MATLAB优化-浙江大学数学系

合集下载

Matlab优化算法及应用案例

Matlab优化算法及应用案例

Matlab优化算法及应用案例一、引言优化算法在科学和工程领域中起着重要的作用。

Matlab作为一款强大的科学计算软件,提供了丰富的优化算法工具箱,为用户提供了广泛的优化应用场景。

本文将介绍Matlab优化算法的基本原理,并通过实际案例来展示其在实际问题中的应用。

二、优化算法的基本原理优化算法的目标是求解一个函数的最优解,通常包括最大化或最小化目标函数。

Matlab中的优化算法主要基于以下两种类型:局部搜索算法和全局优化算法。

1. 局部搜索算法局部搜索算法是在当前解的附近搜索最优解的一类算法。

其中最为常见的是梯度下降法和牛顿法。

梯度下降法是一种迭代方法,通过沿着目标函数的负梯度方向不断调整参数,以逐步接近最优解。

具体步骤如下:(1)计算目标函数在当前解的梯度。

(2)根据梯度方向和步长系数进行参数调整。

(3)重复以上步骤直到满足停止准则。

牛顿法是一种基于二阶导数的优化方法,相比梯度下降法更为高效,但也更为复杂。

其基本思想是通过泰勒展开近似目标函数,然后解析求解导数为零的方程,得到下一次迭代的参数值。

2. 全局优化算法全局优化算法是通过全局搜索空间来找到最优解的方法。

Matlab提供了一些全局优化算法工具箱,其中最常用的是遗传算法和模拟退火算法。

遗传算法是一种模拟自然进化的优化方法,通过不断迭代生成新的解并选择适应度高的个体,并模拟自然选择、交叉和变异等操作来优化目标函数。

遗传算法在搜索空间较大且复杂的问题上有很好的表现。

模拟退火算法是一种以某种概率接受劣解的搜索算法,通过模拟金属退火过程来逐渐降低目标函数的值。

它能够避免局部最优解,并在一定程度上探索全局最优解。

三、Matlab优化算法的应用案例1. 机器学习中的参数调优在机器学习中,模型的性能很大程度上取决于参数的选择。

Matlab提供了优化工具箱,可以帮助用户选择合适的参数以提高模型的性能。

以支持向量机(SVM)为例,通过调整核函数类型、惩罚项系数和软间隔参数等参数,可以提高模型的分类准确度。

Matlab中的最优化问题求解方法

Matlab中的最优化问题求解方法

Matlab中的最优化问题求解方法近年来,最优化问题在各个领域中都扮演着重要的角色。

无论是在工程、经济学还是科学研究中,我们都需要找到最优解来满足特定的需求。

而Matlab作为一种强大的数值计算软件,在解决最优化问题方面有着广泛的应用。

本文将介绍一些Matlab中常用的最优化问题求解方法,并探讨其优缺点以及适用范围。

一. 无约束问题求解方法1. 最速下降法最速下降法是最简单且直观的无约束问题求解方法之一。

其基本思想是沿着梯度的反方向迭代求解,直到达到所需的精度要求。

然而,最速下降法的收敛速度通常很慢,特别是在局部极小值点附近。

2. 共轭梯度法共轭梯度法是一种改进的最速下降法。

它利用了无约束问题的二次函数特性,通过选择一组相互共轭的搜索方向来提高收敛速度。

