人教版六年级数学下册《圆锥的体积》PPT优秀课件
圆锥的认识说课(课件)人教版六年级下册数学

四、说教学重难点
教学重点
掌握圆锥的特征
教学难点
圆锥的高的测量方法
五、说教法学法
本课在教学时适宜让学生主动思考,合作交流,动手实践,让学生在具 体情境中亲自体验感知圆锥的特征。另外,要鼓励学生主动参与、动手 操作、发挥自己的聪明才智,能根据具体情况想出测量高的方法。在教 学过程中,恰当地运用远程教育资源,既能创设教学情境,又能将抽象 的知识直观化,更加直观地体验感知圆锥的特征。本课我将采取“引导 ——探索——发展”的教学模式,在教学中充分利用根据实情进行二次 加工的农远资源课件,更加优化本课的教学,提高教学效率。这种教学 模式,能促使学生学中有思,思中有疑,疑中有得。
轻松,记得牢固。整个过程体现出了学生是学习的主体,教师是应用资 源合理组织学生求知的引导者这一新课理念。
板块三、巩固练习。 1、求下列各圆锥的体积。 (1)底面积30平方厘米,高5厘米。 (2)底面半径4分米,高是3分米。 (3)底面直径12厘米,高是10厘米。 (4)底面周长31.4厘米,高6厘米。
为了巩固圆锥的表象,激发学生的学习兴趣,我问学生:“在生活中, 你还见过那些圆锥形的物体?”想一想、说一说。 并开展小游戏:学生抢答出屏幕上圆锥形物体的名称。 揭示课题,板题:圆锥的认识
2、认识圆锥的特征 我先引导学生看一看、摸一摸圆锥形实物,再让学生观看动画,在生动 有趣的氛围中轻松掌握圆锥的各部分名称及特征。 接着让学生拿起圆锥模型,小组同学相互说说圆锥的各部分名称。 最后,让学生闭上眼睛想一想圆锥是什么样子的?在脑中建立圆锥的模 型。
2.求下面各物体的体积。(单位:厘米) 目的是让学生运用所学的知识解决实际问题。 3.讨论题:把一个体积是60立方厘米的圆柱体木块,削成一个最大的圆 锥体,圆锥体的体积是多少?削去的体积是多少? 通过讨论,让学生把所学的知识,形成技能技巧,培养学生的创新能力 。
圆锥的体积公式推导_六年级数学下册

圆锥底面半径2厘米,高9厘米 圆锥底面直径6厘米,高3厘米
体积
37.68立方厘米 28.26立方厘米
圆锥底面周长6.28分米,高6分米 6.28立方分米
圆锥的体积公式推导
有一根底面直径是6厘米,长是15厘米的圆 柱形钢材,要把它削成与它等底等高的圆锥形 零件。要削去钢材多少立方厘米?
6厘米
15厘米
高
圆柱体积=底面积 圆锥体积=
圆锥的体积公式推导
高
圆柱体积=底面积 圆锥体积=
圆锥的体积公式推导
高
圆柱体积=底面积 圆锥体积=底面积
圆锥的体积公式推导
高 高
1 3
一个圆锥的零件,底面积是19平方 厘米,高是12厘米。这个零件的体 积是多少?
(立方厘米) ×19×12= 76 - 3
圆锥的体积公式推导 答:这个零件体积是 76立方厘米。
圆锥体积公式的推导
圆锥的体积公式推导
说出圆柱和圆锥各部分的名称及特征:
高 侧面 底面 有无数条 展开后是长方形或正方形 有两个底面,是相等的圆形
圆柱的体积公式用字母表示是( 顶点 有一个顶点
V=s h
)。
侧面
高 底面
展开后是扇形
只有一条 有一个底面,是圆形
圆锥的体积公式推导
实验探究
1. 等底等高圆柱和圆锥的体积之间存在着怎样的 关系?请你用自己准备的学具进行实验?
2.说说你是怎样实验的?比比谁的发现现最多?
圆锥的体积公式推导
圆锥的体积公式推导
圆锥的体积公式推导
圆锥的体积公式推导
圆锥的体积公式推导
圆锥的体积公式推导
圆锥的体积公式推导
圆锥的体积公式推导
人教版六年级数学下册第三单元《圆柱与圆锥》课件共10个精品课件

柱的底面直径与高的比。
πd=h d :h = 1 :π
课堂总结
通过这节课的学习, 你有什么收获?
