高考文科数学立体几何试题汇编
2012-2020年全国卷高考立体几何大题汇编(文科)

立体几何大题汇编(文科)1.(2020年全国一卷文19)如图、为圆锥曲线的顶点,底面的内接正三角形,为上一点,(1平面(2)设,圆锥的侧面积为,求三棱锥2.(2020年全国二卷文20的底面是正三角形,侧面是矩形,分别为,的中点,为上一点,过和的平面交于,交于(1)证明:面(2)设为的中心,若,面,且求四棱锥3.(2020年全国三卷文19)如图、在长方体中,点分别在棱,(1)证明:当时,(2)证明:点在平面内4.(2019年全国一卷文19)如图,直四棱柱的底面是棱形,,,,,分别是,的中点(1(2)求点到平面的距离5.(2019年全国二卷文科17)如图,长方体的底面是正方形,点在棱(1平面(2,,求四棱锥6.(2019年全国三卷文科19)图是矩形组成的一个平面图形,其中,将其沿,折起使得与重合,连接,如图(1)证明:图平面(2)求图中的四边形的面积7.(2018年全国三卷文科19)如图,边长为的正方形所在的平面与半圆弧所在平面垂直,是上异于的点(1(2)在线段上是否存在点?请说明理由8.(2018年全国二卷文科19)如图,在三棱锥中,,,为的中点(1(2)若点在棱,求点到平面的距离9.(2018年全国一卷文科18)如图,在平行四边形中,,以到达点(1平面(2)为线段上一点,为线段上一点,且,求三棱锥的体积10.(2017年全国三卷文科19)如图,在四面体是正三角形,(1(2)是直角三角形,,若为棱上与不重合的点,求四面体与四面体的体积比11.(2017年全国二卷文科18)如图,四棱锥中,侧面为等边三角形且垂直于底面,(1(2,求四棱锥的体积12.(2017年全国一卷文科18)如图,在四棱锥,,且(1平面(2)若,求该四棱锥的侧面积13.(2016年全国三卷文科19)如图,底面,,,,为线段,为的中点(1(2的体积14.(2016年全国二卷文科19)如图,菱形的对角线与交于点,点分别在,上,交于点(1(2)若,,15.(2016年全国一卷文科18)如图,的侧面是直角三角形,,顶点在平面内正投影为点,在平面内的正投影为点,连接并延长交于点(1)证明:是的中点(2)大答题卡第题中作出点在平面内的正投影(说明作法及理由),并求四面体的体积16.(2015年全国二卷文科19)如图,长方体中,,,点,分别在,上,,过点,的平面与此长方体的面相交,交线围成一个正方形。
2020-2021高考数学真题《立体几何》专项汇编(含答案)

2020-2021高考数学真题《立体几何》专项汇编(含答案)一、空间几何体的体积、面积1.(2021·全国·高考真题)若圆锥的轴截面为等腰直角三角形,则它的底面积与侧面积之比是( )A .√2:1B .2:1C .1:√2D .1:2 2.(2021·全国·高考真题)已知圆锥的底面半径为√2,其侧面展开图为一个半圆,则该圆锥的母线长为( )A .2B .2√2C .4D .3.(2021·全国·高考真题)正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( )A .20+12√3B .28√2C .563D 4.(2021·全国·高考真题)在正三棱柱ABC −A 1B 1C 1中,AB =AA 1=1,点P 满足BP⃗⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗⃗ +μBB 1⃗⃗⃗⃗⃗⃗⃗⃗ ,其中λ∈[0,1],μ∈[0,1],则( )A .当λ=1时,△AB 1P 的周长为定值B .当μ=1时,三棱锥P −A 1BC 的体积为定值C .当λ=12时,有且仅有一个点P ,使得A 1P ⊥BPD .当μ=12时,有且仅有一个点P ,使得A 1B ⊥平面AB 1P5.(2020·海南·高考真题)已知正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点,则三棱锥A -NMD 1的体积为____________6.(2021·全国·高考真题(文))如图,四棱锥P−ABCD的底面是矩形,PD⊥底面ABCD,M为BC的中点,且PB⊥AM.(1)证明:平面PAM⊥平面PBD;(2)若PD=DC=1,求四棱锥P−ABCD的体积.二、平行、垂直的命题判定7.(2021·全国·高考真题)已知α,β表示平面,m,n表示直线,以下命题中正确的选项是()A.假设m⊥α,m⊥n,那么n//αB.假设m⊂α,n⊂β,α//β,那么m//nC.假设α//β,m⊂α,那么m//βD.假设m⊂α,n⊂α,m//β,n//β,那么α//β8.(2021·全国·高考真题)设m,n为两条不同的直线,α,β为两个不同的平面,则下列结论正确的是()A.若m//n,n//α,则m//αB.若m//n,m//α,n//β,则α//βC.若α⊥β,m⊂α,n⊂β,则m⊥nD.若m⊥n,m⊥α,n⊥β,则α⊥β9.(2020·山东·高考真题)已知正方体ABCD−A1B1C1D1(如图所示),则下列结论正确的是()A.BD1//A1A B.BD1//A1D C.BD1⊥A1C D.BD1⊥A1C110.(2021·浙江·高考真题)如图已知正方体ABCD−A1B1C1D1,M,N分别是A1D,D1B 的中点,则()A.直线A1D与直线D1B垂直,直线MN//平面ABCDB.直线A1D与直线D1B平行,直线MN⊥平面BDD1B1C.直线A1D与直线D1B相交,直线MN//平面ABCDD.直线A1D与直线D1B异面,直线MN⊥平面BDD1B111.(2021·全国·高考真题)-(多选)如图,在正方体中,O为底面的中心,P为所在棱的中点,M,N为正方体的顶点.则满足MN⊥OP的是()A.B.C.D.12.(2021·全国·高考真题)如下图,在四棱锥S ABCD-中,底面ABCD是正方形,平面SAD⊥平面ABCD,SA=SD=2,3AB=.(1)求SA与BC所成角的余弦值;(2)求证:AB⊥SD.三、球体-能力拓展13.(2020·天津·高考真题)若棱长为2√3的正方体的顶点都在同一球面上,则该球的表面积为()A.12πB.24πC.36πD.144π14.(2021·天津·高考真题)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为32π3,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为()A.3πB.4πC.9πD.12π15.(2020·全国·高考真题(理))已知△ABC是面积为9√34的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()A.√3B.32C.1D.√3216.(2021·全国·高考真题(理))已如A,B,C是半径为1的球O的球面上的三个点,且AC⊥BC,AC=BC=1,则三棱锥O−ABC的体积为()A.√212B.√312C.√24D.√3417.(2020·全国·高考真题(理))已知,,A B C为球O的球面上的三个点,⊙O1为△ABC的外接圆,若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A.64πB.48πC.36πD.32π18.(2020·海南·高考真题)已知直四棱柱ABCD–A1B1C1D1的棱长均为2,∠BAD=60°.以D1为球心,√5为半径的球面与侧面BCC1B1的交线长为________.四、立体几何的数学应用19.(2021·全国·高考真题)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O,半径r为6400km 的球,其上点A的纬度是指OA与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为S=2πr2(1−cosα)(单位:km2),则S占地球表面积的百分比约为()A.26%B.34%C.42%D.50%20.(2021·北京·高考真题)某一时间段内,从天空降落到地面上的雨水,未经蒸发、渗漏、流失而在水平面上积聚的深度,称为这个时段的降雨量(单位:mm).24h降雨量的等级划分如下:在综合实践活动中,某小组自制了一个底面直径为200 mm,高为300 mm的圆锥形雨量器.若一次降雨过程中,该雨量器收集的24h的雨水高度是150 mm(如图所示),则这24h 降雨量的等级是A.小雨B.中雨C.大雨D.暴雨21.(2020·海南·高考真题)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A .20°B .40°C .50°D .90°22.(2020·全国·高考真题(理))埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A .√5−14BC .√5+14D .√5+1223.(2020·江苏·高考真题)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm,高为2 cm,内孔半径为0.5 cm,则此六角螺帽毛坯的体积是____cm.五、立体几何与空间向量的综合应用24.(2021·全国·高考真题(理))在正方体ABCD−A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为()A.π2B.π3C.π4D.π625.(2021·全国·高考真题)如图,四棱锥P−ABCD中,底面ABCD是矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB//平面ACE;(2)设PA=1,AD=√3,直线PB与平面ABCD所成的角为45°,求四棱锥P−ABCD 的体积.中,底面ABCD是正方形,若AD= 26.(2021·全国·高考真题)在四棱锥Q ABCD2,QD=QA=√5,QC=3.(1)证明:平面QAD⊥平面ABCD;(2)求二面角B−QD−A的平面角的余弦值.27.(2021·天津·高考真题)如图,在棱长为2的正方体ABCD−A1B1C1D1中,E为棱BC的中点,F为棱CD的中点.(I)求证:D1F//平面A1EC1;(II)求直线AC1与平面A1EC1所成角的正弦值.(III)求二面角A−A1C1−E的正弦值.28.(2021·全国·高考真题(理))已知直三棱柱ABC−A1B1C1中,侧面AA1B1B为正方形,AB=BC=2,E,F分别为AC和CC的中点,D为棱A1B1上的点.BF⊥A1B11(1)证明:BF⊥DE;(2)当B1D为何值时,面BB1C1C与面DFE所成的二面角的正弦值最小?29.(2021·北京·高考真题)如图:在正方体ABCD −A 1B 1C 1D 1中,E 为A 1D 1中点,11B C 与平面CDE 交于点F .(1)求证:F 为11B C 的中点;(2)点M 是棱A 1B 1上一点,且二面角M −FC −E 的余弦值为√53,求A 1MA1B 1的值.30.(2020·全国·高考真题(理))如图,D为圆锥的顶点,O是圆锥底面的圆心,AE为底DO.面直径,AE=AD.△ABC是底面的内接正三角形,P为DO上一点,PO=√66(1)证明:PA⊥平面PBC;(2)求二面角B−PC−E的余弦值.2020-2021真题精编-立体几何解析版一、空间几何体的体积、面积1.(2021·全国·高考真题)若圆锥的轴截面为等腰直角三角形,则它的底面积与侧面积之比是()A.√2:1B.2:1C.1:√2D.1:2【答案】C【分析】根据题意作图,由轴截面得出母线与底面圆半径的等量关系,再套公式求解.【详解】根据题意作图,设圆锥的底面圆半径为r,高为ℎ,母线长为l.若圆锥的轴截面为等腰直角三角形,则有2r cos45°=l,l=√2r.