武大数学物理方法期末考试试题-2008
08级数学物理方法习题

(2) x
(3) xPm ( x )
2、将下列函数在 0 ≤ θ ≤ π ,0 ≤ ϕ ≤ 2π 上展开为 Ylm (θ ,ϕ ) 为基的广义傅里叶级数 (1) 3 sin (4)
2
θ sin 2 ϕ − 1
(2) sin
2
θ sin 2 ϕ
(3) (1 + 3 cos θ ) sin θ sin ϕ
分解成三个独立的常微分方程。 2、利用分离变量法将柱坐标系下拉普拉斯方程
1 ∂ ⎛ ∂u ⎞ 1 ∂ 2u ∂ 2u + 2 =0 ⎜ρ ⎟ 2 ⎟+ 2 ∂z ρ ∂ρ ⎜ ⎝ ∂ρ ⎠ ρ ∂ϕ
分解成三个独立的常微分方程。 3、利用分离变量法将球坐标系下亥姆赫兹方程
1 ∂ ⎛ 2 ∂u ⎞ 1 1 ∂ 2u ∂ ⎛ ∂u ⎞ θ + k 2u = 0 + + Байду номын сангаасin r ⎟ ⎜ ⎟ ⎜ ∂θ ⎠ r 2 sin 2 θ ∂ϕ 2 r 2 ∂r ⎝ ∂r ⎠ r 2 sin θ ∂θ ⎝
其中: Ω = {( x, y , z ) − ∞ < x, y < +∞,0 < z < H } 5): 二维带状区域上 Laplace 方程 Green 函数:
∇ 2G ( x, y;ξ ,η ) = −δ ( x − ξ , y − η ), ( x, y ) ∈ D, (ξ ,η ) ∈ D
边界条件确定系数 A 和 B 。 4): 三维带状区域上 Laplace 方程 Green 函数:
∇ 2G ( x, y, z; ξ ,η , ζ ) = −δ ( x − ξ , y − η , z − ς ), ( x, y, z ) ∈ Ω, (ξ ,η , ζ ) ∈ Ω
武汉大学2008-2009学年第二学期考试试卷及答案

武汉大学2008-2009学年第二学期考试试卷《计算方法》 (A 卷) (36学时用)学院: 学号: 姓名: 得分:一、(10分)已知)(x f y =的三个值(1)求二次拉格朗日插值 L )(2x ; (2)写出余项)(2x R 。
二、(10分)给定求积公式)31()31()(11f f dx x f +-≈⎰-求出其代数精度,并问是否是Gauss 型公式。
三、(10分)若矩阵⎪⎪⎪⎭⎫ ⎝⎛=a a a a A 000002,说明对任意实数0≠a ,方程组b AX =都是非病态的(范数用∞⋅)。
四、(12分)已知方程0410=-+x e x 在]4.0,0[内有唯一根。
迭代格式A :)104ln(1n n x x -=+;迭代格式B :)4(1011n x n e x -=+ 试分析这两个迭代格式的收敛性。
五、(12分)设方程组⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛212122211211b b x x a aa a ,其中02211≠a a , 分别写出Jacob 及Gauss-Seidel 迭代格式,并证明这两种迭代格式同时收敛或同时发散。
六、(12分)已知)(x f y =的一组值分别用复化梯形公式和复化辛卜生公式计算 ⎰2.20.1)(dx x f七、(12分)2009年5月左右,北美爆发甲型H1N1流感,美国疾病控制和预防中心发布的美国感染者人数见下表。
为使计算简单,分别用x =-1,0,1,2代表2009年5月2,3,4,5日。
根据上面数据,求一条形如bx ax y +=2的最小二乘拟合曲线。
八、(12分)用改进欧拉方法(也称预估-校正法)求解方程:⎩⎨⎧=+='1)0(2y y x y ]1,0[∈x 。
(取步长5.0=h )九、(10分)对于给定的常数c ,为进行开方运算,需要求方程02=-c x 的根。
(1)写出解此方程的牛顿迭代格式;(2)证明对任意初值c x >0, 牛顿迭代序列}{n x 单调减且收敛于c .。
武汉大学数学物理方法考试习题

n n xm xm n 本征值:km , m 1,2, Rm (k ) J n ( ), m 1,2, a a