相比于最速下降法,共轭梯度法的收敛速度更快,尤其适用于大规模优化问题。

3. 牛顿法牛顿法是一种基于二阶导数信息的优化方法。

它通过构建并求解特定的二次逼近模型来求解无约束问题。

然而,牛顿法在高维问题中的计算复杂度较高,并且需要矩阵求逆运算,可能导致数值不稳定。

二. 线性规划问题求解方法1. 单纯形法单纯形法是一种经典的线性规划问题求解方法。

它通过在可行域内进行边界移动来寻找最优解。

然而,当问题规模较大时,单纯形法的计算复杂度会大幅增加,导致求解效率低下。

2. 内点法内点法是一种改进的线性规划问题求解方法。

与单纯形法不同,内点法通过将问题转化为一系列等价的非线性问题来求解。

内点法的优势在于其计算复杂度相对较低,尤其适用于大规模线性规划问题。

三. 非线性规划问题求解方法1. 信赖域算法信赖域算法是一种常用的非线性规划问题求解方法。

它通过构建局部模型,并通过逐步调整信赖域半径来寻找最优解。

信赖域算法既考虑了收敛速度,又保持了数值稳定性。

2. 遗传算法遗传算法是一种基于自然进化过程的优化算法。

它模拟遗传操作,并通过选择、交叉和变异等操作来搜索最优解。

遗传算法的优势在于其适用于复杂的非线性规划问题,但可能需要较长的计算时间。

最优化方法的Matlab实现

最优化方法的Matlab实现

最优化方法的Matlab实现Matlab中使用最优化方法可以使用优化工具箱。

在优化工具箱中,有多种最优化算法可供选择,包括线性规划、非线性规划、约束优化等。

下面将详细介绍如何在Matlab中实现最优化方法。

首先,需要建立一个目标函数。

目标函数是最优化问题的核心,它描述了要优化的变量之间的关系。

例如,我们可以定义一个简单的目标函数:```matlabfunction f = objFun(x)f=(x-2)^2+3;end```以上代码定义了一个目标函数`objFun`,它使用了一个变量`x`,并返回了`f`的值。

在这个例子中,目标函数是`(x-2)^2 + 3`。

接下来,需要选择一个最优化算法。

在Matlab中,有多种最优化算法可供选择,如黄金分割法、割线法、牛顿法等。

以下是一个使用黄金分割法的示例:```matlabx0=0;%初始点options = optimset('fminsearch'); % 设定优化选项```除了黄金分割法,还有其他最优化算法可供选择。

例如,可以使用`fminunc`函数调用一个无约束优化算法,或者使用`fmincon`函数调用带约束的优化算法。

对于非线性约束优化问题,想要求解最优解,可以使用`fmincon`函数。

以下是一个使用`fmincon`函数的示例:```matlabx0=[0,0];%初始点A = []; b = []; Aeq = []; beq = []; % 约束条件lb = [-10, -10]; ub = [10, 10]; % 取值范围options = optimoptions('fmincon'); % 设定优化选项```除了优化选项,Matlab中还有多个参数可供调整,例如算法迭代次数、容差等。

