第八-十节-土石坝的坝基处理、土石坝与坝基、岸坡及其他建筑物的连接、抗震设计
土石坝坝基防渗处理

2020/9/22
7
一、岩基处理
参见混凝土坝
覆盖层较薄时,做截水槽,阻截渗流;较高土石 坝应挖除,坐落于基岩上。
防渗体与基岩的接触面要求结合紧密。
不需过多考虑断层、破碎带、软弱夹层等的承载 力和不均匀沉降问题。主要研究抗渗稳定性和抗 溶蚀性能。
基岩透水性较强时需做帷幕灌浆。
2020/9/22
2020/9/22
10
在砂砾石地基上建坝的主要问题是进行 渗流控制,解决的方法是作好防渗和排水。
1.垂直防渗设施 2.上游水平防渗铺盖 3.下游排水设施
2020/9/22
11
1.垂直防渗设施包括:
(1)粘性土截水槽 (2)混凝土防渗墙 (3)灌浆帷幕
2020/9/22
12
(1) 粘性土截水槽
当坝基砂砾石层不太深厚时,截水槽是 最常用而又稳妥可靠的防渗设施。一般布置在 大坝防渗体的底部(均质坝则多设在靠上游 1/3至1/2坝顶宽处),横贯整个河床并延伸到 两岸。
30
帷幕灌桨既可以处理较深的砂砾石层; 也可以处理局部不便于用其他防渗方法施工 的地层;还可以作为其他防渗结构的补强措 施。
2020/9/22
31
帷幕灌桨存在的问题是工艺较复杂,费 用偏高,地表需加压重,否则灌浆质量达不 到要求。对地层的适应性差,即这种灌浆方 法是否宜于采用,取决于地层的可灌性。
2020/9/22
32
2.上游水平防渗铺盖
用粘性土料修筑铺盖与坝身防渗体相连 接,并向上游延伸至要求的长度,也是土石 坝常用的防渗设施。铺盖的作用是延长渗径, 从而使坝基渗漏损失和渗流坡降减小至容许 范围以内。
2020/9/22
15
2020/9/22
土石坝的地基处理

一、土石坝的地基处理1、砂卵石地基的处理砂卵石地基的特点:具有较高的抗剪能力和承载 能力,压缩变形小,抗渗性能差,因此对这类地 基的处理以渗流控制为主。
原则:前堵后排。
处理措施:v垂直防渗:粘土(混凝土)截水槽、砼防渗 墙,灌浆帷幕,高压喷射灌浆;v水平防渗:铺盖;v下游设排水减压设施。
v覆盖层深度不大,一般在10~15m以内。
v结构简单,工作可靠,防渗效果好。
应用广,如官厅 坝、清河坝等。
(1)粘性土截水槽v当砂砾石透水层较深时(>30米),采用粘土截水墙不 经济。
v施工快,材料省,防渗效果好。
应用广泛,如碧口 坝、毛家村坝等(2)混凝土防渗墙(3)帷幕灌浆v当透水层很厚时,用粘土截水墙或混凝土防渗墙有 困难,不经济。
v帷幕灌浆施工期长,效果不如防渗墙。
应用较广, 如罗贡坝,谢尔庞桑坝。
v世界最深的帷幕灌浆:埃及,阿斯旺心墙坝,高 111m,帷幕深174m。
v由心墙、斜墙等防渗体或均质坝体向上游水平延伸而 成。
v世界最长的铺盖:巴基斯坦,塔培拉坝,高147m,铺 盖长2347m,厚1.5~10m(4)水平防渗铺盖(5)排水减压等其他措施v相对不透水层——排水沟、减压井2、软土地基处理(1)淤泥质地基处理v层薄,能短时间固结——不挖v范围不大、埋藏较浅——全部挖除v范围广、埋藏深——预压,设砂井排水固结v反压法——坝趾处堆放土石料,以限制淤泥等软土层 外挤(2) 细砂地基处理v主要是防止振动液化破坏。
v浅层:清除v较厚:上下游截水墙或板桩封闭v很厚:坝趾附近设砂井,降低水头;振冲法加固v官厅坝——2~4m厚的细砂层,用振冲法加固处理后, 相对密度从0.53增大到0.85,效果好,施工快(3)软粘土及黄土地基(a) 软粘土地基v较薄:清除v较厚:坝基设排水井,加速固结(b)黄土地基v湿陷性大,可预先浸水湿陷;表层挖除换土、压实;夯实,破坏其天然结构,使之密实二、土石坝与坝基、岸坡及其他建筑物的连接土石坝与坝基、岸坡及其他建筑物的接触面容易形成 集中渗流,造成渗透破坏。