Wuhan University
三、S-L本征值问题
2、 S-L本征值问题的性质:
16.1 S-L问题
(2) m 0, m 1,2,
(3)
n (k m ) 2 0 如:
x 2 y xy [k 2 x 2
d dy m2 [(1 x 2 ) ] y l (l 1) y 0 2 dx dx 1 x d dy n 2 2 [( x ] y k 2 xy 0 n ]y 0 dx dx x
d dy [k ( x) ] q( x) y ( x) y 0, a x b (1) dx dx
b
a
( x) ym ( x) yn ( x)dx N
a
2 n mn
(见附2)
a2 2 n J n1 (kln a) ml 如: J n (km )J n (kln )d 0 2 1 b (4) f ( x) cm ym ( x) cm 2 a ( x) f ( x) ym ( x)dx Nm m 1
Wuhan University
第十六章 斯-刘问题
问题的引入:
d 2 dy (1 x ) y 2 xy l (l 1) y 0 [(1 x ) ] l (l 1) y 0 dx dx
2
m2 (1 x 2 ) y 2 xy [l (l 1) ]y 0 2 1 x
) 解: 1 k ( x) 1, k (0) k (l ) 1, , q( x) 0, ( x) 1;
数学物理方法期末考试试题

数学物理方法期末考试试题# 数学物理方法期末考试试题## 第一部分:选择题(每题2分,共20分)1. 以下哪个不是数学物理中的常用方法?A. 傅里叶变换B. 拉普拉斯变换C. 泰勒级数展开D. 牛顿迭代法2. 求解偏微分方程时,分离变量法的基本思想是什么?A. 将偏微分方程转化为常微分方程B. 将偏微分方程分解为几个独立的方程C. 将偏微分方程转化为线性方程D. 将偏微分方程转化为积分方程3. 在数学物理中,格林函数通常用于解决什么问题?A. 线性代数问题B. 非线性偏微分方程C. 边界值问题D. 初始值问题4. 以下哪个是求解波动方程的典型方法?A. 特征线法B. 有限差分法C. 有限元法D. 蒙特卡洛方法5. 拉普拉斯方程在数学物理中通常描述了什么类型的物理现象?A. 波动现象B. 热传导现象C. 流体动力学问题D. 电磁场问题## 第二部分:简答题(每题10分,共30分)6. 简述傅里叶变换在数学物理中的应用。
7. 解释什么是边界层理论,并说明它在流体力学中的重要性。
8. 描述格林函数在求解偏微分方程中的作用。
## 第三部分:计算题(每题25分,共50分)9. 给定函数 \( f(x) = x^2 - 4x + 3 \),使用泰勒级数展开在\( x = 1 \) 处展开 \( f(x) \) 并求出展开式。
10. 考虑一个无限长直导体,在 \( x \) 轴上,导体的电势 \( V(x) \) 满足泊松方程 \( \nabla^2 V = -\rho/\varepsilon_0 \),其中\( \rho \) 是电荷密度,\( \varepsilon_0 \) 是真空电容率。
假设\( \rho \) 是常数,求解 \( V(x) \)。
## 第四部分:论述题(共30分)11. 论述数学物理方法在解决实际物理问题中的应用,并给出至少两个具体的例子。
请注意,以上内容仅为示例,实际的数学物理方法期末考试试题可能会包含不同的问题和要求。
(完整word版)武大数学物理方法期末考试试题-

2008年数学物理方法期末试卷一、求解下列各题(10分*4=40分)1. 长为l 的均匀杆,其侧表面绝热,沿杆长方向有温差,杆的一段温度为零,另一端有热量流入,其热流密度为t 2sin 。
设开始时杆内温度沿杆长方向呈2x 分布,写出该杆的热传导问题的定解问题。
2. 利用达朗贝尔公式求解一维无界波动问题⎪⎩⎪⎨⎧=-=>+∞<<-∞=-==2||)0,(0400t t t xx tt u x u t x u u 并画出t=2时的波形。