可以根据具体问题的复杂性来调整这些参数。

总而言之,Matlab提供了丰富的最优化工具箱,可以灵活地实现不同类型的最优化方法。

Matlab优化工具箱指南

Matlab优化工具箱指南

Matlab优化工具箱指南介绍:Matlab是一种强大的数值计算和数据分析软件,具备丰富的工具箱来支持各种应用领域的研究与开发。

其中,优化工具箱作为其中一个重要的工具箱,为用户提供了解决优化问题的丰富功能和灵活性。

本篇文章旨在向读者介绍Matlab优化工具箱的使用方法和注意事项,帮助读者更加高效地进行优化问题的求解。

一、优化问题简介在实际应用中,我们经常面临着需要在一些约束条件下,找到最优解的问题。

这类问题被称为优化问题。

优化问题广泛存在于各个研究领域,例如工程设计、金融投资、物流规划等。

Matlab优化工具箱提供了一系列算法和函数,用于求解不同类型的优化问题。

二、优化工具箱基础1. 优化工具箱的安装与加载优化工具箱是Matlab的一个扩展模块,需要进行安装后才能使用。

在Matlab 界面中,选择“Home”->“Add-Ons”->“Get Add-Ons”即可搜索并安装“Optimization Toolbox”。

安装完成后,使用“addpath”命令将工具箱路径添加到Matlab的搜索路径中,即可通过命令“optimtool”加载优化工具箱。

2. 优化问题的建模解决优化问题的第一步是对问题进行建模。

Matlab优化工具箱提供了几种常用的建模方法,包括目标函数表达式、约束条件表达式和变量的定义。

例如,可以使用“fmincon”函数建立一个含有非线性约束条件的优化问题。

具体的建模方法可以根据问题类型和需求进行选择。

三、优化算法的选择Matlab优化工具箱提供了多种优化算法供用户选择,每个算法都适用于特定类型的优化问题。

对于一般的无约束优化问题,可以选择“fminunc”函数结合梯度下降法进行求解。

而对于具有约束条件的优化问题,可以使用“fmincon”函数结合某种约束处理方法进行求解。

在选择优化算法时,需要注意以下几个方面:1. 算法的求解效率。

不同的算法在求解同一个问题时,可能具有不同的求解效率。

优化方法matlab

优化方法matlab

优化方法matlab对于matlab代码的优化,可以从以下几个方面入手:1. 算法优化:首先,对于算法的优化是最直接有效的方法。

通过优化算法,可以减少代码执行的时间和内存占用。

在编写代码时,可以使用更高效的算法来解决问题。

例如,对于排序问题可以使用快速排序算法代替冒泡排序算法;对于查找问题可以使用二分查找算法代替顺序查找算法。

通过选择合适的算法,可以大大提高程序的效率。

2. 向量化操作:向量化操作是matlab中常用的优化方法之一。

在matlab中,向量和矩阵操作是高效的,而循环操作是低效的。

所以,尽量使用向量和矩阵操作,避免使用循环。

例如,可以使用矩阵乘法代替循环逐个相乘,使用矩阵的元素操作代替循环逐个操作。

3. 减少内存占用:在编写matlab代码时,要注意减少内存的占用,避免不必要的内存拷贝和创建大量的临时变量。

可以使用in-place操作来减少内存使用,尽量避免为临时变量重新分配内存空间。

此外,可以使用matlab内置的函数来高效地处理矩阵和数组,避免不必要的内存开销。

4. 编译优化:matlab提供了mex函数,可以将matlab代码编译成二进制mex 文件,提高代码的执行速度。

通过编译优化,可以将matlab代码转化成C/C++代码,并拥有与C/C++相当的执行效率。

可以将matlab中的瓶颈函数使用mex进行编译优化,提高程序的运行速度。

5. 并行计算:对于一些需要进行大规模计算的问题,可以使用matlab中的并行计算工具箱来进行并行计算,提高程序的运行效率。

可以使用parfor循环来代替普通的for循环,让代码并行执行。

同时,可以使用matlab的并行计算工具箱提供的函数来进行并行计算,如parallel.pool.Constant类来创建共享的常量,parallel.pool.DataQueue类来进行数据通信等。

除了以上几个方面,还可以通过以下方式进行matlab代码的优化:6. 预分配矩阵空间:在编写matlab代码时,可以提前预分配矩阵的空间,避免动态扩展矩阵的大小。

用matlab求解优化问题

用matlab求解优化问题

§8.1.1 线性规划问题的MATLAB 求解方法与一般线性规划理论一样,在MATLAB 中有线性规划的标准型。

在调用MATLAB 线性规划函数linprog 时,要遵循MATLAB 中对标准性的要求。

线性规划问题的MATLAB 标准形为:⎪⎪⎩⎪⎪⎨⎧≤≤=≤=ub x lb b x A b Ax t s x c f eq eq T .. min 在上述模型中,有一个需要极小化的目标函数f ,以及需要满足的约束条件假设x 为n 维设计变量,且线性规划问题具有不等式约束1m 个,等式约束2m 个,那么:x 、、lb c 、 和ub 均为n 维列向量,b 为1m 维列向量,eq b 为m 2维列向量,A 为n m ⨯1维矩阵,eq A 为n m ⨯2维矩阵需要注意的是:MATLAB 标准型是对目标函数求极小,如果遇到是对目标函数求极大的问题,在使用MATLAB 求解时,需要在函数前面加一个负号转化为对目标函数求极小的问题;MATLAB 标准型中的不等式约束形式为""≤,如果在线性规划问题中出现""≥形式的不等式约束,则我们需要在两边乘以(-1)使其转化为MATLAB 中的""≤形式。