该圆锥的底面积与侧面积比值为πr 2πrl =2πr⋅√2r=√2.故选:C.2.(2021·全国·高考真题)已知圆锥的底面半径为√2,其侧面展开图为一个半圆,则该圆锥的母线长为()A.2B.2√2C.4D.【答案】B【分析】设圆锥的母线长为l,根据圆锥底面圆的周长等于扇形的弧长可求得l的值,即为所求.【详解】设圆锥的母线长为l,由于圆锥底面圆的周长等于扇形的弧长,则πl=2π×√2,解得l= 2√2.故选:B.3.(2021·全国·高考真题)正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为()A .20+12√3B .28√2C .563D 【答案】D 【分析】由四棱台的几何特征算出该几何体的高及上下底面面积,再由棱台的体积公式即可得解. 【详解】作出图形,连接该正四棱台上下底面的中心,如图,因为该四棱台上下底面边长分别为2,4,侧棱长为2, 所以该棱台的高ℎ=√22−(2√2−√2)2=√2, 下底面面积S 1=16,上底面面积S 2=4,所以该棱台的体积V =13ℎ(S 1+S 2+√S 1S 2)=13×√2×(16+4+√64)=283√2.故选:D.4.(2021·全国·高考真题)在正三棱柱ABC −A 1B 1C 1中,AB =AA 1=1,点P 满足BP ⃗⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗⃗ +μBB 1⃗⃗⃗⃗⃗⃗⃗⃗ ,其中λ∈[0,1],μ∈[0,1],则( ) A .当λ=1时,△AB 1P 的周长为定值 B .当μ=1时,三棱锥P −A 1BC 的体积为定值 C .当λ=12时,有且仅有一个点P ,使得A 1P ⊥BP D .当μ=12时,有且仅有一个点P ,使得A 1B ⊥平面AB 1P 【答案】BD 【分析】对于A ,由于等价向量关系,联系到一个三角形内,进而确定点的坐标;对于B ,将P 点的运动轨迹考虑到一个三角形内,确定路线,进而考虑体积是否为定值; 对于C ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数;对于D ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数.【详解】易知,点P 在矩形BCC 1B 1内部(含边界).对于A ,当λ=1时,BP ⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +μBB 1⃗⃗⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +μCC 1⃗⃗⃗⃗⃗⃗⃗ ,即此时P ∈线段1CC ,△AB 1P 周长不是定值,故A 错误;对于B ,当μ=1时,BP ⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ +BB 1⃗⃗⃗⃗⃗⃗⃗ =BB 1⃗⃗⃗⃗⃗⃗⃗ +λB 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,故此时P 点轨迹为线段11B C ,而B 1C 1//BC ,B 1C 1//平面A 1BC ,则有P 到平面A 1BC 的距离为定值,所以其体积为定值,故B 正确.对于C ,当λ=12时,BP ⃗⃗⃗⃗⃗ =12BC ⃗⃗⃗⃗⃗ +μBB 1⃗⃗⃗⃗⃗⃗⃗ ,取BC ,11B C 中点分别为Q ,H ,则BP ⃗⃗⃗⃗⃗ =BQ ⃗⃗⃗⃗⃗ +μQH ⃗⃗⃗⃗⃗⃗ ,所以P 点轨迹为线段QH ,不妨建系解决,建立空间直角坐标系如图,A 1(√32,0,1),P (0,0,μ),B (0,12,0),则A 1P ⃗⃗⃗⃗⃗⃗⃗ =(−√32,0,μ−1),BP ⃗⃗⃗⃗⃗ =(0,−12,μ),()110A P BP μμ⋅=-=,所以μ=0或μ=1.故H,Q 均满足,故C 错误;对于D ,当μ=12时,BP ⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ +12BB 1⃗⃗⃗⃗⃗⃗⃗ ,取1BB ,1CC 中点为M,N .BP ⃗⃗⃗⃗⃗ =BM ⃗⃗⃗⃗⃗⃗ +λMN ⃗⃗⃗⃗⃗⃗⃗ ,所以P 点轨迹为线段MN .设P (0,y 0,12),因为A (√32,0,0),所以AP ⃗⃗⃗⃗⃗ =(−√32,y 0,12),A 1B ⃗⃗⃗⃗⃗⃗⃗ =(−√32,12,−1),所以34+12y 0−12=0⇒y 0=−12,此时P 与N 重合,故D 正确.故选:BD . 【点睛】本题主要考查向量的等价替换,关键之处在于所求点的坐标放在三角形内.5.(2020·海南·高考真题)已知正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点,则三棱锥A -NMD 1的体积为____________ 【答案】13【分析】利用V A−NMD1=V D1−AMN计算即可.【详解】因为正方体ABCD-A1B1C1D1的棱长为2,M、N分别为BB1、AB的中点所以V A−NMD1=V D1−AMN=13×12×1×1×2=13故答案为:1 3【点睛】在求解三棱锥的体积时,要注意观察图形的特点,看把哪个当成顶点好计算一些. 6.(2021·全国·高考真题(文))如图,四棱锥P−ABCD的底面是矩形,PD⊥底面ABCD,M为BC的中点,且PB⊥AM.(1)证明:平面PAM⊥平面PBD;(2)若PD=DC=1,求四棱锥P−ABCD的体积.【答案】(1)证明见解析;(2)√23.【分析】(1)由PD⊥底面ABCD可得PD⊥AM,又PB⊥AM,由线面垂直的判定定理可得AM⊥平面PBD,再根据面面垂直的判定定理即可证出平面PAM⊥平面PBD;(2)由(1)可知,AM⊥BD,由平面知识可知,△DAB~△ABM,由相似比可求出AD,再根据四棱锥P−ABCD的体积公式即可求出.【详解】(1)因为PD ⊥底面ABCD ,AM ⊂平面ABCD , 所以PD ⊥AM ,又PB ⊥AM ,PB ∩PD =P , 所以AM ⊥平面PBD , 而AM ⊂平面PAM , 所以平面PAM ⊥平面PBD .(2)由(1)可知,AM ⊥平面PBD ,所以AM ⊥BD , 从而△DAB~△ABM ,设BM =x ,AD =2x ,则BMAB =ABAD ,即2x 2=1,解得x AD =√2. 因为PD ⊥底面ABCD ,故四棱锥P −ABCD 的体积为V =13×(1×√2)×1=√23.【点睛】本题第一问解题关键是找到平面PAM 或平面PBD 的垂线,结合题目条件PB ⊥AM ,所以垂线可以从PB,AM 中产生,稍加分析即可判断出AM ⊥平面PBD ,从而证出;第二问关键是底面矩形面积的计算,利用第一问的结论结合平面几何知识可得出△DAB~△ABM ,从而求出矩形的另一个边长,从而求得该四棱锥的体积. 二、平行、垂直的命题判定7.(2021·全国·高考真题)已知α,β表示平面,m ,n 表示直线,以下命题中正确的选项是( )A .假设m ⊥α,m ⊥n ,那么n //αB .假设m ⊂α,n ⊂β,α//β,那么m //nC .假设α//β,m ⊂α,那么m //βD .假设m ⊂α,n ⊂α,m //β,n //β,那么α//β 【答案】C 【分析】根据线面垂直的性质定理,可判断A ;根据面面平行的性质定理,可判断B 、C ;根据面面平行的判定定理,可判定D 【详解】选项A :假设m ⊥α,m ⊥n ,那么n //α或n 在α内,故选项A 错误;选项B :假设m ⊂α,n ⊂β,α//β,那么m //n 或m 与n 异面,故选项B 错误; 选项D :假设m ⊂α,n ⊂α,m //β,n //β,且m 、n 相交才能判定α//β,故选项C 错误;选项C :依照两平面平行的性质可知C 正确.故选:C8.(2021·全国·高考真题)设m,n为两条不同的直线,α,β为两个不同的平面,则下列结论正确的是()A.若m//n,n//α,则m//αB.若m//n,m//α,n//β,则α//βC.若α⊥β,m⊂α,n⊂β,则m⊥nD.若m⊥n,m⊥α,n⊥β,则α⊥β【答案】D【分析】根据线面的位置关系可判断A;举反例判断B、C;由面面垂直的判定定理可判断D,进而可得正确选项.【详解】对于A:若m//n,n//α,则m//α或m⊂α,故选项A不正确;B C为m,直线BC为对于B:如图平面ADD1A1为平面α,平面A1B1C1D1为平面β,直线11n,满足m//n,m//α,n//β,但α与β相交,故选项B不正确;对于C:如图在正方体ABCD−A1B1C1D1中,平面ADD1A1为平面α,平面A1B1C1D1为平面B C为n,满足α⊥β,m⊂α,n⊂β,则m//n,故选项C不正β,直线AD为m,直线11确;对于D:若m⊥n,m⊥α,可得n⊂α或n//α,若n⊂α,因为n⊥β,由面面垂直的判定定理可得α⊥β;若n//α,可过n作平面与α相交,则交线在平面α内,且交线与n平行,由n⊥β可得交线与β垂直,由面面垂直的判定定理可得α⊥β,故选项D正确;故选:D.9.(2020·山东·高考真题)已知正方体ABCD−A1B1C1D1(如图所示),则下列结论正确的是()A.BD1//A1A B.BD1//A1D C.BD1⊥A1C D.BD1⊥A1C1【答案】D【分析】根据异面直线的定义,垂直关系的转化,判断选项.【详解】BB与BD1相交,所以BD1与AA1异面,故A错误;A.AA1//BB1,1B.BD1与平面ADD1A1相交,且D1∉A1D,所以BD1与A1D异面,故B错误;C.四边形A BCD是矩形,不是菱形,所以对角线BD1与A1C不垂直,故C错误;11D.连结B1D1,B1D1⊥A1C1,BB1⊥A1C1,B1D1∩BB1=B1,所以A1C1⊥平面BB1D1,所以A1C1⊥BD1,故D正确.故选:D10.(2021·浙江·高考真题)如图已知正方体ABCD−A1B1C1D1,M,N分别是A1D,D1B 的中点,则()A.直线A1D与直线D1B垂直,直线MN//平面ABCDB.直线A1D与直线D1B平行,直线MN⊥平面BDD1B1C.直线A1D与直线D1B相交,直线MN//平面ABCDD.直线A1D与直线D1B异面,直线MN⊥平面BDD1B1【答案】A【分析】由正方体间的垂直、平行关系,可证MN//AB,A1D⊥平面ABD1,即可得出结论.【详解】连AD1,在正方体ABCD−A1B1C1D1中,M是A1D的中点,所以M为AD1中点,又N是D1B的中点,所以MN//AB,MN⊄平面ABCD,AB⊂平面ABCD,所以MN//平面ABCD.因为AB不垂直BD,所以MN不垂直BD则MN不垂直平面BDD1B1,所以选项B,D不正确;在正方体ABCD−A1B1C1D1中,AD1⊥A1D,AB⊥平面AA1D1D,所以AB⊥A1D,AD1∩AB=A,所以A1D⊥平面ABD1,D1B⊂平面ABD1,所以A1D⊥D1B,且直线A1D,D1B是异面直线,所以选项C错误,选项A正确.故选:A.【点睛】关键点点睛:熟练掌握正方体中的垂直、平行关系是解题的关键,如两条棱平行或垂直,同一个面对角线互相垂直,正方体的对角线与面的对角线是相交但不垂直或异面垂直关系. 11.(2021·全国·高考真题)如图,在正方体中,O为底面的中心,P为所在棱的中点,M,N为正方体的顶点.则满足MN⊥OP的是()A.B.C.D.【答案】BC【分析】根据线面垂直的判定定理可得BC的正误,平移直线MN构造所考虑的线线角后可判断AD 的正误.【详解】设正方体的棱长为2,对于A,如图(1)所示,连接AC,则MN//AC,故POC(或其补角)为异面直线OP,MN所成的角,在直角三角形OPC,OC=√2,CP=1,故tan∠POC=√2=√22,故MN⊥OP不成立,故A错误.