土石坝的坝基处理及渗流变形的防治

土石坝的坝基处理及渗流变形的防治1 土石坝的坝基处理土坝对地基的要求比混凝土坝低,一般不必挖除地表透水土壤和砂砾石等。
但是,为了满足渗透稳定、静力和动力稳定、容许沉降量和不均匀沉降等方面的要求,保证坝的安全经济运行,也必须根据需要对地基进行处理。
1.1岩基处理针对土石坝的特点,岩基的处理主要应注意以下四点:(1)岩基上的覆盖层。
对中、低土石坝,只需将防渗体坐落在基岩上,形成截水槽以隔断渗流即可。
对高土石坝,最好挖除全部覆盖层,使防渗体和坝壳均建在基岩上。
(2)防渗体与基岩的连接。
防渗体与基岩的接触面应紧密结合。
以前多要求在防渗体的基岩面上浇筑混凝土垫层或混凝土齿墙。
但混凝土垫层和齿墙的作用并不明显,受力条件不佳,易产生裂缝,因此,现在的发展趋势是将防渗体直接建在基岩上。
(3)基岩内部防渗处理。
主要是防渗帷幕。
一定要做到万无一失,防渗幕是很重要的一项工程。
(4)对不良地质构造的处理。
对断层、破碎带等不良地基构造,主要考虑起渗透稳定性和抗溶蚀性能,而不太看重其承载力和不均匀沉降。
处理方法主要有:水泥灌浆或化学灌浆、混凝土塞、混凝土防渗墙、设置防渗铺盖等。
1.2砂砾石地基处理砂砾石具有足够的承载能力,压缩性不大,干湿变化对体积的影响也不大。
但砂砾石地基的透水性很大,渗漏现象严重,而且可能发生管涌、流土等渗透变形。
砂砾石地基的处理,主要是对地基的防渗处理。
1.3垂直防渗设施垂直防渗是解决坝基渗流问题效果最好的措施。
垂直防渗的效果,相当于水平防渗效果的三倍。
因此,在土石坝的防渗措施中,应优先选择垂直防渗措施。
垂直防渗措施主要有:粘性土截水墙、混凝土防渗墙、灌浆帷幕、板桩等。
1. 4粘性土截水墙(1)当砂砾石透水地基的深度不大时,可将截水墙直接伸入岩基,并与岩基紧密相连。
这种情况下的截水墙结构简单,工作可靠,防渗效果好;当砂砾石透水地基的深度较大时,可将截水墙深入坝基一定深度,不与岩基相连,称为悬挂式截水墙,但防渗效果较差。
论土石坝的地震液化验算和坝坡抗震稳定计算

论土石坝的地震液化验算和坝坡抗震稳定计算土石坝作为重要的水工建筑物之一,其地震液化验算和坝坡抗震稳定计算是保障其安全稳定运行的重要方面。
本文将从土石坝地震液化验算和坝坡抗震稳定计算两个方面进行探讨。
土石坝地震液化验算是地震工程中的一个重要环节,主要是为了评估土石坝在地震作用下可能发生液化现象的潜在危险。
液化是指当土体受到地震力作用时,土体内部排水受阻,导致孔隙水压力上升,使土体丧失抗剪强度,变得类似液态的现象。
液化的发生会导致土石坝的稳定性丧失,从而引发灾害。
地震液化验算通常包括以下几个步骤。
首先,需要确定土石坝所在地区的地震烈度和地震动参数,包括峰值加速度、地震频谱等。
然后,通过地震动监测和野外勘探等手段,获取土体的物理力学参数和水文地质特征,包括饱和度、孔隙比、液限等。
接下来,可以采用数学模型,如有限元模型或数值模型等,模拟土体在地震下的动力响应过程,评估土体的临界孔隙水压力和抗剪强度。
最后,结合土石坝的结构特点和地质条件等,综合分析地震液化的潜在风险,并提出相应的防治措施。
坝坡抗震稳定计算则是针对土石坝在地震作用下的抗震能力进行评估。
土石坝的抗震稳定性包括静态稳定和动态稳定两个方面。
静态稳定主要通过计算土石坝在地震荷载下的抗滑稳定系数和抗倾覆稳定系数来进行评估。
动态稳定则涉及到土石坝在地震动力荷载下的抗震位移和抗震加速度等。
坝坡抗震稳定计算的主要步骤为:首先,确定土石坝所在地区的设计地震烈度和地震动参数。