如果在线性规划问题中出现了“<”或者“>”的约束形式,则我们需要通过添加松弛变量使得不等式约束变为等式约束之后,我们只需要将所有的约束(包括不等式约束和等式约束)转化为矩阵形式的即可。

例如,对于如下线性规划模型:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥=+=+-≥-+-≤+-+-=0,,7 32 8228 122 ..24 max 3212131321321321x x x x x x x x x x x x x t s x x x f 要转化为MATLAB 标准形,则要经过:(1)原问题是对目标函数求极大,故添加负号使目标变为:32124 m in x x x f -+-=;(2)原问题中存在“≥”的约束条件,故添加负号使其变为:8228321≤+-x x x用MATLAB 表达则为c=[-4; 2; -1]; %将目标函数转化为求极小A=[2 -1 1; 8 -2 2]; b=[12; -8]; %不等式约束系数矩阵Aeq=[-2 0 1; 1 1 0];beq=[3; 7]; %等式约束系数矩阵lb=[0; 0; 0];ub=[Inf; Inf; Inf] %对设计变量的边界约束MATLAB 优化工具箱中求解线性规划问题的命令为linprog ,其函数调用方法有多种形式如下所示:x = linprog(c,A,b)x = linprog(c,A,b,Aeq,beq)x = linprog(c,A,b,Aeq,beq,lb,ub)x = linprog(c,A,b,Aeq,beq,lb,ub,x0)x = linprog(c,A,b,Aeq,beq,lb,ub,x0,options)x = linprog(problem)[x,fval] = linprog(...)[x,fval,exitflag] = linprog(...)[x,fval,exitflag,output] = linprog(...)[x,fval,exitflag,output,lambda] = linprog(...)输入参数MATLAB工具箱中的linprog函数在求解线性规划问题时,提供的参数为:模型参数、初始解参数和算法控制参数。

MATLAB优化模型求解方法-MathWorks

MATLAB优化模型求解方法-MathWorks

第5讲: MATLAB优化模型求解方法(上):标准模型作者:Effie Ruan, MathWorks中国最优化赛题是数学建模大赛中最常见的问题类型之一。

一般说来,凡是寻求最大、最小、最远、最近、最经济、最丰富、最高效、最耗时的目标,都可以划入优化问题的范畴。

MATLAB 优化工具箱和全局优化工具箱对多个优化问题提供了完整的解决方案,前者涵盖了线性规划、混合整型线性规划、二次规划、非线性优化、非线性最小二乘的求解器,后者囊括了全局搜索、多初始点、模式搜索、遗传算法等求解算法。

本讲主要介绍如何使用优化工具箱求解数学建模中标准的优化模型。

更多的内容,欢迎大家浏览 MathWorks 官网以及 MATLAB 软件文档。

1.聊一聊最优化问题最优化即在一定的条件下,寻求使目标最小(大)的设计参数或决策。

在优化问题中有两个关键对象:目标函数和约束条件(可选)。

常规优化问题,其数学表达可以描述为:其中x 为长度n的决策变量向量,f(x) 为目标函数,G(x) 为约束函数。

求解目标函数的最小(大)值,一个高效而精确的解决方案不仅取决于约束条件和变量数量,更取决于目标函数和约束函数的特性。

明确优化类型是确认优化方案的前提,让我们看一下这些特性如何划分:常见的目标函数有:线性规划:被广泛的应用于变量之间可线性表示的财务、能源、运营研究等现代管理领域中。

