51单片机定时器的使用

合集下载

单片机定时器的使用

单片机定时器的使用

由于TL0既能作定时器也能作计数器使用,而 TH0只能作定时器使用而不能作计数器使用,因此在 方式3模式下,定时/计数器0可以构成二个定时器或 者一个定时器和一个计数器。
如果定时/计数器0工作于工作方式3,那么定时/ 计数器1的工作方式就不可避免受到一定的限制,因 为自己的一些控制位已被定时/计数器借用,只能工 作在方式0、方式1或方式2下,如果设置T1工作在方 式3,则T1停止工作,相当于其他方式时令TR1=0。
在工业检测、控制中,很多场合都要用到计数或者定 时功能。例如对外部脉冲进行计数、产生精确的定时时间、 作串行口的波特率发声器等。MCS-51单片机内部有两个 可编程的定时器/计数器,以满足这方面的需要。它们具 有 两种工作模数(计数器模式、 定时器模式)和四种工 作方式( 方式0、方式1、方式2、方式3),其控制字均 在相应的特殊功能寄存器(SFR)中,通过对它的SFR的 编程,可以方便的选择工作模数和工作方式。
C/T位:计数器模式和定时器模式的选择位。
C/T=0,为定时器模式,内部计数器对晶振脉冲12分频 后的脉冲计数,该脉冲周期等于机器周期,所以可以理 解为对机器周期进行计数。从计数值可以求得计数的时 间,所以称为定时器模式。
C/T=1,为计数器模式,计数器对外部输入引脚T0 (P3.4)或T1(P3.5)的外部脉冲(负跳变)计数,允许 的最高计数频率为晶振频率的1/24。
TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0
TF0、TF1分别是定时器/计数器T0、 T1 的溢出标志位, 加法计数器计满溢出时置 1, 申请中断, 在中断响应后自动复 0。TF产生的中断申请是否被接受, 还需要由中断是否开放 来决定。
TR1、TR0 分别是定时器 /计数器T1、 T0 的运行控制位, 通过软件置 1 后, 定时器 /计数器才开始工作, 在系统复位时 被清 0。