对于B,如图(2)所示,取NT的中点为Q,连接PQ,OQ,则OQ⊥NT,PQ⊥MN,由正方体SBCM−NADT可得SN⊥平面ANDT,而OQ⊂平面ANDT,故SN⊥OQ,而SN∩MN=N,故OQ⊥平面SNTM,又MN⊂平面SNTM,OQ⊥MN,而OQ∩PQ=Q,所以MN⊥平面OPQ,而PO⊂平面OPQ,故MN⊥OP,故B正确.对于C,如图(3),连接BD,则BD//MN,由B的判断可得OP⊥BD,故OP⊥MN,故C正确.对于D,如图(4),取AD的中点Q,AB的中点K,连接AC,PQ,OQ,PK,OK,则AC//MN,PQ MN,因为DP=PC,故PQ//AC,故//所以∠QPO或其补角为异面直线PO,MN所成的角,AC=√2,OQ=√AO2+AQ2=√1+2=√3,因为正方体的棱长为2,故PQ=12PO=√PK2+OK2=√4+1=√5,QO2<PQ2+OP2,故∠QPO不是直角,故PO,MN不垂直,故D错误.故选:BC.12.(2021·全国·高考真题)如下图,在四棱锥S ABCD-中,底面ABCD是正方形,平面SAD⊥平面ABCD,SA=SD=2,3AB=.(1)求SA 与BC 所成角的余弦值; (2)求证:AB ⊥SD .【答案】(1)34;(2)证明见解析. 【分析】(1)由题意可得∠SAD 即为SA 与 BC 所成的角,根据余弦定理计算即可; (2)结合面面垂直的性质和线面垂直的性质即可证明. 【详解】【考查内容】异面直线所成的角,直线与平面垂直的判定和性质【解】(1)因为AD //BC ,因此∠SAD 即为SA 与BC 所成的角,在△SAD 中,SA =SD =2, 又在正方形ABCD 中3AD AB ==,因此cos ∠SAD =SA 2+AD 2−SD 22SA⋅AD=22+32−222×2×3=34,因此SA 与BC 所成角的余弦值是34.(2)因为平面SAD ⊥平面ABCD ,平面SAD ∩平面ABCD =AD ,在正方形ABCD 中,AB ⊥AD ,因此AB ⊥平面SAD ,又因为SD ⊂平面SAD ,因此AB ⊥SD . 三、球体-能力拓展13.(2020·天津·高考真题)若棱长为2√3的正方体的顶点都在同一球面上,则该球的表面积为( ) A .12π B .24π C .36π D .144π【答案】C 【分析】求出正方体的体对角线的一半,即为球的半径,利用球的表面积公式,即可得解. 【详解】这个球是正方体的外接球,其半径等于正方体的体对角线的一半, 即R =√(2√3)2+(2√3)2+(2√3)22=3,所以,这个球的表面积为S =4πR 2=4π×32=36π. 故选:C. 【点睛】本题考查正方体的外接球的表面积的求法,求出外接球的半径是本题的解题关键,属于基础题.求多面体的外接球的面积和体积问题,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心.14.(2021·天津·高考真题)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为32π3,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为()A.3πB.4πC.9πD.12π【答案】B【分析】作出图形,计算球体的半径,可计算得出两圆锥的高,利用三角形相似计算出圆锥的底面圆半径,再利用锥体体积公式可求得结果.【详解】如下图所示,设两个圆锥的底面圆圆心为点D,设圆锥AD和圆锥BD的高之比为3:1,即AD=3BD,设球的半径为R,则4πR33=32π3,可得R=2,所以,AB=AD+BD=4BD=4,所以,BD=1,AD=3,∵CD⊥AB,则∠CAD+∠ACD=∠BCD+∠ACD=90∘,所以,CAD BCD∠=∠,又因为∠ADC=∠BDC,所以,△ACD∽△CBD,所以,AD CDCD BD=,∴CD=√AD⋅BD=√3,因此,这两个圆锥的体积之和为13π×CD2⋅(AD+BD)=13π×3×4=4π.故选:B.15.(2020·全国·高考真题(理))已知△ABC是面积为9√34的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()A.√3B.32C.1D.√32【答案】C【分析】根据球O的表面积和△ABC的面积可求得球O的半径R和△ABC外接圆半径r,由球的性质可知所求距离d=√R2−r2.【详解】设球O的半径为R,则4πR2=16π,解得:R=2.设△ABC外接圆半径为r,边长为a,∵△ABC是面积为9√34的等边三角形,∴12a2×√32=9√34,解得:a=3,∴r=23×√a2−a24=23×√9−94=√3,∴球心O到平面ABC的距离d=√R2−r2=√4−3=1.故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面. 16.(2021·全国·高考真题(理))已如A,B,C是半径为1的球O的球面上的三个点,且AC⊥BC,AC=BC=1,则三棱锥O−ABC的体积为()A.√212B.√312C.√24D.√34【答案】A【分析】由题可得△ABC为等腰直角三角形,得出△ABC外接圆的半径,则可求得O到平面ABC的距离,进而求得体积.【详解】∵AC⊥BC,AC=BC=1,∴△ABC为等腰直角三角形,∴AB=√2,则△ABC外接圆的半径为√22,又球的半径为1,设O到平面ABC的距离为d,则d=所以V O−ABC=13S△ABC⋅d=13×12×1×1×√22=√212.故选:A.【点睛】关键点睛:本题考查球内几何体问题,解题的关键是正确利用截面圆半径、球半径、球心到截面距离的勾股关系求解.17.(2020·全国·高考真题(理))已知,,A B C为球O的球面上的三个点,⊙O1为△ABC的外接圆,若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A.64πB.48πC.36πD.32π【答案】A【分析】由已知可得等边△ABC的外接圆半径,进而求出其边长,得出OO1的值,根据球的截面性质,求出球的半径,即可得出结论.【详解】设圆O1半径为r,球的半径为R,依题意,得πr2=4π,∴r=2,∵△ABC为等边三角形,由正弦定理可得AB=2r sin60°=2√3,∴OO1=AB=2√3,根据球的截面性质OO1⊥平面ABC,∴OO1⊥O1A,R=OA=√OO12+O1A2=√OO12+r2=4,∴球O的表面积S=4πR2=64π.故选:A【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题. 18.(2020·海南·高考真题)已知直四棱柱ABCD–A1B1C1D1的棱长均为2,∠BAD =60°.以D 1为球心,√5为半径的球面与侧面BCC 1B 1的交线长为________. 【答案】√22π.【分析】根据已知条件易得D 1E =√3,D 1E ⊥侧面B 1C 1CB ,可得侧面B 1C 1CB 与球面的交线上的点到E 的距离为√2,可得侧面B 1C 1CB 与球面的交线是扇形EFG 的弧FG ⏜,再根据弧长公式可求得结果. 【详解】 如图:取11B C 的中点为E ,1BB 的中点为F ,1CC 的中点为G ,因为∠BAD =60°,直四棱柱ABCD −A 1B 1C 1D 1的棱长均为2,所以△D 1B 1C 1为等边三角形,所以D 1E =√3,D 1E ⊥B 1C 1,又四棱柱ABCD −A 1B 1C 1D 1为直四棱柱,所以BB 1⊥平面A 1B 1C 1D 1,所以111BB B C , 因为BB 1∩B 1C 1=B 1,所以D 1E ⊥侧面B 1C 1CB , 设P 为侧面B 1C 1CB 与球面的交线上的点,则D 1E ⊥EP ,因为球的半径为√5,D 1E =√3,所以|EP|=√|D 1P|2−|D 1E|2=√5−3=√2, 所以侧面B 1C 1CB 与球面的交线上的点到E 的距离为√2,因为|EF|=|EG|=√2,所以侧面B 1C 1CB 与球面的交线是扇形EFG 的弧FG ⏜, 因为∠B 1EF =∠C 1EG =π4,所以∠FEG =π2, 所以根据弧长公式可得FG⏜=π2×√2=√22π. 故答案为:√22π.【点睛】本题考查了直棱柱的结构特征,考查了直线与平面垂直的判定,考查了立体几何中的轨迹问题,考查了扇形中的弧长公式,属于中档题.四、立体几何的数学应用19.(2021·全国·高考真题)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O,半径r为6400km 的球,其上点A的纬度是指OA与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为S=2πr2(1−cosα)(单位:km2),则S占地球表面积的百分比约为()A.26%B.34%C.42%D.50%【答案】C【分析】由题意结合所给的表面积公式和球的表面积公式整理计算即可求得最终结果.【详解】由题意可得,S占地球表面积的百分比约为:2πr2(1−cosα)4πr2=1−cosα2=1−64006400+360002≈0.42=42%.故选:C.20.(2021·北京·高考真题)某一时间段内,从天空降落到地面上的雨水,未经蒸发、渗漏、流失而在水平面上积聚的深度,称为这个时段的降雨量(单位:mm).24h降雨量的等级划分如下:在综合实践活动中,某小组自制了一个底面直径为200 mm,高为300 mm的圆锥形雨量器.若一次降雨过程中,该雨量器收集的24h的雨水高度是150 mm(如图所示),则这24h 降雨量的等级是A.小雨B.中雨C.大雨D.暴雨【答案】B【分析】计算出圆锥体积,除以圆面的面积即可得降雨量,即可得解.【详解】由题意,一个半径为2002=100(mm)的圆面内的降雨充满一个底面半径为2002×150300=50(mm),高为150(mm)的圆锥,所以积水厚度d=13π×502×150π×1002=12.5(mm),属于中雨.故选:B.21.(2020·海南·高考真题)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为()A.20°B.40°C.50°D.90°【答案】B【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图,根据面面平行的性质定理和线面垂直的定义判定有关截线的关系,根据点A处的纬度,计算出晷针与点A处的水平面所成角.【详解】画出截面图如下图所示,其中CD是赤道所在平面的截线;l是点A处的水平面的截线,依题意可知OA⊥l;AB是晷针所在直线.m是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知m//CD、根据线面垂直的定义可得AB⊥m..由于∠AOC=40°,m//CD,所以∠OAG=∠AOC=40°,由于∠OAG+∠GAE=∠BAE+∠GAE=90°,所以∠BAE=∠OAG=40°,也即晷针与点A处的水平面所成角为∠BAE=40°.故选:B【点睛】本小题主要考查中国古代数学文化,考查球体有关计算,涉及平面平行,线面垂直的性质,属于中档题.22.(2020·全国·高考真题(理))埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A .√5−14B C .√5+14D .√5+12【答案】C 【分析】设CD =a,PE =b ,利用PO 2=12CD ⋅PE 得到关于a,b 的方程,解方程即可得到答案. 【详解】如图,设CD =a,PE =b ,则PO =√PE 2−OE 2=√b 2−a 42,由题意PO 2=12ab ,即b 2−a 24=12ab ,化简得4(b a )2−2⋅ba −1=0,解得ba=1+√54(负值舍去).故选:C.