义务教育人教版六年级下册
第3单元 圆柱与圆锥 1.圆 柱
第 5 课时 圆柱的体积
复习导入
填空。 圆柱的侧面积=( 底面周长×高 ) 圆柱的表面积=( 侧面积+底面积×2 ) 长方体的体积=( 长×宽×高 ) 正方体的体积=(棱长×棱长×棱长)
底面 侧面
圆柱的底面都 是圆,并且大 小一样。
底面 圆柱的侧面是曲面。
哪个圆柱比较高?为什么?
底面 O
侧面 高
底面 O 侧面 高
底面 O
底面
圆柱两个底面之间的距离叫做高, 圆柱有无数条高。
动手操作: 如果把一张长方形的硬纸贴在木棒上,快速转
动木棒,想一想,转出来的是什么形状?
转动起来像一个圆柱。
8cm
要解决这个问题,就
是要计算什么?
10cm
杯子的容积
10cm
杯子的底面积: 杯子的容积:
8cm
3.14×(8÷2)2
50.24×10
=3.14×42
=502.4 (cm3 )
=3.14×16
=502.4 (mL)
=50.24 (cm2 )
答:因为502.4大于498,所以杯子能 装下这袋牛奶。
(长方体)
(正方体 )
( 圆柱 )
课堂总结
通过这节课的学习, 你有什么收获?
义务教育人教版六年级下册
第3单元 圆柱与圆锥 1.圆 柱
第 2 课时 圆柱的认识(2)
复习导入
圆柱由哪几部分组成? 有什么特征?
上、下底面:圆 侧面:曲面
探究新知
(人教版)六年级数学下册课件_圆锥的体积_4

1.2 米 4米
×3.14×(4 ÷ 2)×1.2 × )
3
1) = 3.14×(4 ÷ 2)×(1.2 ×—) × )
=12.56 ×0.4 = 5.024(立方米) (立方米) 735×5.024 ≈ 3693 (千克) × 千克) 答:这堆小麦大约有3693千克 这堆小麦大约有 千克
解决问题: 解决问题:
体积等于圆柱体积的— 体积等于圆柱体积的 3
用字母表示: 用字母表示: 1 V= Sh 3
已知: 已知:等底等高的圆锥和圆柱
根据左图体积填写右图体积: 根据左图体积填写右图体积: (1) ) (2)
90立方厘米 立方厘米
(
30)立方厘米
80立方厘米 立方厘米 ( )立方厘米 240
例1:一个圆锥的零件,底面积是 :一个圆锥的零件, 19平方厘米,高是 厘米。这个零 平方厘米, 厘米。 平方厘米 高是12厘米 件的体积是多少? 件的体积是多少?
圆锥的体积
实验小学
情景引入: 情景引入: 谁做的房子的体积大呢? 谁做的房子的体积大呢?
明明说: 明明说:我做的房子的底面比你做的 房子的底面大,高也比你的高, 房子的底面大,高也比你的高,所以 我做的房子的体积大。 我做的房子的体积大。
(s=6 h=6.3)
(S=12.5 h=9)
聪聪说:我做的房子上下一样粗呀, 聪聪说:我做的房子上下一样粗呀, 而你做的房子却越向上越细呀, 而你做的房子却越向上越细呀,所 以我做的房子的体积大。 以我做的房子的体积大。
已知圆锥的底面半径r h,如 1.已知圆锥的底面半径r和高h,如 已知圆锥的底面半径 和高h, 何求体积V? 何求体积V? 2 1
S=π
r
青岛版小学数学六年级下册圆锥的体积ppt教学课件

圆柱体积=底面积
高
圆柱体积=底面积
高
圆柱体积=底面积
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
1 1、圆锥的体积=( 3 ×底面积×高 1
),
二、判断:
1、圆柱体的体积一定比圆锥体的体积大( × ) (√ )
1 2、圆锥的体积等于和它等底等高的圆柱体的 3
3、正方体、长方体、圆锥体的体积都等于底面 积×高。 ( × ) 4、等底等高的圆柱和圆锥,如果圆柱体的体积 是27立方米,那么圆锥的体积是9立方米。 ( ) √
高ቤተ መጻሕፍቲ ባይዱ
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=底面积
高 高
圆柱体积=底面积 圆锥体积=底面积
高 高
1 3
圆柱体积=底面积 圆锥体积=底面积
高 高
1 3
一个圆锥形的零件,底面积是 19平方厘米,高是12厘米。这个 零件的体积是多少?