51 单片机 定时器 延时1s函数

51 单片机 定时器 延时1s函数

51 单片机定时器延时1s函数1.引言1.1 概述本文介绍了51单片机中的定时器功能以及如何通过定时器实现延时1秒的函数。

在单片机应用中,定时器是一种非常重要且常用的功能模块之一。

它能够精确计时,并可用于实现周期性的任务触发、计时、脉冲输出等功能。

本文首先将对51单片机进行简要介绍,包括其基本概念、结构和特点。

随后,重点讲解了定时器的基本原理和功能。

定时器通常由一个计数器和一组控制寄存器组成,通过预设计数器的初值和控制寄存器的配置来实现不同的计时功能。

接着,本文详细介绍了如何通过编程实现一个延时1秒的函数。

延时函数是单片机开发中常用的功能,通过定时器的计时功能可以实现精确的延时控制。

本文将以C语言为例,介绍延时函数的编写步骤和原理,并给出示例代码和详细的说明。

最后,本文对所述内容进行了总结,并展望了定时器在单片机应用中的广泛应用前景。

通过学习定时器的相关知识和掌握延时函数的编写方法,我们可以更好地应用定时器功能,提高单片机应用的效率和精确性。

综上所述,通过本文的学习,读者可全面了解51单片机中定时器的功能和应用,并能够掌握延时函数的编写方法,为单片机应用开发提供一定的参考和指导。

1.2 文章结构本文以51单片机定时器功能为主题,旨在介绍如何使用定时器进行延时操作。

文章分为引言、正文和结论三个主要部分。

在引言部分,首先会对文章的背景进行概述,介绍单片机的基本概念和应用领域。

然后,给出本文的整体结构,并阐述文章的目的和意义。

正文部分将分为两个小节。

在2.1节中,将对单片机进行详细介绍,包括其构造与工作原理。

这部分的内容将帮助读者全面了解单片机的基本知识,为后续的定时器功能介绍打下基础。

2.2节将重点介绍定时器的功能和特点。

这部分将涵盖定时器的基本原理、工作模式以及在实际应用中的使用方法。

同时,还将详细讲解如何使用定时器进行1秒钟的延时操作,包括具体的代码实现和注意事项。

结论部分将对全文进行总结,并强调定时器的重要性和应用前景。

51单片机定时器设置及应用

51单片机定时器设置及应用
TMOD=0x00 TH0=(8192-m)/32; TL0=(8192-m)%32;
m:根据实际定时所确定的计数次数
二、方式 1
TMOD =0x01 TH0=(65536-m)/256; TL0=(65536-m)%256;
m:根据实际定时所确定的计数次数
三、方式 2
TMOD=0x02 TH0=256-m; TL0=256-m; m:根据实际定时所确定的计数次数
TMOD=0x02; //设定 T0 的长度和状态:8 位自动重装定时 TH0=256-10; //10us 定时,备份计数器的初值 TL0=256-10; //10us 定时,计数器的初值 EA=1; //系统开放中断 ET0=1; //允许 T0 中断 TR0=1; //启动 T0 for(;;); // 等待中断产生 } void T0_ISR( ) interrupt 1 { P10=~P10; //P1.0 每 10us 取反一次 }
ET0:定时/计数器 T0 中断允许控制位 ET0=1,允许 T0 中断 ET0=0,禁止 T0 中断
51 单片机中断系统结构图
51 单片机定时/计数器 C 语言应用模板 /************ 设置 T0 为 16 位定时器,定时 50ms,系统采用 12MHz 晶振。 ************/ #include <reg52.h> void main( )
TF1、TF0:定时/计数器溢出中断标志位,由系统自动置位或清零,用户不能写入数据。 TF1=1,表示 T1 溢出 TF0=1,表示 T0 溢出
TR1:T1 的启动或停止控制位。 TR1=1,启动 T1;TR1=0,停止 T1;
TR0:T0 的启动或停止控制位 TR0=1,启动 T0;TR0=0,停止 T0;