然后,根据土石坝的几何形态和结构特点,建立合适的有限元分析模型,考虑材料的非线性和土石坝的非均匀性等因素。
接下来,进行受力分析,包括重力荷载、地震荷载和渗流荷载等。
最后,通过计算土石坝的位移和应力分布,评估其抗震稳定性,并根据需要提出相应的抗震措施。
在土石坝的地震液化验算和坝坡抗震稳定计算中,需要充分考虑土石坝的地质条件、水文地质特征和结构特点等因素,以确保计算结果的准确性和可靠性。
此外,还需结合相关规范和标准,采用适当的计算方法和技术手段,不断完善和提高土石坝的抗震能力,确保其在地震作用下安全稳定地运行。
第八章溢洪道设计09讲义教材

(五)消能防冲设施
(1) 溢洪道消能防冲设施的型式应根据地形、地质条件、泄流条 件、运行方式、下游水深及河床抗冲能力、消能防冲要求、下游 水流衔接及对其它建筑物影响等因素,通过技术经济比较选定。 河岸式溢洪道可采用挑流消能或底流消能,亦可采用面流、戽流 或其它消能型式。 (2) 溢洪道消能防冲建筑物的设计洪水标准:l级建筑物按100年 一遇洪水设计;2级建筑物按50年一遇洪水设计,3级建筑物按 30年一遇洪水设计。同时,还应考虑宣泄低于消能防冲设计洪水 标准的洪水时可能出现的不利情况。
(3) 选定的消能设施,应保证在宣泄消能防冲设计洪水流量及以 下各级流量,尤其是在宣泄常遇洪水时消能效果良好,结构可靠, 并能防空蚀、抗磨损和抗冻害,必要时可采用相应措施。淹没于 水下的消能工宜考虑检修条件。 (4) 挑流消能可用于岩石地基的高、中水头枢纽。溢洪道挑流消 能设施的平面形式可采用等宽式、扩散式、收缩式。挑流鼻坎可 选用连续式、差动式和各种异型鼻坎等。 (5) 当采用挑流消能时,应慎重考虑挑射水流的雾化和多泥沙河 流的泥雾对枢纽其它建筑物及岸坡的安全和正常运行的影响。 (6) 当采用挑流消能遇有下列情况时,必须采取妥善措施处理。
板块上、下游端均设齿槽,但不应只在板块下游端设置齿槽。
(五)挑流鼻坎
(1) 挑流鼻坎在泄洪时所受的动水压力按下列公式计算,其抗滑 稳定分析及安全系数可与控制段相同。
(2) 挑流鼻坎顺水流向纵缝的间距可按5.2.2第3.(4)的要求采用。 挑流鼻坎不宜设垂直水流向的结构缝。
(六)消力池护坦
(1) 消力池护坦应进行抗浮稳定复核。对设有消力齿、消力墩或尾 槛的护坦,尚应进行抗倾及抗滑稳定复核。 (2) 护坦抗浮稳定应桉下列情况分别计算。
(3) 溢洪道混凝土与地基接触面、地基内岩体之间、地基内软 弱夹层层面的抗剪断强度 , 的取值,对于大、中型溢洪道的规 划,可按有关规定选用;可行性研究报告以后各设计阶段,应根 据野外及室内试验成果分析确定;对于中型工程,若无条件进行 野外试验时,宜进行室内试验,并参照类似工程经验及有关规定 选用。 (4) 溢洪道的混凝土结构应考虑温度应力的影响,并根据当地的 气候条件、结构特点、地基设置锚筋时,应经计算并参照类似工程的经验 确定,必要时应进行锚筋抗拔试验。
土石坝的地基处理与裂缝成因及控制

土石坝的地基处理与裂缝成因及控制土石坝是利用当地土料、砂砾、卵砾石渣、石料等建筑而成。
按施工方法不同可以分为碾压式土石坝、水中填土石坝和水力冲填坝,现代土石坝多由碾压而成。
按筑坝材料、坝内的配置又可分为均质土坝、分区坝和人工防渗材料坝。
土石坝设计的总体要求是,大坝在正常和非正常工作条件的荷载组合条件下,必须保证完成它能长期安全运用和充分发挥经济效益,满足稳定变形、渗流以及规定的超高等要求。
因此,对土石坝的地基处理与裂缝控制不容忽视。
1土石坝的地基处理土石坝的底面积大,坝基应力较小,坝体具有一定的适应变形的能力,坝体断面分区和材料的选择也具有灵活性。