义务教育课程标准实验教科书 数学 (青岛版)六年级下册
圆锥的体积
想一想:
• 圆柱和圆锥的底和高有什么 关系?
圆柱和圆锥等底等高
• 等底等高的圆柱和圆锥的体 积之间有什么关系?
你发现了什么? 圆柱的体积是与它等底 等高圆锥体积的3倍.
六年级下册数学课件-第3单元 圆柱与圆锥 丨人教新课标 (共88张PPT)

5. 时代广场有一个圆柱形喷水池,底面直径是4 m, 深0.8 m。如果要在喷水池的底面和内壁贴上瓷砖,那 么贴瓷砖的面积是多少平方米?
3.14×(4÷2)2+3.14×4×0.8 =22.608 (m2) 答:贴瓷砖的面积是22.608 m2。
能力提升扩展 6. 如图,一张正方形纸卷成一个圆柱,求这个圆柱的 高与底面直径的比。
2. 选一选。(把正确答案的字母代号填在括号里)
(1)圆柱的底面半径是2.5 cm,高是3 cm,沿高展开
得到的长方形的长是( A )cm,宽是( D )cm。
A. 15.7
B. 5
C.18.84
D. 3
(2)下图以直线(虚线)为轴快速旋转一周,能形成
圆柱的是
( A )。
3. 辨一辨。(对的在后面的括号里画“√”,错的画
6 dm=0.6 m 3.14×(0.6÷2)2×2+3.14×0.6×1.2≈3 (m2) 答:做这个油桶至少需要3 m2的铁皮。
能力提升扩展
6. 把一个实心大圆柱切成3个同样大小的小圆柱,3个 小圆柱的表面积之和比大圆柱的表面积多了3.6 dm2。 大圆柱的底面积是多少?
3.6÷[(3-1)×2]=0.9 (dm2) 答:大圆柱的底面积是0.9 dm2。
它们的体积也相等。
(√)
4. 一根圆柱形塑料棒,底面积为75 cm2,长110 cm。 它的体积是多少?
75×110=8250 (cm3) 答:它的体积是8250 cm3。 5. 一个圆柱的体积是120 m3,底面积是12 m2。它的高 是多少? 120÷12=10 (m)
答:它的高是10 m。
能力提升扩展
7 圆柱的体积(2)
基础巩固
三2第2课时《圆锥的体积》教案-人教版版数学六年级下册

上课解决方案教案设计教学目标知识与技能1.理解并掌握圆锥的体积计算公式,能正确地计算圆锥的体积。
2.能运用圆锥的体积计算公式解决有关的实际问题。
过程与方法经历自主探究圆锥的体积计算公式的过程,增强操作能力,体验观察、比较、分析、总结、归纳等学习方法。
情感、态度与价值观通过实验,培养学生勇于探索的求知精神,感受发现知识的快乐,体会数学与生活的密切联系,能积极参与数学活动,自觉养成与人合作交流和独立思考的良好习惯。
重点难点重点:掌握圆锥的体积计算公式,能运用公式解决简单的实际问题。
难点:理解圆锥的体积计算公式的推导过程。
课前准备教师准备PPT课件铅锤学生准备等底、等高的圆柱形和圆锥形容器沙子水教学过程板块一激发兴趣,问题导入1.提问激趣:怎样计算这个铅锤的体积?(出示铅锤)生:可以用排水法。
把铅锤全部浸入盛水的量杯中(水未溢出),升高那部分水的体积就是铅锤的体积。
2.追问:怎样求出沙堆的体积?(课件出示教材33页例3)工地上有一堆沙子,其形状近似于一个圆锥(如右图),这堆沙子的体积大约是多少?如果每立方米沙子大约重1.5 t,这堆沙子大约重多少吨?预设生1:用排水法好像不行。
生2:改变圆锥形沙堆的形状,堆成正方体,测出它的棱长后,计算它的体积。
生3:改变圆锥形沙堆的形状,堆成长方体,测出它的长、宽、高后,计算它的体积。
生4:改变圆锥形沙堆的形状,堆成圆柱,测出它的底面周长和高后,计算它的体积。
3.导入新知:大家都想到了用转化法求沙堆的体积,但如果我们在计算沙堆的体积时,必须把沙子重新堆放成以前学过的几何图形,这样做既麻烦又不容易成功,看来我们还需要寻求一种更普遍、更科学、更便利的求圆锥的体积的方法。
