下列各数的相反数3.4,-3,0,a ,2a-3.七、板书设计八、教学反思数轴是数形转化、结合的重要桥梁,创设问题情境,激发学生的学习热情,发现生活中的数学.让学生通过观察、思考来体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的概括能力.。

初中数学数轴教案

初中数学数轴教案

初中数学数轴教案教学目标:1. 了解数轴的概念,能用数轴上的点准确地表示有理数。

2. 通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。

3. 在数与形结合的过程中,体会数学学习的乐趣。

教学重难点:1. 数轴的三要素,用数轴上的点表示有理数。

2. 数形结合的思想方法。

教学准备:1. 数轴图示2. 教学卡片教学过程:一、引入新课1. 利用温度计的实例,引导学生思考数学中是否有类似的表示数的工具。

2. 引导学生思考如何用数表示东西向马路上杨树、柳树、汽车站牌的相对位置。

二、探索新知1. 教师引导学生小组讨论,用画图的形式表示东西向马路上杨树、柳树、汽车站牌三者之间的关系。

2. 教师提问:如何用数表示这些树、电线杆与汽车站牌的相对位置?3. 教师引导学生思考0的意义,以及数的符号的实际意义。

4. 教师给出数轴的定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴。

数轴的三要素是原点、正方向和单位长度。

三、实例讲解1. 教师利用数轴图示,讲解数轴的三要素。

2. 教师通过实际操作,展示如何用数轴上的点表示有理数。

3. 教师举例说明,如何判断两个有理数的大小关系。

四、练习巩固1. 学生独立完成教学卡片上的练习题。

2. 学生分组讨论,互相讲解解题过程。

五、总结拓展1. 学生总结数轴的概念和应用。

2. 教师提出拓展问题,引导学生思考数轴在实际生活中的应用。

教学反思:本节课通过实例引入数轴的概念,引导学生思考数的表示方法,让学生在实际操作中理解数轴的三要素和有理数与数轴上的点的对应关系。

在教学过程中,注意引导学生思考,激发学生的学习兴趣。

通过练习题和分组讨论,巩固所学知识,提高学生的实际应用能力。

总体来说,本节课达到了预期的教学目标。

小学数学数轴教案范文

小学数学数轴教案范文

小学数学是孩子们学习的第一门学科,也是十分重要的一门学科,数轴是小学数学中的一个重要知识点。

在初学数轴的过程中,良好的教案对孩子们的学习起到了很大的帮助。

因此,本文将为大家介绍一篇优秀的小学数学数轴教案。

一、教案设想1、教学目标:(1)掌握数轴的概念及其用法。

(2)学会在数轴上数值的正负及大小关系。

(3)通关数轴解题思路,解决数轴上的加减乘除。

2、教学重点:掌握数轴解题的方法和技巧,理解数轴上数值的正负,判断数值的大小关系。

3、教学难点:学会在数轴上进行加减乘除,掌握数轴的正负规则。

4、教具准备:教材、白板、马克笔、数轴、笔、本子等。

二、教学内容:1、引入:学生们对数轴还不是很熟悉,需要老师引入相关内容:(1)数轴的意义:我们可以将数轴比作一条直线,在它上面用一定的方式标出整数,可以使我们更直观地了解数的大小、正负和数量关系。

(2)数轴的构成:数轴由两部分组成,一是数轴上的数值,二是表示数轴坐标轴的垂线。

2、数轴的正负(1)在数轴上标出原点,并让学生们国际表示法。

(2)教师引导学生们步骤如下:从原点“0”向右走,第一个数是“1”,第二个数是“2”,第三个数是“3”,第四个数是“4”…以此为类推,向左走,依次标出“-1”、“-2”、“-3”、“-4”等。

(3)在数轴上标出正数“5”和负数“-5”,并让学生们把它们排列在一起观察正数和负数互相独立的特点。

3、数轴的大小关系(1)通过教师的引导和实际操作,让学生掌握在数轴上判断数值大小的方法和技巧。

(2)教师先出一组数并让学生在数轴上标出来,学生依次标出后,在数轴上互相对比,根据数轴大小关系判断每个数的大小关系。

(3)在数轴上给出两个数问学生它们的大小关系,教师引导学生从数轴上的位置出发判断两个数的大小关系,以帮助学生掌握数轴上数值大小的判断方法。

4、数轴解题方法(1)在数轴上对比数值大小(2)在数轴上进行加减(3)在数轴上进行乘除5、教学实验:通过练习题目,巩固学生对数轴的掌握以及应用技能,并让学生能够自主解题。