51单片机定时器初始化的基本步骤

51单片机定时器初始化的基本步骤

51单片机定时器初始化的基本步骤1.引言在51单片机编程中,定时器是一种重要的功能模块。

通过对定时器的初始化和配置,我们可以实现时间延迟、脉冲生成、计时等各种应用。

本文将介绍51单片机中定时器的基本概念,并详细解释定时器的初始化步骤。

2.定时器的基本概念定时器是一种用来测量时间间隔并产生相关中断的设备或模块。

在51单片机中,定时器通常由一个定时/计数器和相关的控制寄存器组成。

定时器通过计数器的不断累加来产生定时中断,并提供一定的计时功能。

3.定时器的工作原理定时器一般由一个预分频器和计数器组成。

预分频器可以将外部输入的时钟信号分频为较低的频率,然后输入给计数器。

计数器通过不断累加从预分频器得到的脉冲数来实现计时的功能。

当计数器中的值达到设定的阈值时,会触发定时器中断,进行相应的处理。

4.定时器的初始化步骤定时器的初始化主要包括以下几个步骤:4.1确定定时器模式51单片机中的定时器可以工作在定时模式或计数模式。

在定时模式下,定时器会自动开始计时,当计数器的值达到设定的阈值时,会触发中断。

在计数模式下,定时器接收外部的脉冲输入,并进行计数。

在本文中,我们以定时模式为例进行介绍。

4.2设置计时器的工作模式定时器可以通过寄存器的位操作来设置不同的工作模式。

具体的工作模式包括定时器的选择(如T0或T1)、计数方式(如自动重装载或不自动重装载)、计数位宽等。

根据实际需求,我们需要根据手册设定相应的寄存器位。

4.3设置定时器的初值定时器的初值即定时器计数器的初始值。

根据所需的延时时间或频率,我们需要计算出初值,并将其赋给相应的寄存器。

需要注意的是,由于定时器的计数过程是递增的,因此初值需要根据计数方式进行相应的调整。

4.4启动定时器在完成上述初始化步骤后,我们需要使能定时器,使其开始工作。

一般情况下,定时器的使能位位于相关的控制寄存器中,我们需要将其设置为1来启动定时器的计数过程。

5.定时器的使用案例以下是一个简单的使用定时器实现延时的案例:#i nc lu de<r eg51.h>v o id de la y_ms(u nsi g ne di nt ms){u n si gn ed in ti,j;f o r(i=0;i<ms;i++){f o r(j=0;j<120;j++);//调整延时时间}}v o id ma in(){T M OD=0x01;//设置定时器0为工作于模式1T H0=0x FC;//设置定时器初值T L0=0x18;T R0=1;//启动定时器0w h il e(1){//执行需要延时的操作d e la y_ms(1000);//延时1秒}}在上述案例中,我们使用定时器0来实现延时。

第六章 MCS-51单片机内部定时器

第六章 MCS-51单片机内部定时器

6.3.1 模式0及应用
在这种模式下,16位寄存器只用了13位。 其中,TL0的高3位未用,TH0占8位。当 TL0的低5位溢出时,向TH0进位。当TH0 溢出时,向中断标志位TF0进位,并申请中 断。 因此,可通过查询TF0 是否置位或考 察中断是否发生来判断定时器/计数器0的 操作完成与否。
(2)计算1ms定时T0的初值:
机器周期为(1/fOSC)×12=[1/(12×106)]×12=1μs, 设T0的 计数初值为X,则 (213-X)×1×10-6=1×10-3ms
X=213-1×10-3/(1×10) -6 =8192-1000=7192D=1110000011000
高8位: E0H 低5位: 18H
fosc=12MHz, 采用查询方式。
解:方波周期 T=1/100Hz=0.01s=10ms 用T1定时5ms 计数初值 X为: X=216-12×5×103/12=60536=EC78H 程序如下:
MOV TMOD, #10H ;T1模式1,定时方式
SETB TR1 LOOP:MOV TH1,#0ECH
例:晶振为12MHZ ,则计数周期为
T=12/(12*106)Hz =1微秒
最短的定时 周期
计数器工作方式:
当定时器/计数器为计数工作方式时,通过
引脚T0和T1对外部信号计数,外部脉冲的下降
沿触发计数
在每个机器周期的
采样过程:
S5P2期间采样引脚
当输入脉冲信号从1到0的负跳变时,计数器就 自动加1。 由于检测一个由1到0的跳变需要两 个机器周期,所以 计数的最高频率为振荡频 率的1/24。为了确保给定电平在变化前至少被 采样一次,外部计数脉冲的高低电平均需保持 一个机器周期以上。(占空比没有限制)

51单片机 定时器 c语言

51单片机 定时器 c语言

51单片机定时器 c语言51单片机是目前较为流行的一种单片机芯片,定时器是其重要的功能之一,可以用于实现各种定时任务,而c语言则是51单片机常用的编程语言之一。

下面将结合实例,阐述51单片机定时器在c语言中的使用方法。

一、引入头文件及定义定时器首先需要引入头文件“reg51.h”,然后需要定义一个定时器变量和一个计数变量。

在本文中,我们将使用定时器0,所以定义如下:```c#include<reg52.h>sbit led = P2^0; //定义led信号端口P2.0unsigned char count = 0; //计数变量unsigned char timerVal = 56; //定时器初值```需要注意的是,定时器初值的计算方法如下:$$定时器初值 = 256 - \frac{所需延时时间× 晶振频率}{12}$$在本例中,晶振频率为11.0592MHz,所需延时时间为0.001秒,则计算得到定时器初值为56。