(板书课题:圆锥的体积) 操作指导通过提出问题,引发学生的认知冲突,激发学生的求知欲,培养学生自主探究的意识,感受学习数学的必要性。
板块二动手操作,探究新知活动1观察猜想,确定方向1.猜一猜:圆锥的体积可能与哪种立体图形的体积有关?(学生大胆猜想,可能与圆柱的体积有关)2.交流:探究圆锥的体积要借助一个什么样的圆柱呢?明确:探究圆锥的体积要借助一个与这个圆锥等底、等高的圆柱。
六年级数学下册《圆锥的体积》课件

圆锥的体积公式推导
01
将圆锥分割成若干个小的圆柱体 ,每个圆柱体的体积为πr²h/3, 因此整个圆锥的体积为(1/3)πr²h 。
02
通过实验的方法,将圆锥装满水 或其他液体,然后将液体倒入量 杯或其他容器中,读出液体的体 积即为圆锥的体积。
圆锥的体积公式应用
计算圆锥的容积
通过测量圆锥的高度和底面直径或半径,利用公式计算出圆锥的 容积。
制造望远镜。
圆锥的体积练习题
04
基础练习题
01
02
03
04
圆锥的体积公式是什么 ?
一个圆锥的底面积是15 平方厘米,高是8厘米, 它的体积是多少?
一个圆锥的体积是18立 方厘米,它的底面积是 多少?
一个圆锥的底面半径是3 厘米,高是5厘米,它的 体积是多少?
进阶练习题
01
02
03
04
一个圆锥的底面直径是6厘米 ,高是4厘米,它的体积是多
圆锥的体积在建筑中的应用
计算土方量
在建筑工地,挖土和填土是常见 的作业。圆锥的体积公式可以帮 助我们快速计算土方量,从而优
化施工计划。
设计桥梁
桥梁的桥墩通常设计成圆锥形,以 承受压力。通过计算圆锥的体积, 可以确定桥墩的大小和所需的材料 量。
设计排水系统
排水管道通常设计成圆柱形或圆锥 形。通过计算圆锥的体积,可以确 定管道的大小和所需的材料量。
六年级数学下册《圆锥 的体积》ppt课件
目录
• 圆锥的体积公式 • 圆锥的体积与圆柱的关系 • 圆锥的体积的实际应用 • 圆锥的体积练习题 • 圆锥的体积总结与回顾
圆锥的体积公式
01
圆锥的体积定义
圆锥的体积
指圆锥所占空间的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一堆大米,近似于圆锥形,量得 底面周长是9.42厘米,高5厘米。 它的体积是多少立方厘米?
把一个棱长是6厘米的正方体木块, 加工成一个最大圆锥体,圆锥的体 积是多少立方厘米?
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
1 2 3.14 2 1.5 3 3 6.28 (米 )
答:这堆小麦的体积是6.28立方米.
一个圆锥形零件,它的底面直径是10厘 米,高是3厘米,这个零件的体积是多少 立方厘米?
1 2 3.14 (10 2) 3 3
78.(厘Leabharlann 5 )3答:这堆零件的体积是78.5立方厘米.
圆 锥 在 生 活 中 的 应 用
圆 锥 在 生 活 中 的 应 用
努 力 吧 !
说说下列各图是由哪些图形组成的。
计算下面各圆锥的体积.
3dm 3.6m 8dm 8cm 12cm
s 9m
2
1 V=3
sh
1 × 19 × 12 = 76 (立方厘米) 3
答:这个零件的体积是76立方厘米。
丰收的喜悦
这堆小麦的体 积是多少呢?
圆锥的体积 怎么求呢?
准备等底等高的圆柱形容器和 圆锥形容器各一个.
将圆锥形容器装满沙,再倒入圆柱 形容器,看几次能倒满.
圆锥的体积V等于和它等底等高 的圆柱体积的三分之一
V圆柱=sh
1 V= 3
sh
打谷场上,有一个近似于圆锥的小麦堆, 测得底面半径是2米,高是1.5米。你能计算出 这堆小麦的体积吗?