【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题. 23.(2020·江苏·高考真题)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半径为0.5 cm ,则此六角螺帽毛坯的体积是____cm.【答案】2π【分析】先求正六棱柱体积,再求圆柱体积,相减得结果. 【详解】正六棱柱体积为6×√34×22×2=12√3圆柱体积为π(12)2⋅2=π2所求几何体体积为2π故答案为: 2π【点睛】本题考查正六棱柱体积、圆柱体积,考查基本分析求解能力,属基础题.五、立体几何与空间向量的综合应用24.(2021·全国·高考真题(理))在正方体ABCD −A 1B 1C 1D 1中,P 为B 1D 1的中点,则直线PB 与AD 1所成的角为( ) A .π2 B .π3 C .π4 D .π6【答案】D 【分析】平移直线AD 1至1BC ,将直线PB 与AD 1所成的角转化为PB 与1BC 所成的角,解三角形即可. 【详解】如图,连接BC 1,PC 1,PB ,因为AD 1∥1BC , 所以∠PBC 1或其补角为直线PB 与AD 1所成的角,因为BB 1⊥平面A 1B 1C 1D 1,所以BB 1⊥PC 1,又PC 1⊥B 1D 1,1111BB B D B ⋂=, 所以PC 1⊥平面PBB 1,所以PC 1⊥PB ,设正方体棱长为2,则BC 1=2√2,PC 1=12D 1B 1=√2, sin ∠PBC 1=PC 1BC 1=12,所以∠PBC 1=π6.故选:D25.(2021·湖南·高考真题)如图,四棱锥P −ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB//平面ACE ;(2)设PA =1,AD =√3,直线PB 与平面ABCD 所成的角为45°,求四棱锥P −ABCD 的体积.【答案】(1)证明见解析;(2)√33.【分析】(1) 连接BD交AC于点O,连接OE,由三角形的中位线定理可知PB//OE,结合线面平行的判定定理可证明PB//平面AEC.(2)由题意可知∠PBA=45∘,再运用锥体体积公式可求得四棱锥的体积.【详解】(1)连接BD交AC于点O,连接OE. 在△PBD中,因为PE=DE,BO=DO,所以PB//OE,因为OE⊂平面ACE,PB⊄平面ACE,则PB//平面AEC.(2)因为PA⊥平面ABCD,所以∠PBA就是直线PB与平面ABCD所成的角,所以∠PBA=45∘,又PA=1,AD=√3,所以PA=1=AB,所以四棱锥P−ABCD的体积V P−ABCD=13×PA×AB×AD=13×1×1×√3=√33,所以四棱锥P−ABCD的体积为√33.26.(2021·全国·高考真题)在四棱锥Q ABCD中,底面ABCD是正方形,若AD=2,QD=QA=√5,QC=3.(1)证明:平面QAD⊥平面ABCD;(2)求二面角B−QD−A的平面角的余弦值.【答案】(1)证明见解析;(2)23.【分析】(1)取AD的中点为O,连接QO,CO,可证QO⊥平面ABCD,从而得到面QAD⊥面ABCD.。
高考文科立体几何题汇总(含答案)

19.(本小题满分12分)2008 如图,在四棱锥P ABCD -中,平面PAD ^平面ABCD ,AB DC ∥,P AD △是等边三角形,已知28BD AD ==,245AB DC ==.(Ⅰ)设M 是PC 上的一点,证明:平面MBD ^平面PAD ; (Ⅱ)求四棱锥P ABCD -的体积.的体积.18.(本小题满分12分)分) 2009 如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB//CD ,AB=4, BC=CD=2, AA 1=2, E 、E 1分别是棱AD 、AA 1的中点. (1) 设F 是棱AB 的中点,证明:直线EE 1//平面FCC 1; (2) 证明:平面D 1AC ⊥平面BB 1C 1C. 2010 (20)(本小题满分12分)分)在如图所示的几何体中,四边形ABCD 是正方形,BCD A MA 平面^,PD ∥MA ,E G F 、、分别为MB 、PC PB 、的中点,且2MA PD AD ==.(Ⅰ)求证:平面PDC EFG 平面^; (Ⅱ)求三棱锥的体积之比与四棱锥ABCD P MAB P --.A B C M P D EA B C F E 1 A 1 B 1 C 1 D 1 D 2011 19.(本小题满分12分)分)如图,在四棱台1111ABCD A B C D -中,1D D ^平面ABCD ,底面ABCD 是平行四边形,AB=2AD ,11AD=A B ,BAD=Ð60° (Ⅰ)证明:1AA BD ^;(Ⅱ)证明:11CC A BD ∥平面.2012 (19) ( (本小题满分本小题满分12分)如图,几何体E ABCD -是四棱锥,△ABD 为正三角形,,CB CD EC BD =^. (Ⅰ)求证:BE DE =;(Ⅱ)若∠120BCD =°,M 为线段AE 的中点,的中点, 求证:DM ∥平面BEC .53238545545523163 ACM PDOEA B C F 1 1 C 1 D 1 D F 1 EC 1 1 C 1 D 1 D 所以CC 1⊥AC,因为底面ABCD 为等腰梯形,AB=4, BC=2, F 是棱AB 的中点,所以CF=CB=BF ,△BCF 为正三角形,为正三角形, 60BCF Ð=°,△ACF 为等腰三角形,且30ACF Ð=°所以AC ⊥BC, 又因为BC 与CC 1都在平面BB 1C 1C 内且交于点C, 所以AC ⊥平面BB 1C 1C,而AC Ì平面D 1AC, 所以平面D 1AC ⊥平面BB 1C 1C. 2010 (20)本小题主要考查空间中的线面关系,考查线面垂直、)本小题主要考查空间中的线面关系,考查线面垂直、面面垂直的判定及几面面垂直的判定及几何体体积的计算,考查试图能力和逻辑思维能力。
(版)高考试题汇编文科数学立体几何

〔2021全国1文〕16. ACB 90,P为平面ABC外一点,PC 2,点P到ACB两边AC,BC的距离均为3,那么P到平面ABC的距离为 .答案:2解答:如图,过P点做平面ABC的垂线段,垂足为O,那么PO的长度即为所求,再做PE CB,PF CA,由线面的垂直判定及性质定理可得出OE CB,OF CA,在RtPCF中,由PC 2,PF 3,可得出CF 1,同理在RtPCE中可得出CE 1,结合 ACB 90,OE CB,OF CA可得出OE OF 1,OC2,PO PC2OC2 2〔2021全国1文〕19.如图直四棱柱ABCD A1B1C1D1的底面是菱形,AA14,AB 2,BAD60o,E,M,N分别是BC,BB1,A1D的中点.1〕证明:MN//平面C1DE2〕求点C到平面C1DE的距离.答案:见解析解答:〔1〕连结AC,BD相交于点,再过点M作MH//CE交BC于点,再连结GH,NG.1111111E,M,N分别是BC,BB1,A1D的中点.于是可得到NG//C1D,GH//DE,于是得到平面NGHM//平面C1DE,由QMN平面NGHM,于是得到MN//平面C1DE1/19〔2〕QE为BC中点,ABCD为菱形且BAD60oDE BC,又QABCD A1B1C1D1为直四棱柱,DECC1DEC1E,又QAB2,AA14,DE3,C1E17,设点C到平面C1DE的距离为h 由V CC1DE V C1DCE得11317113432h1 432解得h1717所以点C 417到平面C1DE的距离为17〔2021全国2文〕7.设,为两个平面,那么//的充要条件是()A.内有无数条直线与平行B.内有两条相交直线与平行C.,平行于同一条直线D.,垂直于同一平面答案:B解析:根据面面平行的判定定理易得答案.〔2021全国2文〕16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体〞〔图1〕.半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体表达了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的外表上,且此正方体的棱长为 1.那么该半正多面体共有个面,其棱长为.(此题第一空2分,第二空3分.)2/19答案: 262 1解析:由图2 结合空间想象即可得到该正多面体有26个面;将该半正多面体补成正方体后,根据对称性列方程求解 .〔2021全国2文〕17.如图,长方体ABCDA 1B 1C 1D 1的底面ABCD是正方形,点E 在棱AA 1上,BE ⊥EC 1.〔1 〕证明:BE 平面EB 1C1〔2 〕假设AEAE 1,AB3,求四棱锥EBB 1C 1C 的体积.答案: 看解析 看解析解答:〔1〕证明:因为B 1C 1C 面A 1B 1BA ,BE面A 1B 1BA∴B 1C 1⊥BE 又C 1EB 1C 1 C 1,∴BE平面EB 1C 1;〔2〕设AA2a 那么BE2922222a ,C 1E18+a ,C 1B94a1222∴a,∴11 因为C 1B=BEC 1E3V EBB 1C 1CS BB 1C 1Ch363=18333/19(版)高考试题汇编文科数学立体几何〔2021全国3文〕8.如图,点N为正方形ABCD的中心,ECD为正三角形,平面ECD平面ABCD,M是线段ED的中点,那么〔〕A.BM EN,且直线B.BM EN,且直线C.BM EN,且直线D.BM EN,且直线【答案】B【解析】分析】BM,ENBM,ENBM,ENBM,EN是相交直线是相交直线是异面直线是异面直线利用垂直关系,再结合勾股定理进而解决问题.【详解】∵BDE ,N为BD中点M为DE中点,BM,EN共面相交,选项C DCD于O,,为错.作EO连接ON,过M作MF OD于F.连BF,Q平面CDE平面ABCD.EO CD,EO平面CDE,EO平面ABCD,MF平面ABCE,【MFB与EON均为直角三角形.设正方形边长为2,易知EO3,0N1EN2,MF3,BF2295BM3247.24244BM EN,应选B.【点睛】此题为立体几何中等问题,考查垂直关系,线面、线线位置关系.4/19〔2021全国3文〕16.学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD A1B1C1D1挖去四棱锥O EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6cm,AA1=4cm,3D打印所用原料密度为/cm3,不考虑打印损耗,制作该模型所需原料的质量为___________g.【答案】118.8【解析】【分析】根据题意可知模型的体积为四棱锥体积与四棱锥体积之差进而求得模型的体积,再求出模型的质量.【详解】由题意得,四棱锥O-EFGH的底面积为46412312cm2,其高为点O到底面BB1C1C的距12离为3cm,那么此四棱锥的体积为V112312cm2.又长方体ABCD A1B1C1D1的体积为3V2466144cm2,所以该模型体积为V V2V114412132cm2,其质量为132.【点睛】此题牵涉到的是3D打印新时代背景下的几何体质量,忽略问题易致误,理解题中信息联系几何体的体积和质量关系,从而利用公式求解.〔2021全国3文〕19.图1是由矩形ADEB,RtABC和菱形BFGC组成的一个平面图形,其中AB 1,BE BF 2,FBC60o,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.〔1〕证明图2中的A,C,G,D四点共面,且平面ABC平面BCGE;〔2〕求图2中的四边形ACGD的面积.【答案】(1)见详解;(2)4.5/19【解析】【分析】(1)因为折纸和粘合不改变矩形ABED ,RtVABC 和菱形BFGC 内部的夹角,所以 AD//BE ,BF//CG 依然成立,又因E 和F 粘在一起,所以得证.因为AB 是平面BCGE 垂线,所以易证.(2) 欲求四边形ACGD 的面积,需求出CG 所对应的高,然后乘以CG 即可。