3. 定解问题⎪⎪⎩⎪⎪⎨⎧≤≤==∞<<==<<<<=+====)0(0,sin )0( 0 ,)0 ,0( ,000a x u x B u y u ay u b y a x u u b y y a x x yy xx ,若要使边界条件齐次化,,求其辅助函数,并写出相应的定解问题4. 计算积分⎰-+=111)()(dx x P x xP I l l二、(本题15分)用分离变量法求解定解问题 ⎪⎩⎪⎨⎧+===><<=-===xx u u u t x u a u t x x x xx t 3sin 4sin 20 ,0)0,0( 0002ππ三、(本题15分)设有一单位球壳,其球壳的电位分布12cos |1+==θr u ,求球内、外的电位分布 四、(本题15分)计算和证明下列各题1.)(0ax J dxd 2.C x x xJ x x xJ xdx x J +-=⎰cos )(sin )(sin )(100五、(本题15分)圆柱形空腔内电磁振荡满足如下定解问题⎪⎪⎩⎪⎪⎨⎧===<<<<=+=∆===000),(0,00),(0),(0l z z z z a u u z u l z a z u z u ρρρρλρ 其中2)(cωλ=,为光速为电磁震荡,c ω。
(1) 若令)()(),(z Z R z u ρρ=,写出分离变量后关于)()(z Z R 和ρ满足的方程;(2) 关于)()(z Z R 和ρ的本征值问题,写出本征值和本征函数;(3) 证明该电磁振荡的固有频率为,3,2,1;,2,1,0 ,)()(220==+=m n l n a x c m mnπω 其中0m x 为零阶Bessel 函数的零点。
数学物理方法期末考试卷与解答

《数学物理方法》试卷(A 卷)参考答案姓名: 学号:题号 一 二 三 四 五 六 七八 总分 得分注:本试卷共一页,共八大题。
答案请做在答题纸上,交卷时,将试题纸与答题纸填好姓名与学号,必须同时交齐,否则考卷作废!可能用到的公式:1). (2l +1)xP l (x )=lP l −1(x )+(l +1)P l+1(x ), 2). P 0(x )=1, P 1(x )=x ;3))(~)]([00k k f x f eF xik −=;4))]([1])([x f F ikd f F x=∫∞−ξξ; 5).])1(1[2sin )(I 333n ln l xdx l n x l x −−=−=∫ππ一、 简答下列各题。
(12分,每题6分)1. 试在复平面上画出3)arg(0π<−<i z ,4Re 2<<z 点集的区域。
解:如图阴影部分为所求区域 (6分)2. 填空题:函数3)2)(1()(i z z z f +−=是单值的还是多值的?多值的(1分);若是多值,是几值?3值(2分);其支点是什么?1,-2i ,∞(3分)。
二、 (9分) 试指出函数3sin )(zzz z f −=的奇点(含ㆀ点)属于哪一类奇点? 解:22112033)12()1(])12()1([1sin )(−∞=+∞=∑∑+−=+−−=−=n n nn n n n n n z n z z z z z z f (3分) z=0为f (z )的可去奇点;(3分)z=∞为f (z )的本性奇点;(3分)三、 (9分) 已知解析函数f (z ) = u (x ,y ) + iv (x ,y )的虚部v (x,y ) = cos x sh y , 求f (z )= ? 