二、设置定时器参数设置定时器参数前,需要先关闭定时器0。

设置完成后,再通过TR0位将定时器0启动。

```cvoid initTimer(){TMOD &= 0xF0; //定时器0, 方式1TMOD |= 0x01;TH0 = timerVal; //定时器初值高位TL0 = timerVal; //定时器初值低位ET0 = 1; //打开定时器0中断EA = 1; //打开总中断}void main(){initTimer(); //初始化定时器0while(1){if(count >= 100){led = !led; //LED翻转count = 0; //计数器清零}}}void timerHandler() interrupt 1{TH0 = timerVal;TL0 = timerVal;count++; //计数器+1}```在上述代码中,通过设置TMOD寄存器,将定时器工作在方式1。

51单片机定时器实验内容

51单片机定时器实验内容

51单片机定时器实验内容
51单片机定时器实验的内容可以根据不同的需求和目的进行调整,以下是
一些可能的实验内容:
1. 定时器初始化实验:实验目标是了解如何初始化51单片机的定时器,包括设置定时器的工作模式、计数值、初始值等。

实验中可以编写代码,让定时器在初始化后自动开始计时,并在达到指定时间后产生中断或输出信号。

2. 定时器中断实验:实验目标是了解如何使用51单片机的定时器中断功能,实现定时器在达到指定时间后自动触发中断,并在中断服务程序中执行特定的操作。

实验中可以编写代码,让定时器在达到指定时间后自动进入中断服务程序,并在其中执行特定的操作,如点亮LED灯等。

3. 定时器PWM输出实验:实验目标是了解如何使用51单片机的定时器PWM输出功能,实现定时器输出PWM波形。

实验中可以编写代码,让定时器输出不同占空比的PWM波形,并通过调整占空比来控制LED灯的亮
度等。

4. 定时器与外部事件同步实验:实验目标是了解如何使用51单片机的定时器与外部事件同步,实现定时器在外部事件发生时自动开始计时或停止计时。

实验中可以编写代码,让定时器在外部事件发生时自动开始计时或停止计时,并在达到指定时间后执行特定的操作。

以上是一些常见的51单片机定时器实验内容,通过这些实验可以深入了解51单片机的定时器工作原理和用法,并提高编程技能和硬件控制能力。

c51单片机定时器中断的执行过程

c51单片机定时器中断的执行过程

c51单片机定时器中断的执行过程
C51单片机定时器中断的执行过程可以分为以下几个步骤:
1. 初始化定时器:首先需要对定时器进行初始化,设置定时器的计数模式、计数值、溢出方式等参数。

这些参数可以通过编程实现,也可以通过硬件电路进行调整。

2. 启动定时器:初始化完成后,需要启动定时器。

启动定时器后,定时器开始按照预设的参数进行计数。

当计数值达到预设的溢出值时,定时器会产生一个溢出信号。

3. 设置中断服务程序:为了在定时器溢出时执行特定的操作,需要设置一个中断服务程序 ISR)。

中断服务程序是一段特殊的代码,它会在定时器溢出时被自动调用。

4. 开启中断:在中断服务程序设置完成后,需要开启相应的中断。

开启中断后,当定时器溢出时,CPU会自动跳转到中断服务程序执行。

5. 执行中断服务程序:当定时器溢出时,CPU会暂停当前任务,跳转到中断服务程序执行。

在中断服务程序中,可以执行一些特定的操作,如更新显示、读取传感器数据等。

6. 返回主程序:中断服务程序执行完成后,CPU会自动返回到主程序继续执行。

这样,通过定时器中断,可以实现对单片机的周期性控制和数据采集等功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
51单片机定时器/计时器的使用
步骤:
1、 打开中断允许位:
对IE 寄存器进行控制,IE 寄存器各位的信息如下图所示:
EA : 为0时关所有中断;为1时开所有中断
ET2:为0时关T2中断;为1时开T2中断,只有8032、8052、8752才有此中断 ES : 为0时关串口中断;为1时开串口中断 ET1:为0时关T1中断;为1时开T1中断 EX1:为0时关1时开 ET0:为0时关T0中断;为1时开T0中断 EX0:为0时关1时开
2、 选择定时器/计时器的工作方式:
定时器TMOD 格式
CPU 在每个机器周期内对T0/T1
检测一次,但只有在前一次检测为1和后一次检测为0时才会使计数器加1。

因此,计数器不是由外部时钟负边沿触发,而是在两次检测到负跳变存在时才进行计数的。

由于两次检测需要24个时钟脉冲,故T0/T1线上输入的0或1的持续时间不能少于一个机器周期。

通常,T0或T1输入线上的计数脉冲频率总小于100kHz 。

方式0:定时器/计时器按13位加1计数,这13位由TH 中的高8位和TL 中的低5位组成,其中TL 中的高3位弃之不用(与MCS-48兼容)。

13位计数器按加1计数器计数,计满为0时能自动向CPU 发出溢出中断请求,但要它再次计数,CPU 必须在其中断服务程序中为它重装初值。

方式1:16位加1计数器,由TH 和TL 组成,在方式1的工作情况和方式0的相同,只是计数器值是方式0的8倍。

2
方式2:计数器被拆成一个8位寄存器TH 和一个8位计数器TL ,CPU 对它们初始化时必须送相同的定时初值。

当计数器启动后,TL 按8位加1计数,当它计满回零时,一方面向CPU 发送溢出中断请求,另一方面从TH 中重新获得初值并启动计数。

方式3:T0和T1工作方式不同,TH0和TL0按两个独立的8位计数器工作,T1只能按不需要中断的方式2工作。

在方式3下的TH0和TL0是有区别的:TL0可以设定为定时器/计时器或计数器模式工作,仍由TR0控制,并采用TF0作为溢出中断标志;TH0只能按定时器/计时器模式工作,它借用TR1和TF1来控制并存放溢出中断标志。

因此,T1就没有控制位可以用了,故TL1在计满回零时不会产生溢出中断请求的。

显然,T0和T1设定为方式3实际上就相当于设定了3个8位计数器同时工作,其中TH0和TL0为两个由软件重装的8位计数器,TH1和TL1为自动重装的8位计数器,但无溢出中断请求产生。

由于TL1工作于无中断请求状态,故用它来作为串口可变波特
3、 为计数器赋值
计数器初值计算
TC =M −C
TC :计数器初值,M :计数器模值(2k ),C :把计数器计满的计数值 定时器初值计算
T =(M −TC )T 计数

TC =M −T/T 计数
M :模值,T 计数:单片机时钟周期T CLK (ΦCLK 的倒数)的12倍;TC 为定时器的定时初值,T 为欲定时的时间。

TC =M −T ×ΦCLK /12
M :模值,ΦCLK :单片机时钟周期ΦCLK ;TC 为定时器的定时初值,T 为欲定时的时间。

例如:单片机主脉冲频率ΦCLK 为12MHz ,最大定时时间为: 方式0时 T MAX = 213×1us = 8.192ms 方式1时 T MAX = 216×1us = 65.536ms 方式2和方式3 T MAX = 28×1us = 0.256ms
4TR0:为0时,停T0计数;为1时,启T0计数
TF0:为0时,无T0中断(硬件复位);为1时,有T0溢出中断
TR1:为0时,停T1计数;为1时,启T1计数
TF1:为0时,无T1中断(硬件复位);为1时,有T1溢出中断
IE1:为0时,硬件复位;为1时INT1上有中断
IT1:为0时,INT1电平触发(软件复位);为1时,INT1负边沿触发
IE0:为0时,硬件复位;为1时
IT0:为0时,INT0电平触发(软件复位);INT0负边沿触发
5
在C51的C语言中使用interrupt x来指定中断入口地址,x为中断号,例T0中断:void Time0_Int() interrupt 1 //定时器T0的中断入口程序
3。

相关文档
最新文档