混合整数线性规划:扩展了线性规划问题,增加了最优解中部分或全部变量必须是整数的约束。

例如,如果一个变量代表要认购的股票数量,则只应取整数值。

同样,如果一个变量代表发电机的开/关状态,则只应取二进制值(0 或 1)。

二次规划:目标函数或约束函数为多元二次函数。

此优化应用于财务金融中投资组合优化、发电厂发电优化、工程中设计优化等领域。

最小二乘:分为线性和非线性,通过最小化误差的平方和寻找变量的最优函数匹配。

非线性最小二乘优化还可用于曲线拟合。

2.优化求解器太多了,怎么选?对MATLAB 提供的各类优化问题的算法,我们称之为求解器(Solver)。

MATLAB优化工具箱

MATLAB优化工具箱

MATLAB优化工具箱MATLAB(Matrix Laboratory)是一种常用的数学软件包,广泛用于科学计算、工程设计和数据分析等领域。

MATLAB优化工具箱(Optimization Toolbox)是其中一个重要的工具箱,提供了一系列用于求解优化问题的函数和算法。

本文将介绍MATLAB优化工具箱的功能、算法原理以及使用方法。

对于线性规划问题,优化工具箱提供了linprog函数。

它使用了线性规划算法中的单纯形法和内点法,能够高效地解决线性规划问题。

用户只需要提供线性目标函数和约束条件,linprog函数就能自动找到最优解,并返回目标函数的最小值和最优解。

对于整数规划问题,优化工具箱提供了intlinprog函数。

它使用分支定界法和割平面法等算法,能够求解只有整数解的优化问题。

用户可以指定整数规划问题的目标函数、约束条件和整数变量的取值范围,intlinprog函数将返回最优的整数解和目标函数的最小值。

对于非线性规划问题,优化工具箱提供了fmincon函数。

它使用了使用了一种称为SQP(Sequential Quadratic Programming)的算法,能够求解具有非线性目标函数和约束条件的优化问题。

用户需要提供目标函数、约束条件和初始解,fmincon函数将返回最优解和最优值。

除了上述常见的优化问题,MATLAB优化工具箱还提供了一些特殊优化问题的解决方法。

例如,对于多目标优化问题,可以使用pareto函数找到一组非劣解,使得在目标函数之间不存在改进的解。

对于参数估计问题,可以使用lsqnonlin函数通过最小二乘法估计参数的值,以使得观测值和模型预测值之间的差异最小化。

MATLAB优化工具箱的使用方法非常简单,只需按照一定的规范格式调用相应的函数,即可求解不同类型的优化问题。

用户需要注意提供正确的输入参数,并根据具体问题的特点选择适应的算法。

为了提高求解效率,用户可以根据问题的特点做一些必要的预处理,例如,选择合适的初始解,调整约束条件的松紧程度等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 / 36
某车间生产A、B两种产品,为了生产A和B,所需原料分别 为2和3个单位,而所需的工时分别为4和2个单位。现在可以应用 的原材料为100个单位,工时为120个单位,每生产一台A和B分 别可获得利润6元和4元。那么应该安排生产A、B各多少台才能 获得最大利润? max z = 6x + 4y min z = −6x − 4y
为了摧毁敌方军事目标尽可能最大,试确定飞机轰炸的方案。
7 / 36
2、二次规划(quadprog)
1 −1 −1 2 x1 + x2 ≤ 2 −x1 + 2x2 ≤ 2 2x1 + x2 ≤ 3 x1 , x2 ≥ 0 x1 x2 x1 x2
min f (x ) = 1 2 (x1 , x2 ) S .T
2 )2 + (1 − x )2 求函数f (x ) = 100(x2 − x1 1
在[−1.5, 1.5] × [−0.6, 2.8]上极小值
9 / 36
1 2 3 4 5
banana = @(x) 100∗(x(2) − x(1)ˆ2)ˆ2 + (1−x(1))ˆ2; [xmin, fval , flag ,out] = fminsearch(banana, [−1.9,2]) ; opt = optimset(’TolFun’,1e−8,’TolX’,1e−8,’Display ’ , ’ iter ’ ) ; [xmin, fval , flag ,out] = fminsearch(banana, [−1.9,2], opt) ; %[xmin,fval , flag ,out] = fminunc(banana, [−1.9,2],opt) ;