专题04 立体几何(文)(原卷版)-三年(2022–2024)高考数学真题分类汇编(全国通用)

专题04立体几何(文)考点三年考情(2022-2024)命题趋势考点1:三视图2022年浙江卷2022年全国甲卷(理)2023年全国乙卷(理)从近三年高考命题来看,本节是高考的一个重点,立体几何是高考的必考内容,重点关注以下几个方面:(1)掌握基本空间图形及其简单组合体的概念和基本特征,能够解决简单的实际问题;(2)多面体和球体的相关计算问题是近三年考查的重点;(3)运用图形的概念描述图形的基本关系和基本结果,突出考查直观想象和逻辑推理.考点2:空间几何体表面积、体积、侧面积2022年全国I卷2024年天津卷2022年天津卷2024年全国Ⅰ卷考点3:空间直线、平面位置关系的判断2024年天津卷2024年全国甲卷(理)考点4:线线角、线面角、二面角2022年全国I卷2022年浙江卷2024年全国Ⅱ卷考点5:外接球、内切球问题2023年全国乙卷(文)2022年全国II卷考点6:立体几何中的范围与最值问题及定值问题2023年全国甲卷(文)2023年全国Ⅰ卷2022年全国乙卷(理)2022年全国I卷考点7:锥体的体积问题2023年全国甲卷(文)2023年天津卷2022年全国乙卷(文)2022年全国甲卷(文)2023年全国乙卷(文)考点8:距离及几何体的高问题2024年北京卷2024年全国甲卷(文)2023年全国甲卷(文)考点1:三视图1.(2022年新高考浙江数学高考真题)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:3cm)是()A.22πB.8πC.22π3D.16π32.(2022年高考全国甲卷数学(理)真题)如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为()A.8B.12C.16D.203.(2023年高考全国乙卷数学(理)真题)如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A .24B .26C .28D .30考点2:空间几何体表面积、体积、侧面积4.(2022年新高考全国I 卷数学真题)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m .时,相应水面的面积为21400km .;水位为海拔1575m .时,相应水面的面积为21800km .,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m .7 2.65≈)()A .931.010m ⨯B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯5.(2024年天津高考数学真题)一个五面体ABC DEF -.已知AD BE CF ∥∥,且两两之间距离为1.并已知123AD BE CF ===,,.则该五面体的体积为()A 36B .33142+C .32D .33142-6.(2022年新高考天津数学高考真题)如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为120︒,腰为3的等腰三角形,则该几何体的体积为()A .23B .24C .26D .277.(2024年新课标全国Ⅰ3则圆锥的体积为()A .3πB .33πC .3πD .93π考点3:空间直线、平面位置关系的判断8.(2024年天津高考数学真题)若,m n 为两条不同的直线,α为一个平面,则下列结论中正确的是()A .若//m α,//n α,则m n ⊥B .若//,//m n αα,则//m n C .若//,αα⊥m n ,则m n⊥D .若//,αα⊥m n ,则m 与n 相交9.(2024年高考全国甲卷数学(理)真题)设αβ、为两个平面,m n 、为两条直线,且m αβ= .下述四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则n α⊥或n β⊥③若//n α且//n β,则//m n ④若n 与α,β所成的角相等,则m n⊥其中所有真命题的编号是()A .①③B .②④C .①②③D .①③④考点4:线线角、线面角、二面角10.(多选题)(2022年新高考全国I 卷数学真题)已知正方体1111ABCD A B C D -,则()A .直线1BC 与1DA 所成的角为90︒B .直线1BC 与1CA 所成的角为90︒C .直线1BC 与平面11BBD D 所成的角为45︒D .直线1BC 与平面ABCD 所成的角为45︒11.(2022年新高考浙江数学高考真题)如图,已知正三棱柱1111,ABC A B C AC AA -=,E ,F 分别是棱11,BC A C 上的点.记EF 与1AA 所成的角为α,EF 与平面ABC 所成的角为β,二面角F BC A --的平面角为γ,则()A .αβγ≤≤B .βαγ≤≤C .βγα≤≤D .αγβ≤≤12.(2024年新课标全国Ⅱ卷数学真题)已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A与平面ABC 所成角的正切值为()A .12B .1C .2D .3考点5:外接球、内切球问题13.(2023年高考全国乙卷数学(文)真题)已知点,,,S A B C 均在半径为2的球面上,ABC 是边长为3的等边三角形,SA ⊥平面ABC ,则SA =.14.(2022年新高考全国II 卷数学真题)已知正三棱台的高为1,上、下底面边长分别为3343点都在同一球面上,则该球的表面积为()A .100πB .128πC .144πD .192π考点6:立体几何中的范围与最值问题及定值问题15.(2023年高考全国甲卷数学(文)真题)在正方体1111ABCD A B C D -中,4,AB O =为1AC 的中点,若该正方体的棱与球O 的球面有公共点,则球O 的半径的取值范围是.16.(多选题)(2023年新课标全国Ⅰ卷数学真题)下列物体中,能够被整体放入棱长为1(单位:m )的正方体容器(容器壁厚度忽略不计)内的有()A .直径为0.99m 的球体B .所有棱长均为1.4m 的四面体C .底面直径为0.01m ,高为1.8m 的圆柱体D .底面直径为1.2m ,高为0.01m 的圆柱体17.(2022年高考全国乙卷数学(理)真题)已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为()A .13B .12C 33D 2218.(2022年新高考全国I 卷数学真题)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且333l ≤≤)A .8118,4⎡⎤⎢⎥⎣⎦B .2781,44⎡⎤⎢⎥⎣⎦C .2764,43⎡⎤⎢⎥⎣⎦D .[18,27]考点7:锥体的体积问题19.(2023年高考全国甲卷数学(文)真题)在三棱锥-P ABC 中,ABC 是边长为2的等边三角形,2,6PA PB PC ===)A .1B 3C .2D .320.(2023年天津高考数学真题)在三棱锥-P ABC 中,点M,N 分别在棱PC,PB 上,且13PM PC =,23PN PB =,则三棱锥P AMN -和三棱锥-P ABC 的体积之比为()A .19B .29C .13D .4921.(2022年高考全国乙卷数学(文)真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求三棱锥F ABC -的体积.22.(2022年高考全国甲卷数学(文)真题)小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD 是边长为8(单位:cm )的正方形,,,,EAB FBC GCD HDA 均为正三角形,且它们所在的平面都与平面ABCD 垂直.(1)证明://EF 平面ABCD ;(2)求该包装盒的容积(不计包装盒材料的厚度).23.(2023年高考全国乙卷数学(文)真题)如图,在三棱锥-P ABC 中,AB BC ⊥,2AB =,22BC =6PB PC ==,,BP AP BC 的中点分别为,,D E O ,点F 在AC 上,BF AO ⊥.(1)求证:EF //平面ADO ;(2)若120POF ∠=︒,求三棱锥-P ABC 的体积.考点8:距离及几何体的高问题24.(2024年北京高考数学真题)如图,在四棱锥P ABCD -中,底面ABCD 是边长为4的正方形,4PA PB ==,22PC PD ==).A .1B .2C 2D 325.(2024年高考全国甲卷数学(文)真题)如图,//,//AB CD CD EF ,2AB DE EF CF ====,104,CD AD BC ===AE 3=M 为CD 的中点.(1)证明://EM 平面BCF ;(2)求点M 到ADE 的距离.26.(2023年高考全国甲卷数学(文)真题)如图,在三棱柱111ABC A B C -中,1A C ⊥平面,90ABC ACB ∠=︒.(1)证明:平面11ACC A ⊥平面11BB C C ;(2)设11,2AB A B AA ==,求四棱锥111A BB C C -的高.。
高考文科数学总复习——真题汇编之立体几何含参考答案

高考文科数学总复习——真题汇编之立体几何(含参考答案)一、选择题1.【2018全国一卷5】已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A .122πB .12πC .82πD .10π2.【2018全国一卷9】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .172B .52C .3D .23.【2018全国一卷10】在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为 A .8B .62C .82D .834.【2018全国二卷9】在正方体中,为棱的中点,则异面直线与所成角的正切值为 A .B .C .D .5.【2018全国三卷3】中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是1111ABCD A B C D -E 1CC AE CD 23576.【2018全国三卷12】设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A .B .C .D .7.【2018北京卷6】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A.1B.2C.3D.4第7题图 第8题图8.【2018浙江卷3】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是 A .2B .4C .6D .8A B C D ,,,ABC△D ABC俯视图正视图22119.【2018浙江卷8】已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则 A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ110.