数轴教学设计

数轴教学设计

数轴教学设计数轴教学设计数轴教学设计1 一、教学目的1、知识与才能:通过与温度计的类比,认识数轴,会用数轴上的点表示有理数;借助数轴理解相反数的概念,知道互为相反的一对数在数轴上的位置关系;会求一个有理数的相反数;能利用数轴比拟有理数的大小。

2、过程与方法:经历从现实问题中建立数学模型,从数形两个侧面理解与解决问题,使学生认识用形来解决数的问题的优越性,培养学生用数形结合的数学思想方法学习数学的理念。

3、情感态度与价值观:从学生熟悉的现实情境中学习数轴,体会数学知识与现实世界的联络;通过分组动手操作理论,体会数学充满探究性,并在学习活动中学会合作、学会发现知识,找到获取知识的方法,使学生体验到成功的乐趣,数学知识的应用价值。

二、教学重点:数轴和相反数的概念及用数轴上的点表示有理数三、教学难点:数轴的概念和相反数反映在数轴上的性质四、教学设计〔一〕创设情境,引出课题老师出示一只温度计,首先让学生说说温度计在日常生活中的应用,然出提问:〔1〕温度计上的刻度是怎样表示温度的?〔2〕把温度计横放〔零上温度向右〕,你觉得它像什么?〔3〕你能把温度计的刻度画在纸上吗?引出新课:“数轴”。

〔借助于温度计,用类比的数学思想方法,使学生易于承受数轴。

感受到数学是真实的、亲切的。

这些问题的创设有利于唤起学生的好奇心,激发学生的求知欲,调动学生的思维积极性,学生很自然地投入到学习活动中去。

〕〔二〕合作讨论,探究新知1、动手操作:师生一起画一条数轴。

[讲清数轴的画法:一画〔直线〕;二定〔定原定〕;三选〔选正方向〕;四统一〔单位长度要统一〕。

]2、观察数轴有什么特征?〔让学生讨论〕〔如:数轴的三要素——原点、正方向、单位长度,类比温度计三者缺一不可,正数都在原点的右边,负数都在原点的左边等等。

〕3、考考你:下面图形是数轴的是〔〕〔A〕〔B〕〔C〕〔D〕〔通过判断,加深对数轴概念的理解,掌握正确的画法。

〕4、问题:类似温度计的刻度,任何有理数都能用数轴上的点表示吗?〔引导学生独立考虑得出:正数用原点右边的点表示,负数用原点左边的点表示,零用原点表示,任何一个有理数都可以用数轴上的点来表示。

初中数学初一数学上册《数轴》教案、教学设计

初中数学初一数学上册《数轴》教案、教学设计
初中数学初一数学上册《数轴》教案、教学设计
一、教学目标
(一)知识与技能
1.理解数轴的概念,掌握数轴的三要素(原点、正方向、单位长度),并能在数轴上表示各种数。
2.能够利用数轴比较数的大小,进行加减运算,并解决相关的实际问题。
3.通过数轴的学习,培养学生的数感,提高他们运用数学工具解决问题的能力。
(二)过程与方法
6.预习下一节课内容:数轴上的乘法和除法运算。思考如何利用数轴解决乘除运算问题。
作业要求:
1.作业需独立完成,要求书写工整、步骤清晰。
2.家长签字确认,加强对学生学习情况的了解和监督。
3.提交作业时,请同学们认真检查,确保答案正确。
4.遇到问题,及时与同学、老师交流,共同解决问题,提高自己的数学能力。
4.提醒学生课后复习,巩固所学知识,并预习下一节课的内容。
五、作业布置
为了巩固本节课所学知识,培养学生的自主学习和思考能力,特布置以下作业:
1.请同学们绘制一条数轴,并在数轴上表示出以下数:-3、2、0、5、-1。要求准确标注原点、正方向和单位长度。
2.利用数轴比较以下数的大小:-2、3、-5、1、4。请同学们用自己的语言说明比较方法,并解释为什么。
(三)学生小组讨论
1.将学生分成小组,每组讨论以下问题:
a.如何在数轴上表示正数、负数和0?
b.数轴上数的大小比较规则是什么?
c.数轴上的加减运算该如何进行?
2.学生讨论过程中,教师巡回指导,解答学生的疑问。
3.各小组汇报讨论成果,教师点评并总结。
(四)课堂练习
1.设计数轴相关的练习题,包括填空题、选择题和解答题。
7.课后作业:布置数轴相关的练习题,巩固所学知识,提高学生的运用能力。