因此,土石坝对天然地基在强度和变形方面的要求以及处理措施、应达到的标准等,均可比混凝土坝相对较低,但防渗要求上则与混凝土坝基本相同。
土石坝对不同的地基有不同的处理方法,着重对土石坝地基处理与软土地基处理的方法作以介绍。
1.1砂卵石地基处理许多土石坝建在砂卵石地基上,对于砂卵石地基的处理主要是解决渗流控制问题。
处理的主要措施有垂直防渗措施、水平防渗措施和下游排水设施及盖垂等,垂直防渗措施可有效地截断坝基渗流,在技术条件许可且较经济合理时,应优先采用。
1.1.1垂直防渗设施。
垂直防渗设施包括黏性土截水槽、混凝土防渗墙和灌浆帷幕等(1)黏性土截水槽。
当坝基砂砾石层深度不大时,可开挖深槽直达不透水层或基岩,槽内回填黏性土,与坝内防渗体连称之为截水槽。
它结构简单、工作可靠、防渗效果好、应用较广,适用于砂砾石层深度在15m以内,最大深度一般不超过20m截水槽底宽根据回填土的容许渗透坡降及施工条件而定。
为防止截水墙与基岩间可能出现的集中渗流常在基岩上设置混凝土齿墙或垫座, 必要时还需要进行灌浆(2)混凝土防渗墙。
当坝基砂砾石层较深时,采用混凝土防渗墙是经济而又有效的防渗措施。
施工时用冲击钻分段在土层中造成圆孔或槽形孔,以泥浆固壁,然后在槽孔内浇筑混凝土,最后连成整体,形成混凝土防渗墙。
土石坝地震工程学

土石坝地震工程学土石坝地震工程学一、地震基本原理地震是由于地球内部的地壳运动引发的自然灾害,具有突发性和不可预测性。
地震波在地壳中传播,由于不同的介质和地质构造,会导致地震波的能量在不同地方集中或消散,从而产生破坏性的影响。
了解地震波的运动规律和地壳结构的特征,是进行地震工程学研究的基础。
二、土石坝震损机制土石坝是由土和石料堆积而成的挡水建筑物,在地震作用下,可能会产生裂缝、滑坡、液化等现象,导致土石坝的结构破坏和失稳。
深入理解土石坝的震损机制,包括地震对坝体材料的动力特性的影响,地震波在坝体中的传播规律等,是进行土石坝抗震设计和加固的重要依据。
三、土石坝抗震设计抗震设计是确保土石坝在地震作用下能够保持稳定的关键环节。
设计时应充分考虑地震的随机性和不确定性,采用基于概率的抗震设计方法,制定合理的设计标准。
同时,要考虑到施工条件和材料的性能,以及地震发生时可能产生的各种工况,确保设计既安全又经济。
四、土石坝抗震加固对于已经建成的土石坝,如果存在抗震性能不足的问题,需要进行抗震加固。
加固措施包括改善坝体材料的抗震性能、提高坝体的整体稳定性、防止裂缝的产生和扩展等。
在选择加固措施时,应充分考虑地震可能产生的最不利工况,并确保加固后的土石坝能够满足抗震设计的要求。
五、土石坝地震反应分析地震反应分析是研究土石坝在地震作用下的动态响应和稳定性的重要手段。
通过建立土石坝的动力学模型,进行数值模拟和分析,可以预测土石坝在地震作用下的变形和应力分布情况,为抗震设计和加固提供科学依据。
六、土石坝地震监测与预警建立有效的地震监测系统,可以对地震进行实时监测和预警,为抢险救灾提供宝贵的时间。
同时,通过对地震监测数据的分析,可以深入了解地震对土石坝的影响规律,为今后的抗震设计和加固提供经验和参考。
七、土石坝震后修复与重建地震过后,如果土石坝出现损坏或失稳,需要及时进行修复和重建。
在修复和重建过程中,应充分考虑剩余抗震能力和未来可能面临的地震风险,制定合理的修复和重建方案。
第八-十节-土石坝的坝基处理、土石坝与坝基、岸坡及其他建筑物的连接、抗震设计

当砂砾石层很深或采用其他防渗截水措施不可
行时,可采用灌浆帷幕,或在深层灌浆帷幕,上
层粘土截水墙或混凝土防渗墙等方法截渗。