【2018上海卷15】《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA ₁是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以AA ₁为底面矩形的一边,则这样的阳马的个数是( ) (A )4 (B ) 8(C )12 (D )16二、填空题1.【2018全国二卷16】已知圆锥的顶点为,母线,互相垂直,与圆锥底面所成角为,若的面积为,则该圆锥的体积为__________.2.【2018天津卷11】如图,已知正方体ABCD –A 1B 1C 1D 1的棱长为1,则四棱锥A 1–BB 1D 1D 的体积为__________.3.【2018江苏卷10】如图所示,正方体的棱长为2,以其所有面的中心为顶点S SA SB SA 30 SAB △8的多面体的体积为 .三、解答题1.【2018全国一卷18】如图,在平行四边形ABCM 中,3AB AC ==,90ACM =︒∠,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.2.【2018全国二卷19】如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且,求点到平面的距离.P ABC-AB BC ==4PA PB PC AC ====O AC PO ⊥ABC M BC 2MC MB =CPOM3.【2018全国三卷19】如图,矩形所在平面与半圆弧所在平面垂直,是上异于,的点. (1)证明:平面平面;(2)在线段上是否存在点,使得平面?说明理由.4.【2018北京卷18】如图,在四棱锥P −ABCD 中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,E ,F 分别为AD ,PB 的中点.(Ⅰ)求证:PE ⊥BC ;(Ⅱ)求证:平面PAB ⊥平面PCD ; (Ⅲ)求证:EF ∥平面PCD .5.【2018天津卷17】如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD=BAD =90°.(Ⅰ)求证:AD ⊥BC ;(Ⅱ)求异面直线BC 与MD 所成角的余弦值; (Ⅲ)求直线CD 与平面ABD 所成角的正弦值.ABCD CD M CD C D AMD ⊥BMC AM P MC ∥PBD6.【2018江苏卷15】在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥.求证:(1)AB ∥平面11A B C ; (2)平面11ABB A ⊥平面1A BC .7.【2018江苏卷22(附加题)】如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值; (2)求直线CC 1与平面AQC 1所成角的正弦值.8.【2018浙江卷19】如图,已知多面体ABCA1B1C1,A1A,B 1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C 1C=1,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.9.【2018上海卷17】已知圆锥的顶点为P,底面圆心为O,半径为2(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图,求异面直线PM与OB所成的角的大小.参考答案一、选择题1.B2.B3.C4.C5.A6.B7.C8.C9.D 10.D 二、填空题1.π82.31 3.43三、解答题1.解:(1)由已知可得,BAC ∠=90°,BA AC ⊥.又BA ⊥AD ,所以AB ⊥平面ACD . 又AB ⊂平面ABC , 所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =32. 又23BP DQ DA ==,所以22BP =. 作QE ⊥AC ,垂足为E ,则QE =13DC .由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q ABP -的体积为1111322sin 451332Q ABP ABP V QE S -=⨯⨯=⨯⨯⨯⨯︒=△.2解:(1)因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =.连结OB .因为AB =BC =,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB ==2.2322AC 12AC由知,OP ⊥OB . 由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)作CH ⊥OM ,垂足为H .又由(1)可得OP ⊥CH ,所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离. 由题设可知OC ==2,CM ==,∠ACB =45°. 所以OM =,CH ==.所以点C 到平面POM 的距离为.3.解:(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC 平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM . 因为M 为上异于C ,D 的点,且DC 为直径,所以DM ⊥CM .又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM 平面AMD ,故平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD .证明如下:连结AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点. 连结OP ,因为P 为AM 中点,所以MC ∥OP .MC 平面PBD ,OP 平面PBD ,所以MC ∥平面PBD .222OP OB PB +=12AC 23BC 42325sin OC MC ACB OM ⋅⋅∠4545⊂CD ⊂⊄⊂4.解:(Ⅰ)∵PA PD=,且E为AD的中点,∴PE AD⊥.∵底面ABCD为矩形,∴BC AD∥,∴PE BC⊥.(Ⅱ)∵底面ABCD为矩形,∴AB AD⊥.∵平面PAD⊥平面ABCD,∴AB⊥平面PAD.∴AB PD⊥.又PA PD⊥,∴PD⊥平面PAB,∴平面PAB⊥平面PCD.(Ⅲ)如图,取PC中点G,连接,FG GD.∵,F G分别为PB和PC的中点,∴FG BC∥,且12FG BC=.∵四边形ABCD为矩形,且E为AD的中点,∴1,2ED BC DE BC=∥,∴ED FG∥,且ED FG=,∴四边形EFGD为平行四边形,∴EF GD∥.又EF⊄平面PCD,GD⊂平面PCD,∴EF∥平面PCD.5.解:(Ⅰ)证明:由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,可得AD⊥平面ABC,故AD⊥BC.(Ⅱ)解:取棱AC的中点N,连接MN,ND.又因为M为棱AB的中点,故MN ∥BC.所以∠DMN(或其补角)为异面直线BC与MD所成的角.在Rt△DAM中,AM=1,故DMAD⊥平面ABC,故AD⊥AC.在Rt△DAN中,AN=1,故DN在等腰三角形DMN中,MN=1,可得12cosMNDMNDM∠==.所以,异面直线BC与MD(Ⅲ)解:连接CM.因为△ABC为等边三角形,M为边AB的中点,故CM⊥AB,CM又因为平面ABC⊥平面ABD,而CM⊂平面ABC,故CM⊥平面ABD.所以,∠CDM为直线CD与平面ABD所成的角.在Rt△CAD中,CD=4.在Rt△CMD中,sin CMCDMCD∠==.所以,直线CD与平面ABD.6.证明:(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1.因为AB ⊄平面A 1B 1C ,A 1B 1⊂平面A 1B 1C , 所以AB ∥平面A 1B 1C .(2)在平行六面体ABCD -A 1B 1C 1D 1中,四边形ABB 1A 1为平行四边形.又因为AA 1=AB ,所以四边形ABB 1A 1为菱形, 因此AB 1⊥A 1B .又因为AB 1⊥B 1C 1,BC ∥B 1C 1, 所以AB 1⊥BC .又因为A 1B ∩BC =B ,A 1B ⊂平面A 1BC ,BC ⊂平面A 1BC , 所以AB 1⊥平面A 1BC . 因为AB 1⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面A 1BC .7.解:如图,在正三棱柱ABC −A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以1,{},OB OC OO 为基底,建立空间直角坐标系O −xyz .因为AB =AA 1=2,所以1110,1,0,3,0,0,0,1,0,0,1,()()()()(2,3,0,2,0,1,2)()A B C A B C --.(1)因为P 为A 1B 1的中点,所以1,2)2P -,从而131(,,2)(0,2,22),BP AC ==--,故111|||cos ,|||||5BP AC BP AC BP AC ⋅==⋅.因此,异面直线BP 与AC 1所成角的余弦值为.(2)因为Q 为BC 的中点,所以1,0)2Q ,因此33(,0)2AQ =,11(0,2,2),(0,0,2)AC CC ==.设n =(x ,y ,z )为平面AQC 1的一个法向量,则10,0,AQ AC ⎧⎪⎨⎪⎩⋅=⋅=n n 即30,2220.x y y z +=⎪+=⎩不妨取1,1)=-n ,设直线CC 1与平面AQC 1所成角为θ,则111||sin|cos|,|||CCCCCC|θ==⋅⋅==nnn,所以直线CC1与平面AQC1所成角的正弦值为.8.解:方法一:(Ⅰ)由11112,4,2,,AB AA BB AA AB BB AB===⊥⊥得111AB A B==,所以2221111A B AB AA+=.故111AB A B⊥.由2BC=,112,1,BB CC==11,BB BCCC BC⊥⊥得11B C=,由2,120AB BC ABC==∠=︒得AC=由1CC AC⊥,得1AC=2221111AB B C AC+=,故111AB B C⊥.因此1AB⊥平面111A B C.(Ⅱ)如图,过点1C作111C D A B⊥,交直线11A B于点D,连结AD.由1AB ⊥平面111A B C 得平面111A B C ⊥平面1ABB , 由111C D A B ⊥得1C D ⊥平面1ABB , 所以1C AD ∠是1AC 与平面1ABB 所成的角.由111111BC A B AC ===111111cos C AB C A B ∠=∠=,所以1C D =,故111sin C D C AD AC ∠==. 因此,直线1AC 与平面1ABB方法二:(Ⅰ)如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O -xyz .由题意知各点坐标如下:111(0,(1,0,0),(0,(1,0,2),A B A B C因此11111(1,3,2),(1,3,2),(0,23),AB A B AC ==-=-[来源:学#科#网Z#X#X#K]由1110AB A B ⋅=得111AB A B ⊥.由1110AB AC ⋅=得111AB AC ⊥. 所以1AB ⊥平面111A B C .(Ⅱ)设直线1AC 与平面1ABB 所成的角为θ.由(Ⅰ)可知11(0,23,1),(1,3,0),(0,0,2),AC AB BB === 设平面1ABB 的法向量(,,)x y z =n .由10,0,AB BB ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,20,x z ⎧=⎪⎨=⎪⎩可取(=n.所以111|sin |cos ,||||AC AC AC θ⋅===⋅n |n n |因此,直线1AC 与平面1ABB 所成的角的正弦值是13.9.解:(1)依题意可知:圆锥的高度为322422=-=OP ,所以其体积为:πππ338322313122=⨯⨯⨯==h r V 。