数学《数轴》教案

数学《数轴》教案

数学《数轴》教案教案标题:《数轴》教学内容:一、知识目标:1.掌握数轴的定义和相关术语。

2.能够在数轴上表示各种数及其相互关系。

3.能够解决与数轴相关的实际问题。

二、能力目标:1.提高学生的观察力和空间想象力。

2.培养学生对数轴的分析与判断能力。

3.培养学生解决实际问题的能力。

三、情感目标:1.培养学生合作学习和互助学习的能力。

2.培养学生乐于观察和探索的精神。

3.培养学生对数学的兴趣和自信心。

四、教学重点:1.数轴的定义和相关术语的掌握。

2.各种数在数轴上的表示方法。

五、教学难点:1.解决与数轴相关的实际问题。

2.培养学生的分析与判断能力。

教学过程:一、导入与引入活动(5分钟)1.引入活动:教师给学生展示一些实物并要求学生分辨它们的大小,引导学生思考如何准确地比较这些实物的大小。

2.导入活动:教师提问学生,有没有一种方法可以准确地比较数的大小?学生可能会提到数轴。

二、理论知识讲授(15分钟)1.讲解数轴的定义和相关术语:数轴是由一条直线和一个原点组成的,用于表示各种数及其相互关系;原点是数轴上的零点,它将数轴分为正半轴和负半轴;数轴上的点与实数一一对应。

2.讲解如何在数轴上表示各种数:正数和负数在数轴上的表示方法;整数、分数和小数在数轴上的表示方法。

三、案例分析与讨论(15分钟)1.案例一:小明家离学校有5千米,小红家离学校有8千米,请用数轴比较两者之间的距离。

2.案例二:小明和小红同时从学校出发,小明向正方向走了6千米,小红向负方向走了3千米,请用数轴表示两者的位置。

3.学生分组进行讨论,并分享各自的答案。

教师与学生共同分析得出正确答案。

四、练习与训练(15分钟)1.练习一:请用数轴表示下列数的位置,并判断它们的正负关系:-3,0,2.5,72.练习二:小明离小红比较远,请用数轴表示他们之间的距离,已知小明到小红的距离是6,小红到小明的距离是3五、拓展与应用(20分钟)1.拓展一:你能想到其他实际问题,并运用数轴解决吗?2.拓展二:请用数轴表示温度的变化,并解决以下问题:今天上午气温是10摄氏度,下午升高了12摄氏度,晚上降低了8摄氏度,最后的气温是多少度?六、归纳与总结(10分钟)1.教师对本节课的内容进行总结,并强调重点和难点。