在灌浆前,先对地基的可灌性和可灌何种料浆
进行评估,可灌性应通过室内及现场试验确定。
1)可灌比M M D15 d85
D15—受灌地层中小于总土重的15%所对应的粒径,
mm d85—灌注材料中小于其总土重的85%所对应的粒径,
2024/7/17
3、湿陷性黄土坝基
挖除 翻压 强夯 一般不宜建坝,易产生不均匀沉降
28
2024/7/17
第九节 土石坝与坝基、岸坡及 其他建筑物的连接
Stability Analysis of Earth-Rock Dam
29
2024/7/17
第九节 土石坝与坝基、岸坡及其他建筑物 的连接
对断层、张开节理裂隙应逐条开挖清理,并用混
凝土或砂浆封堵。
31
2024/7/17
三、土石坝与混凝土建筑物的连接
土石坝与混凝土建筑物的连接,使结合 面具有足够的渗径长度和保护坝坡、坝 脚不受冲刷的连接措施。土石坝与混凝 土建筑物连接一般采用插入式和侧墙式 (翼墙式和重力墩式等)两种型式。
1)插入式
2)减压井:当表层弱透水层太厚或透水层成层性 较显著时,宜采用减压井深入强透水层,将 渗水导出,经排水沟排向下游。
21
2024/7/17
排水减压措施
减压井布置:通常在靠近下游坝脚以外处并平 行于坝轴线方向布置一排,井距一般为15~ 30m。井径(内径)宜大于150mm。出口 高程应尽量降低,一般比沟底高程高0.3~ 0.5m。
3)振冲强夯:当易液化细砂地基厚度较深时,宜采 用振冲(碎石桩)、强夯等方法加密。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
粘性土防渗铺盖是从坝身防渗体向上游延伸, 多用于斜墙坝,如图5-35所示。
Δ Hx δx
x L
水平防渗铺盖
从混凝土溶蚀速度考虑,其在渗水作用下带走游离 氧化钙而使强度降低,渗透性增加,因此,可按其 强度50%的年限审核墙体厚度。
从施工和坝高考虑,用冲击钻造孔,1.3m直径钻 具最大,一般将墙体厚度控制在0.6~1.3m的范围 内。
混凝土防渗墙
混凝土防渗墙
混凝土防渗墙
混凝土防渗墙
防渗墙顶部和底部是防渗的薄弱部位,应慎重处理。 防渗墙墙顶应做成光滑的楔形,插入土质防渗体的 深度为1/10坝高;低坝应不小于2.0m,并在墙顶 填筑含水率大于最优含水率的高塑性土区。墙底应 嵌入基岩0.5~1.0m。
高坝深砂砾石层防渗墙,应分析核算墙的应力,为 选择混凝土的强度提供依据。
具有足够的抗渗性和耐久性,为此可在混凝土内掺 入适量的粘土、粉煤灰及其他外加剂。为了保证防 渗墙的施工质量,对高坝深砂砾石层的混凝土防渗 墙、宜采用钻孔、物探等方法做强度和渗透性的质 量检查。
(三)灌浆帷幕
当砂砾石层很深或采用其他防渗截水措施不可 行时,可采用灌浆帷幕,或在深层灌浆帷幕,上 层粘土截水墙或混凝土防渗墙等方法截渗。
一、岩基处理
处理方式与重力坝相当、处理范围:防 渗体部位。地基应清洗干净后再填土。
1、如岩石节理裂隙发育或有其它地质构 造,进行惟幕灌浆。
2、遇断层破碎带,当其分布范围不大时, 可挖除充填物和破碎岩石,回填砼或做 砼塞。如范围较大,可作惟幕灌浆或砼 防渗墙。
茅坪溪土石坝
二、砂砾石坝基处理
粘土截水槽
(a)
心墙
0.5-1.0 0.5-1.0
(b)
粘土截水槽
(二)混凝土防渗墙
适用:砂砾石层深度在15~80m,高效经济的。优 点:施工进度快,造价较低,防渗效果好。
尺寸:厚度由坝高和防渗墙的允许渗透比降、墙体 溶蚀速度和施工条件等因素确定.据经验,一般允 许比降以80~100为宜,并由最大工作水头除以允 许比降校核墙的厚度。
当地基的渗透系数> 10灌2 水泥粘土浆.