立体几何近12年全国真题(及答案文科)

综上所述,总有 .
15.【解析】(Ⅰ)如图:
…………… 3分
(Ⅱ)所求多面体体积
.
(Ⅲ)证明:在长方体 中,
连结 ,则 .
因为 分别为 , 中点,所以 ,
从而 .又 平面 ,所以 面 .
16.【解析】(Ⅰ)因为 是等边三角形, ,
所以 ,
可得 .
如图,取 中点 ,连结 , ,
37.(2018年全国Ⅰ卷第18题)如图,在平行四边形 中, , ,以 为折痕将△ 折起,使点 到达点 的位置,且 .
(1)证明:平面 平面 ;
(2) 为线段 上一点, 为线段 上一点,且 ,求三棱锥 的体积.
38.(2018年全国Ⅱ卷第19题)如图,在三棱锥 中, ,
, 为 的中点.
(1)证明: 平面 ;
26.(2017年全国Ⅰ卷第16题)已知三棱锥 的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥 的体积为9,则球O的表面积为________.
27.(2015年全国Ⅰ卷第18题)如图四边形ABCD为菱形,G为AC与BD交点, .
( )证明:平面 平面 ;
9.(2013年全国Ⅱ卷第16题)已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周
都在同一个球面上.若圆锥底面面积是这个球面面积的 ,则这两个圆锥中,体积较小者
的高与体积较大者的高的比值为______________.
10.(2017年全国Ⅰ卷第6题)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直接AB与平面MNQ不平行的是
( )若 ,
三棱锥 的体积为 ,
专题05 立体几何专项高考真题总汇(带答案与解析)

专题05立体几何(选择题、填空题)1.【2021·浙江高考真题】某几何体的三视图如图所示,则该几何体的体积是()A .32B .3C.2D.【答案】A【分析】根据三视图可得如图所示的几何体,根据棱柱的体积公式可求其体积.【解析】几何体为如图所示的四棱柱1111ABCD A B C D -,其高为1,底面为等腰梯形ABCD ,,下底为12=,故1111131222ABCD A B C D V -=⨯+⨯⨯=,故选:A.2.【2021·北京高考真题】某四面体的三视图如图所示,该四面体的表面积为()A .332+B .4C .33D .2【答案】A【分析】根据三视图可得如图所示的几何体(三棱锥),根据三视图中的数据可计算该几何体的表面积.【解析】根据三视图可得如图所示的几何体-正三棱锥O ABC -,其侧面为等腰直角三角形,底面等边三角形,由三视图可得该正三棱锥的侧棱长为1,故其表面积为213333112242+⨯⨯⨯+⨯=,故选:A.3.【2021·浙江高考真题】如图已知正方体1111ABCD A B C D -,M ,N 分别是1A D ,1D B 的中点,则()A .直线1A D 与直线1DB 垂直,直线//MN 平面ABCD B .直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC .直线1AD 与直线1D B 相交,直线//MN 平面ABCD D .直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B 【答案】A【分析】由正方体间的垂直、平行关系,可证1//,MN AB A D ⊥平面1ABD ,即可得出结论.【解析】连1AD ,在正方体1111ABCD A B C D -中,M 是1A D 的中点,所以M 为1AD 中点,又N 是1D B 的中点,所以//MN AB ,MN ⊄平面,ABCD AB ⊂平面ABCD ,所以//MN 平面ABCD .因为AB 不垂直BD ,所以MN 不垂直BD 则MN 不垂直平面11BDD B ,所以选项B,D 不正确;在正方体1111ABCD A B C D -中,11AD A D ⊥,AB ⊥平面11AA D D ,所以1AB A D ⊥,1AD AB A ⋂=,所以1A D ⊥平面1ABD ,1D B ⊂平面1ABD ,所以11A D D B ⊥,且直线11,A D D B 是异面直线,所以选项B 错误,选项A 正确.故选:A.【点睛】关键点点睛:熟练掌握正方体中的垂直、平行关系是解题的关键,如两条棱平行或垂直,同一个面对角线互相垂直,正方体的对角线与面的对角线是相交但不垂直或异面垂直关系.4.【2021·全国高考真题(理)】已如A ,B ,C 是半径为1的球O 的球面上的三个点,且,1AC BC AC BC ⊥==,则三棱锥O ABC -的体积为()A .212B .312C .24D .34【答案】A【分析】由题可得ABC 为等腰直角三角形,得出ABC 外接圆的半径,则可求得O 到平面ABC 的距离,进而求得体积.【解析】,1AC BC AC BC ⊥== ,ABC ∴ 为等腰直角三角形,AB ∴=,则ABC 外接圆的半径为22,又球的半径为1,设O 到平面ABC 的距离为d ,则2d ==,所以1112211332212O ABC ABC V S d -=⋅=⨯⨯⨯⨯=.故选:A.【点睛】关键点睛:本题考查球内几何体问题,解题的关键是正确利用截面圆半径、球半径、球心到截面距离的勾股关系求解.5.【2021·全国高考真题(理)】在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为()A .π2B .π3C .π4D .π6【答案】D【分析】平移直线1AD 至1BC ,将直线PB 与1AD 所成的角转化为PB 与1BC 所成的角,解三角形即可.【解析】如图,连接11,,BC PC PB ,因为1AD ∥1BC ,所以1PBC ∠或其补角为直线PB 与1AD 所成的角,因为1BB ⊥平面1111D C B A ,所以11BB PC ⊥,又111PC B D ⊥,1111BB B D B ⋂=,所以1PC ⊥平面1P B B ,所以1PC PB ⊥,设正方体棱长为2,则111112BC PC D B ===1111sin 2PC PBC BC ∠==,所以16PBC π∠=.故选:D6.【2021·全国高考真题】已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为()A .2B.C .4D.【答案】B【分析】设圆锥的母线长为l ,根据圆锥底面圆的周长等于扇形的弧长可求得l 的值,即为所求.【解析】设圆锥的母线长为l,由于圆锥底面圆的周长等于扇形的弧长,则2l ππ=解得l =.故选:B.7.【2021·北京高考真题】定义:24小时内降水在平地上积水厚度(mm )来判断降雨程度.其中小雨(10mm <),中雨(10mm 25mm -),大雨(25mm 50mm -),暴雨(50mm 100mm -),小明用一个圆锥形容器接了24小时的雨水,如图,则这天降雨属于哪个等级()A .小雨B .中雨C .大雨D .暴雨【答案】B【分析】计算出圆锥体积,除以圆面的面积即可得降雨量,即可得解.【解析】由题意,一个半径为()200100mm 2=的圆面内的降雨充满一个底面半径为()20015050mm 2300⨯=,高为()150mm 的圆锥,所以积水厚度()22150150312.5mm 100d ππ⨯⨯==⨯,属于中雨.故选:B.8.【2021·全国高考真题】在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则()A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 【答案】BD【分析】对于A ,由于等价向量关系,联系到一个三角形内,进而确定点的坐标;对于B ,将P 点的运动轨迹考虑到一个三角形内,确定路线,进而考虑体积是否为定值;对于C ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数;对于D ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数.【解析】易知,点P 在矩形11BCC B 内部(含边界).对于A ,当1λ=时,11=BP BC BB BC CC μμ=++,即此时P ∈线段1CC ,1AB P △周长不是定值,故A 错误;对于B ,当1μ=时,1111=BP BC BB BB B C λλ=++,故此时P 点轨迹为线段11B C ,而11//B C BC ,11//B C 平面1A BC ,则有P 到平面1A BC 的距离为定值,所以其体积为定值,故B 正确.对于C ,当12λ=时,112BP BC BB μ=+,取BC ,11B C 中点分别为Q ,H ,则BP BQ QH μ=+,所以P 点轨迹为线段QH ,不妨建系解决,建立空间直角坐标系如图,13,0,12A ⎛⎫ ⎪ ⎪⎝⎭,()0,0P μ,,10,,02B ⎛⎫⎪⎝⎭,则13,0,12A P μ⎛⎫=-- ⎪ ⎪⎝⎭,10,,2BP μ⎛⎫=- ⎪⎝⎭ ,()110A P BP μμ⋅=-=,所以0μ=或1μ=.故,H Q 均满足,故C 错误;对于D ,当12μ=时,112BP BC BB λ=+ ,取1BB ,1CC 中点为,M N .BP BM MN λ=+ ,所以P 点轨迹为线段MN .设010,,2P y ⎛⎫ ⎪⎝⎭,因为0,02A ⎛⎫ ⎪ ⎪⎝⎭,所以01,22AP y ⎛⎫= ⎪ ⎪⎝⎭,11,,122A B ⎛⎫=-- ⎪ ⎪⎝⎭,所以00311104222y y +-=⇒=-,此时P 与N 重合,故D 正确.故选:BD .【点睛】本题主要考查向量的等价替换,关键之处在于所求点的坐标放在三角形内.9.【2021·全国高考真题(理)】以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).【答案】③④(答案不唯一)【分析】由题意结合所给的图形确定一组三视图的组合即可.【解析】选择侧视图为③,俯视图为④,如图所示,长方体1111ABCD A B C D -中,12,1AB BC BB ===,,E F 分别为棱11,BC BC 的中点,则正视图①,侧视图③,俯视图④对应的几何体为三棱锥E ADF -.故答案为:③④.【点睛】三视图问题解决的关键之处是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系.10.【2020年高考全国Ⅰ卷理数】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A .514-B .512-C .514D .512+【答案】C【解析】如图,设,CD a PE b ==,则22224a PO PE OEb =-=-由题意得212PO ab =,即22142a b ab-=,化简得24()210b b a a -⋅-=,解得14b a +=(负值舍去).故选C .【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.11.