《数轴》教学设计方案

《数轴》教学设计方案

一、教学目标1. 知识与技能:理解数轴的概念,掌握数轴上的点与实数之间的一一对应关系,能够正确地在数轴上表示数。

2. 过程与方法:通过观察、操作、讨论等活动,培养学生数形结合的思想,提高学生解决问题的能力。

3. 情感态度与价值观:激发学生对数学学习的兴趣,培养学生严谨、求实的科学态度。

二、教学重点与难点1. 教学重点:数轴的概念、数轴上的点与实数之间的一一对应关系。

2. 教学难点:数轴上的点与实数之间的一一对应关系,以及数轴上点的平移规律。

三、教学过程(一)导入1. 教师展示生活中的尺子,引导学生回顾尺子的用途。

2. 提问:如果我们要在尺子上表示一些数,应该如何表示呢?3. 引出数轴的概念,激发学生学习兴趣。

(二)新课讲授1. 数轴的概念(1)教师引导学生观察数轴,介绍数轴上的各个部分,如原点、正半轴、负半轴等。

(2)讲解数轴上的点与实数之间的一一对应关系,强调数轴是表示实数的一种方法。

2. 数轴上的点与实数之间的对应关系(1)教师通过举例,让学生体会数轴上点与实数之间的对应关系。

(2)学生分组讨论,总结出数轴上点的表示方法。

3. 数轴上的点的平移规律(1)教师展示数轴上点的平移现象,引导学生观察平移规律。

(2)学生通过操作、讨论,总结出数轴上点的平移规律。

(三)巩固练习1. 教师给出一些数轴上的点,要求学生在数轴上表示出来。

2. 学生独立完成练习,教师巡视指导。

3. 教师选取部分学生作品进行展示,引导学生总结解题思路。

(四)课堂小结1. 教师引导学生回顾本节课所学内容,强调数轴的概念、数轴上的点与实数之间的对应关系以及数轴上点的平移规律。

2. 学生总结本节课的收获,提出疑问。

(五)布置作业1. 完成课后练习题,巩固所学知识。

2. 搜集生活中与数轴相关的事例,下节课分享。

四、教学反思1. 本节课通过多种教学手段,激发学生的学习兴趣,使学生更好地理解数轴的概念。

2. 教师应注重引导学生观察、操作、讨论,培养学生的数形结合思想。

《数轴》教学设计

《数轴》教学设计

数轴教学设计一、前言数轴作为数学中的常用工具之一,能够帮助学生更加直观地感受数的大小和位置关系,促进数学思维的发展。

本设计旨在通过基于探究性教学的方式,引导学生探索数轴概念和使用方法,并通过不同层次的练习和实践,从而提高学生的数学综合素养。

二、教学目标•掌握数轴的表示方法。

•能使用数轴直观地表示正、负数及其大小的关系。

•能够测量数轴上任意两点之间的距离。

•能正确解决与数轴相关的实际问题。

三、教学内容和教学步骤1. 数轴的表示方法(掌握)•导入:教师在黑板上画出一个数轴,让学生观察并回答几个问题,如数轴是什么,有什么作用,如何表示正数、负数等。

•探究:让学生自行在纸上画出数轴,并思考以下问题:如何标明出数轴的起点和终点?如何表示整数及其大小关系?如何表示分数及其大小关系?•总结:让学生分享探究中的经验和收获,并进行总结归纳。

2. 正、负数及其大小关系(理解)•导入:请学生拿出生活中可能涉及到正负数的实例,比如温度、高度、负债等,让学生解释涉及到正负数的基本概念。

•探究:通过小组讨论和实际操作,让学生观察数轴上正负数的位置关系、大小和符号规律,并理解负数的概念、表达方式和规则。

•实践:请学生完成相应的数轴练习和作业,比如填空、连线、标出正负数等,以检验对正负数及其大小关系的理解和掌握。

3. 距离的测量(掌握)•导入:请学生思考如何使用数轴来计算两个点之间的距离,以及在何种情况下会用到这种距离计算方法。

•探究:通过实际测量、组内讨论和实验比较等方式,引导学生探究数轴上任意两点之间的距离计算方法,理解绝对值的概念和意义。

•实践:请学生完成各种距离计算的练习和作业,以提高对数轴距离测量的掌握和应用能力。

4. 实际问题的解决(应用)•导入:请学生思考如何将数轴和距离测量应用到日常生活中。

•探究:设计一些实际问题,如场景描述、量化分析和数据分析等,让学生利用数轴和距离测量的方法解决问题,提高应用能力。

•实践:请学生在小组内讨论、撰写分析报告或小作文等,以提高应用能力和表达能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

问题2:指出数轴上 A, B, C, D 各点分别表示什么数?
问题3: 画出数轴,并用数轴上的点表示下列各数:
23, -5, 0, 5, -4,23-
问题4: 2与-2有什么相同点与不相同点?
它们在数轴上的位置有什么关系?23与2
3
-,5
与-5呢?
以任何一个有理数都可以用数轴上的一个点来表示。

问题2是数轴上已知点所表示的有理数,是由“形”到“数”的思维过程。

问题3是给定的数用数轴上的点来表示,是由“数”到“形”的思维过程。

它们从两个侧面体现出数形结合思想。

问题4是使学生通过观察特例,总结出相反数的概念,以及互为相反数的两数在数轴上的位置关系,从数和形两个侧面理解相反数。

四、仔细观察,发现规律
问题1:数轴上的两个点,右边点表示的数与左边点表示的数有怎样的大小关系?
问题2:正数、负数在数轴的什么位置?判断它们的大小?
利用结论练习:比较下列每组数的大小,并说明理由.
(1)-2 和 +6; (2)0和 -1.8;
(3)2
3
-和 -4.
结论:数轴上两个点所表示数,右边的总比左边
学生观察数轴并回答问题
思考数轴的应用价值,观察数轴上两个点所表示的数的大小情况.得出结论:数轴上两个点所表示数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数.通过练习,借助数轴比较数的大小。

相关文档
最新文档