解:由C-R 条件x y x v yy x u y y x v x y x u ∂∂−=∂∂∂∂=∂∂),(),(,),(),( (3分)得 u x (x,y ) = v y (x,y ) = cos x ch y u y (x,y ) = −v x (x,y ) = sin x sh y (3分)高数帮帮数帮高数帮高f (z ) = f (x +iy ) = u (x ,y ) + iv (x ,y ) = sin x ch y +i cos x sh y + c上式中令 x=z, y=0, 则 f (z ) = f (z+i0) = sinz + c (3分)四、 (10分) 求积分dz z e I Lz∫−=6)1(其中曲线L 为(a)圆周21=z ;(b)圆周2=z 解:(a) 6)1()(−=z e z f z 在圆周21=z 内解析,I = 0;(5分) (b) 在圆周2=z 内有一奇点,I = 2πiRes f (1)= 2π i !52)1()1()!16(166551lim e i z e z dx d z z π=−−−→(5分) 五、 (10分) 计算拉普拉斯变换?]2sin [=t t L (提示:要求书写计算过程)解:已知 42]2[sin ,][sin 222+=+=p t L p t L 也即ωωω(2分) 由象函数微分定理)3(4)(4p4)(4p ]2sin []2sin )[()2(4)(4p )42(]2sin )[()3(,)()1()]()[(2222222分分分+=+−−=−=−∴+−=+=−−=−p p t t L t t L p p dp d t t L p f dp d t f t L nnnn六、 (15分) 将f (x )= (35/8)x 4 + 5x 3−(30/8)x 2 +(10/3)x +1展开为以{ P l (x ) }基的广义付里叶级数。
最新武工院08期末高数答案A卷

高等数学2期末试卷(A)参考答案08.7一、填空题(每小题2分, 共14分)1.2.3. 4、d y f(x,y)d x. 5、23aπ6、7.π8二、解答下列各题(每小题7分,,总计70分)1.4分8分故所求平面为10分2.π4分7分所求直线为10分、3.211fyfxz'+'=∂∂32232212221fyxfyfyxyxz''-'-''-=∂∂∂74.5.6.68107.由高斯公式或者用柱面坐标系计算三重积分8.方程化为(2分)(4分)积分得原方程通解为(8分)9 1y p dyp2d -=- (2分))1(21++=y e C p y ,由条件得01=C(4分)221ln )1(2d d C x y y x y+=++=即由0)1(=y ,得22-=C 所以221ln -=+x y(10分)10. xe xf x f x f +='-'')(2)()((4分) 此方程对应齐次的通解为(7分)2xe -为非齐次的一个特解,故所求函数为2)(221x xxe eC e C x f -+=- (10分)三、应用题 (本题8分)厂房容积令4分由得 7分由于实际问题的最大值必定存在,因此当厂房的长、宽、,其容积为最大。
8分四、证明题 (本题8分)故积分与路径无关。
4原式⎰⎰⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+=232213d 1)(d 323223y y y f x x f6⎰⎰-+⎪⎭⎫⎝⎛+-=232131d )(d 32323y y f x x f由于⎰⎰==⎪⎭⎫⎝⎛3223213d )(d 32y y f x x f y x故 8。
2007—2008第一学期《高等数学B》期末考试试题及答案

武汉大学数学与统计学院2007—2008第一学期《高等数学B 》期末考试试题(180学时)一、(87'⨯)试解下列各题:1、计算lim n →∞-2、计算0ln(1)limcos 1x x x x →+--3、计算arctan d x x x ⎰4、 计算4x ⎰5、计算d xxe x +∞-⎰6、设曲线方程为sin cos 2x t y t=⎧⎨=⎩,求此曲线在点4t π=处的切线方程。
7、已知2200d cos d yx te t t t =⎰⎰,求xy d d8、设11x y x-=+,求()n y二、(15分)已知函数32(1)xy x =-求:1、函数)(x f 的单调增加、单调减少区间,极大、极小值;2、函数图形的凸性区间、拐点、渐近线 。