渗透系数等于104~ 103 可灌超细水泥浆. 所有的砂层和砂砾石层,均可用化学浆材。 帷幕厚度应根据大坝承受的工作水头和帷幕本 身的渗透比降确定,可按下式计算:
T HJ
长江大堤灌浆
(4)水平防渗铺盖
铺盖的作用是延长渗径,使渗漏损失和渗流 比降减小。当坝基透水层深厚,用其他防渗 措施经济不合理时可考虑。
(一)粘土截水槽 明挖回填粘土成截水槽,结构简单、工作可靠、 截渗效果好的防渗措施. 适用:砂砾土层深度在15m以内。 位置:一般设在大坝防渗体的底部(均质坝则多 设在靠上游1/3~1/2坝底宽处),横贯整个河床 并伸到两岸。 尺寸:截水墙的底宽,应按回填土料的允许比降 确定(砂壤土取3.0,壤土3.0~5.0,粘土5.0~ 10.0),一般取510m,最小宽度3.0m。 插入相对不透层的深度应不小于0.5~1.0m
排水减压措施
减压井布置:通常在靠近下游坝脚以外处并平 行于坝轴线方向布置一排,井距一般为15~ 30m。井径(内径)宜大于150。出口高程 应尽量降低,一般比沟底高程高0.3~0.5m。
减压井构造:由沉淀管、进水花管和导水管三 部分组成,渗水由进水花管四周孔眼进入管 内,经导水管顶面的出水口排入排水沟,进 入管内的土粒则靠自身重量淤落沉淀管内。
在灌浆前,先对地基的可灌性和可灌何种料浆 进行评估,可灌性应通过室内及现场试验确定。
1)可灌比M
M D15d85
D15—受灌地层中小于总土重的15%所对应的粒径,
d85—灌注材料中小于其总土重的85%所对应的粒径,。 当M>15时,可灌水泥浆;M>10时可灌水泥粘土浆
灌浆帷幕
2)渗透系数 除了以可灌比评价之外,也可用渗透系数进行评 估。当地基的渗透系数> 10 时1 灌水泥浆
第八节 土石坝的坝基处理
第八节 土石坝的地基处理
土石坝优点之一是对地基适应能力较强,在各类 地基上都可建造土石坝。 土石坝的地基处理的目的: ①控制渗流,要求处理后的地基不产生渗透变形 和降低坝体浸润线,坝坡和坝基在各种情况下均 要渗透稳定,渗流量在允许的范围内; ②控制稳定,处理使坝基具有足够的强度,不致 因坝基产生滑坡,软土层不致被挤出,砂土层不 发生液化等; ③控制变形,要求沉降量和不均匀沉降控制在允 许的范围内(竣工后,不应大于坝高的1%),以 免影响坝的正常运行。
2.软粘性和淤泥地基处理
挖除:软粘土地基土层较薄时宜全部挖除; 砂井:当软粘土层较厚、分布范围较广、全部挖
铺盖
粘土层
砂层 砂砾层
砂卵石层 基岩
1 26
3 减压井
4 5
(六)压重法
三、细砂、软粘土和湿陷性黄土坝基处理
1.细砂地基处理 均匀饱和的细砂地基受振动时(遇地震时)极 易液化,必须进行处理。 1)全部挖除:当易液化地基厚度小且范围不广时。 2)振动压密:当挖除困难或很不经济时,可进行振 动压密或重锤夯实,其有效深度在1~2m之间, 如采用重型振动碾,则可达2~3m,压实后土 层可达中密或紧密状态。 3)振冲强夯:当易液化细砂地基厚度较深时,宜采 用振冲(碎石桩)、强夯等方法加密。
尺寸确定:
前端最小厚度可取0.5~1.0m,任截面厚度由 下式计算确定:
x
Hx J
铺盖的长度,主要取决于下卧土层的允许比降, 国内已建工程,一般取设计水头的4~6倍, 个别工程最大取至11倍水头。
(五)排水减压措施
当用铺盖防渗时,因其不能有效地拦截渗水, 可引起坝下地层渗透变形或沼泽化。因此, 采用铺盖防渗或采用其他措施防渗效果较差 时,可在下游坝脚或以外处配套设置排水减 压措施,如图5-36所示。 1) 排水沟:对双层结构透水地基,可将表层挖 穿做成反滤排水暗沟或明沟。 2)减压井:当表层弱透水层太厚或透水层成层性 较显著时,宜采用减压井深入强透水层,将 渗水导出,经排水沟排向下游。