6 / 36
练习II:优化轰炸方案
已知目标有四个要害部位,只要摧毁其中之一即可达到目的。此 项任务的汽油消耗量限制为48000升、重型炸弹48枚、轻型炸 弹32枚。飞机携带重型炸弹时每升汽油可飞行2千米,带轻型炸 弹时每升汽油可飞行3千米。又知每架飞机每次只能装载一枚炸 弹,每出发轰炸一次除来回路程汽油消耗(空载时每升汽油可飞 行4千米)外,起飞和降落每次各消耗100升。数据如表所示 要害部位 1 2 3 4 离机场的距离 (千米) 450 480 540 600 摧毁的可能性 每枚重型炸弹 0.10 0.20 0.15 0.25 每枚轻型炸弹 0.08 0.16 0.12 0.20
5 / 36
练习I:四元线性规划
3 1 max( x1 − 150x2 + x3 − 6x4 ) 4 50 s.t.
1 1 4 x1 − 60x2 − 50 x3 + 9x4 ≤ 0 1 −1 2 x1 + 90x2 + 50 x3 − 3x4 ≥ 0
x ≤ 1, x ≥ −5, x ≥ −5, x ≥ −5, x ≥ −5 3 1 2 3 4
如求f (t ) = e −3t sin(4t + 2) + 4e −0.5t cos (2t ) − 0.5的极值。
1 2 3
y = exp(−3∗t)∗sin(4∗t+2)+4∗exp(−0.5∗t)∗cos(2∗t)−0.5; y1 = diff (y, t) ; ezplot (y1 ,[0,4]) ;
如下是导函数y1 和目标函数y 在[0,4]上的图形
3 / 36
1、线性规划(linprog)
min S .T −5x1 + 4x2 + 2x3 6x1 − x2 + x3 ≤ 8 x1 + 2x2 + 4x3 ≤ 10 3 ≥ x1 ≥ −1 2 ≥ x2 ≥ 0 x3 ≥ 0 此问题即为线性规划问题的标准型,在MATLAB中求解: c = [−5, 4, 2]; a = [6, −1, 1; 1, 2, 4]; b = [8; 10]; vlb = [−1, 0, 0]; vub = [3, 2, Inf ]; [x , fval ] = linprog (c , a, b , [], [], vlb , vub ); 采用单纯型方法求解,更具体格式参考help linprog;
− (2, 6)
1 2 3
h = [1,−1; −1,2]; c = [−2,−6]; a = [1,1;−1,2;2,1]; b = [2;2;3]; [x, fval ]=quadprog(h,c,a,b ,[],[],[0;0]) ;
8 / 36
3、无约束非线性优化fminsearch/fminunc
其中opt参数结构(help optimset): 选项名 ’Display’ ’MaxFunEvals’ ’MaxIter’ ’TolFun’ ’TolX’ 描述 设定现实方式 最大函数执行次数 最大算法循环次数 函数解(极值)的误差容忍度 变量解(位置)的误差容忍度 默认值 ’notify’ 200*length(x) 200*length(x) 1e-4 1e-4
第七讲:MATLAB优化
胡贤良
浙江大学数学系 科学与工程计算研究所
2012年6月28日
1 / 36
1
MATLAB数值优化工具箱
2
MATLAB代码优化
3
ቤተ መጻሕፍቲ ባይዱ
算法优化
1 / 36
优化问题
数学上所谓的优化问题,就是求解如下形式的最优解 min fun(x )
Sub . to [ConditionEquation] [BoundaryCondition]
s .t . 2x + 3y ≤ 100 4x + 2y ≤ 120 x, y ≥ 0 ⇒
s .t . 2x + 3y ≤ 100 4x + 2y ≤ 120 x, y ≥ 0
1 2 3
c = [−6,−4]; a = [2,3;4,2]; b=[100,120]; vlb =[0,0]; vub=[Inf, Inf ]; [x, zval ] = linprog(c,a,b ,[],[], vlb ,vub);
根据优化变 量、目标 函数和约 束函数 的不同,常见的有 线性优化:目标函数和约束函数均为线性函数; 二次优化:目标函数为二次函数,而约束条件为线性方程; 与线性优化统称为简 单优化 ; 非线性优化:目标函数为非二次函数,或约束条件非线性; 多目标优化:目标函数不止一个。
2 / 36
0、解析法与图形法求简单问题
相关文档
最新文档