三、(10分)设()g x 是[1,2]上的连续函数,0()()d x f x g t t =⎰1、用定义证明()f x 在(1,2)内可导;2、证明()f x 在1x =处右连续;四、(10分)1、设平面图形A 由抛物线2y x = ,直线8x =及x 轴所围成,求平面图形A 绕x轴旋转一周所形成的立体体积;2、在抛物线2(08)y x x =≤≤上求一点,使得过此点所作切线与直线8x =及x 轴所围图形面积最大。
五、(9分)当0x ≥,对()f x 在[0,]b 上应用拉格朗日中值定理有: ()(0)()(0,f b f f b b ξξ'-=∈ 对于函数()arcsin f x x =,求极限0lim b bξ→武汉大学数学与统计学院 B 卷2007—2008第一学期《高等数学B 》期末考试试题一、(86'⨯)试解下列各题:1、计算3arctan limln(12)x x x x →-+ 2、计算12ln(1)d (2)x x x +-⎰3、计算积分:21arctanx d xx +∞⎰4、已知两曲线()y f x =与1x y xy e ++=所确定,在点(0,0)处的切线相同,写出 此切线方程,并求极限2lim ()n nf n→∞5、设,2221cos cos tx t uduy t t ⎧=⎪⎨=-⎪⎩⎰,试求:d d y x,22d |d t y x的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年数学物理方法期末试卷
一、求解下列各题(10分*4=40分)
1. 长为l 的均匀杆,其侧表面绝热,沿杆长方向有温差,杆的一段温度为零,另一端有热量流入,其热流密度为t 2sin 。
设开始时杆内温度沿杆长方向呈2
x 分布,写出该杆的热传导问题的定解问题。
2. 利用达朗贝尔公式求解一维无界波动问题 ⎪⎩⎪⎨⎧=-=>+∞<<-∞=-==2||)0,(040
0t t t xx tt u x u t x u u 并画出t=2时的波形。
3. 定解问题⎪⎪⎩⎪⎪⎨⎧≤≤==∞<<==<<<<=+====)0(
0,sin )0( 0 ,)0 ,0( ,000a x u x B u y u ay u b y a x u u b y y a x x yy xx ,若要使边界条件齐次化,,求其辅助函数,并写出相应的定解问题
4. 计算积分⎰-+=1
11)()(dx x P x xP I l l
二、(本题15分)用分离变量法求解定解问题
⎪⎩⎪⎨⎧+===><<=-===x
x u u u t x u a u t x x x xx t 3sin 4sin 20 ,0)0,0( 0002ππ
三、(本题15分)设有一单位球壳,其球壳的电位分布12cos |1+==θr u ,求球内、外的电位分布
四、(本题15分)计算和证明下列各题
1.)(0ax J dx
d 2.C x x xJ x x xJ xdx x J +-=⎰
cos )(sin )(sin )(100
五、(本题15分)圆柱形空腔内电磁振荡满足如下定解问题
⎪⎪⎩⎪⎪⎨⎧===<<<<=+=∆===0
00),(0,00),(0),(0l z z z z a u u z u l z a z u z u ρρρρλρ 其中2)(c ω
λ=,为光速为电磁震荡,
c ω。
(1) 若令)()(),(z Z R z u ρρ=,写出分离变量后关于)()(z Z R 和ρ满足的方程;
(2) 关于)()(z Z R 和ρ的本征值问题,写出本征值和本征函数;
(3) 证明该电磁振荡的固有频率为
,3,2,1;,2,1,0 ,)()(220==+=m n l
n a x c m mn πω 其中0m x 为零阶Bessel 函数的零点。
参考公式
(1) 柱坐标中Laplace 算符的表达式
(2) Legendre 多项式
(3) Legendre 多项式的递推公式
(4) Legendre 多项式的正交关系
(5) 整数阶Bessel 函数
(6) Bessel 函数的递推关系。