激励学生学习的名言警句 51关于学习或励志的名言警句 1百川东到海,何时复西归;少壮不努力,老大徒伤悲。 意思是:时间像江河东流入海,一去不复返;人在年轻时不努力学习,年龄大了一事无成,那就只好悲伤、后悔。出自《汉乐府•长歌行》 2 成人不自在,自在不成人。 意思是:人要有所成就,”必须刻苦努力,不可放任自流。出自(宋)罗大经《鹤林玉露引•朱熹小简》 3 读书百遍,其义自见。 意思是:能把一本书读过百遍,其中的含义自然就领会了。出自《三国志•魏书》。 4 读书破万卷,下笔如有神。 意思是:读书多了,下笔写文章就如有神助。出自(唐)杜甫《奉赠韦左丞丈二十二韵》。 5 大志非才不就,大才非学不成。 意思是:没有才,宏伟的志向就不能实现;不学习,就不能成大才。出自6(明)郑心材《郑敬中摘语》。 6 非学无以广才,非志无以成学。 意思是:不学习便无法增长才于,没有志向就难于取得学业上的成功。出自《诸葛亮集•诫子书》。 7发愤忘食,乐以忘忧,不知老之将至。 意思是;下决心学习,连吃饭也忘记了;有所心得便高兴得忘记了忧愁,不知道老年就要逼近了。出自《论语•述而》。 8功崇惟志,业广惟勤;惟克果断,乃罔后艰。 意思是:取得伟大的功业,由于有伟大的志向;完成伟大的功业,在于辛勤不懈地工作;办事果断,没有后患。出自《尚书•周官》。 9 积财千万,不如薄技在身。 意思是:积累许许多多的财富,不如学习一种小小的技术。出自《颜氏家训•勉学》。 10 立志言为本,修身行乃先。 意思是:人的立志,语言忠实是它的根本;修养自已的品德,应以行动为先。出自(唐)吴叔达《言行相顾》。 11 莫等闲白了少年头,空悲切。 意思是:不要虚度年华,不然到了满头白发之时,只有徒叹奈何了。出自(宋)岳飞《满江红》。 12 人品、学问,俱成于志气;无志气人,一事做不得。 意思是:一个人之所以具有高尚的品德,渊博的学问,都是由于他有志气;没有志气的人,什么事也做不成。出自(清)申居郧《西岩赘语》。 13 山积而高,泽积而长。 意思是。山是由土石日积月累而高耸起来的,长江大河是由点滴之水长期积聚而成的。比喻知识、业绩都是由少到多,由小到大长期积累、创造而成功的。出自(唐)刘禹锡《唐故监察御史赠尚书右仆射王公神道碑铭》。 14为学之道,必本于思。思则得知,不思则不得也。 意思是:学习必须以思考为根本,思考就能得到知识,不思考就得不到知识。出自(宋)晁说之〈晁氏客语〉 15为学正如撑上水船,一蒿不可放缓。 意思是:作学问就象撑着逆水的船,连一蒿也不能放松。比喻学习不要自满,要坚持有恒。 16 为学须先立志。 意思是:作学问首先应当立志。出自〈朱熹语录〉 17 学者不患立志不高,患不足以继之耳;不患立言不善,患不足以践之耳。 意思是:作学问的人不怕志向立得不高,就怕不能持之以恒;不怕作品里的话说得不漂亮,就怕自己不照着做。出自 〈薛方山记述•上篇〉 18学者大不宜志小气轻,志小则易足,易足则无进;气轻则以未知为已知,未学为已学。 意思是:学习要树立大志,没有大志就容易自满,自满了就不易有长进了。学习要有勇气,缺乏勇气,不懂的东西会自以为已经懂了,没有学到的东西会以为已经学到。出自《近思录集注》卷二。 19学不博者,不能守约;志不笃者,不能力行。 意思是:学识不广博,就不能得其要领;志向不笃诚,就不能努力去做。出自(宋)杨时《二程粹言•论学》。 20学贵知疑,小疑则小进,大疑则大进。 意思是:学习贵在懂得提出疑问。有小疑问得到解决,总能有小进步;有大疑问得到解决,就能有大进步。出自《格言联壁•学问类》。