【2020年高考全国Ⅱ卷理数】如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为A .EB .FC .GD .H【答案】A【解析】根据三视图,画出多面体立体图形,14D D 上的点在正视图中都对应点M ,直线34B C 上的点在俯视图中对应的点为N,∴在正视图中对应M ,在俯视图中对应N 的点是4D ,线段34D D ,上的所有点在侧试图中都对应E ,∴点4D 在侧视图中对应的点为E .故选A.【点睛】本题主要考查了根据三视图判断点的位置,解题关键是掌握三视图的基础知识和根据三视图能还原立体图形的方法,考查了分析能力和空间想象,属于基础题.12.【2020年高考全国II 卷理数】已知△ABC 是面积为934O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为A 3B .32C .1D .32【答案】C【解析】设球O 的半径为R ,则2416R π=π,解得:2R =.设ABC △外接圆半径为r ,边长为a ,ABC △是面积为934的等边三角形,21393224a ∴⨯=,解得:3a =,22229933434a r a ∴=-=⨯-,∴球心O 到平面ABC 的距离22431d R r =-=-=.故选:C .【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.13.【2020年高考全国Ⅲ卷理数】如图为某几何体的三视图,则该几何体的表面积是A .2B .4+42C .3D .4+23【答案】C 【解析】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△根据勾股定理可得:22AB AD DB ===∴ADB △是边长为的等边三角形根据三角形面积公式可得:2113sin 60222ADB S AB AD =⋅⋅︒=⋅=△∴该几何体的表面积是:632=⨯++.故选:C .【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.14.【2020年高考全国Ⅰ卷理数】已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π【答案】A【解析】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r π=π=∴, ABC 为等边三角形,由正弦定理可得2sin 60AB r =︒=,1OO AB ∴==,根据球的截面性质1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R ππ==.故选:A.【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.15.【2020年高考天津】若棱长为为A .12πB .24πC .36πD .144π【答案】C【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的表面积为2244336S R πππ==⨯=.故选:C .【点睛】本题考查正方体的外接球的表面积的求法,求出外接球的半径是本题的解题关键,属于基础题.求多面体的外接球的面积和体积问题,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心.16.【2020年高考北京】某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为A .6+B .6+C .12+D .12+【答案】D 【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 60122S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+⎪⎝⎭故选:D .【点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.17.【2020年高考浙江】某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是A .73B .143C .3D .6【答案】A 【解析】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+=⎪ ⎪⎝⎭⎝⎭.故选:A【点睛】本小题主要考查根据三视图计算几何体的体积,属于基础题.18.【2020年高考浙江】已知空间中不过同一点的三条直线l ,m ,n .“l ,m ,n 共面”是“l ,m ,n 两两相交”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】依题意,,m n l 是空间不过同一点的三条直线,当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m n A m l B n l C ⋂=⋂=⋂=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件.故选:B【点睛】本小题主要考查充分、必要条件的判断,考查公理1和公理2的运用,属于中档题.19.【2020年新高考全国Ⅰ卷】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为A .20°B .40°C .50°D .90°【答案】B 【解析】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥..由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒,由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒.故选:B.【点睛】本小题主要考查中国古代数学文化,考查球体有关计算,涉及平面平行,线面垂直的性质,属于中档题.20.【2019年高考全国Ⅰ卷理数】已知三棱锥P −ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D 【答案】D【解析】解法一:,PA PB PC ABC == △为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥ 平面PAC ,∴PB ⊥平面PAC ,APB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体的一部分,2R ==364466,π2338R V R =∴=π=⨯=,故选D .解法二:设2PA PB PC x ===,,E F 分别为,PA AB 的中点,EF PB ∴∥,且12EF PB x ==,ABC △为边长为2的等边三角形,CF ∴=又90CEF ∠=︒,12CE AE PA x ∴===,AEC △中,由余弦定理可得()2243cos 22x x EAC x +--∠=⨯⨯,作PD AC ⊥于D ,PA PC = ,D \为AC 的中点,1cos 2AD EAC PA x ∠==,2243142x x x x+-+∴=,221221222x x x ∴+=∴==,,,PA PB PC ∴===,又===2AB BC AC ,,,PA PB PC ∴两两垂直,2R ∴==,62R ∴=,34466338V R ∴=π=π⨯=,故选D.【名师点睛】本题主要考查学生的空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.21.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B .【名师点睛】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,a b a b αβ⊂⊂∥,则αβ∥”此类的错误.22.【2019年高考全国Ⅲ卷理数】如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线【答案】B【解析】如图所示,作EO CD ⊥于O ,连接ON ,BD ,易得直线BM ,EN 是三角形EBD 的中线,是相交直线.过M 作MF OD ⊥于F ,连接BF ,平面CDE ⊥平面ABCD ,,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD ,MFB ∴△与EON △均为直角三角形.设正方形边长为2,易知12EO ON EN ===,,5,,22MF BF BM ==∴=BM EN ∴≠,故选B .【名师点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形.解答本题时,先利用垂直关系,再结合勾股定理进而解决问题.23.【2019年高考浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是A.158B.162C.182D.324【答案】B【解析】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为2646336162 22++⎛⎫⨯+⨯⨯=⎪⎝⎭.故选B.【名师点睛】本题首先根据三视图,还原得到几何体——棱柱,根据题目给定的数据,计算几何体的体积,常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算.24.【2019年高考浙江卷】设三棱锥V–ABC的底面是正三角形,侧棱长均相等,P是棱VA 上的点(不含端点).记直线PB与直线AC所成的角为α,直线PB与平面ABC所成的角为β,二面角P–AC–B的平面角为γ,则A.β<γ,α<γB.β<α,β<γC.β<α,γ<αD.α<β,γ<β【答案】B【解析】如图,G 为AC 中点,连接VG ,V 在底面ABC 的投影为O ,则P 在底面的投影D 在线段AO 上,过D 作DE 垂直于AC 于E ,连接PE ,BD ,易得PE VG ∥,过P 作PF AC ∥交VG 于F ,连接BF ,过D 作DH AC ∥,交BG 于H ,则,,BPF PBD PED αβγ=∠=∠=∠,结合△PFB ,△BDH ,△PDB 均为直角三角形,可得cos cos PF EG DH BD PB PB PB PB αβ===<=,即αβ>;在Rt △PED 中,tan tan PD PD ED BD γβ=>=,即γβ>,综上所述,答案为B.【名师点睛】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.常规解法下易出现的错误有,不能正确作图得出各种角,未能想到利用“特殊位置法”,寻求简便解法.25.【2020年高考全国Ⅱ卷理数】设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【答案】①③④【解析】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,,为真命题,,为假命题,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.26.【2020年高考全国Ⅲ卷理数】已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【答案】23【解析】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ===,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于223122AM =-=,故1222222S =⨯⨯=△ABC 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()1332222r =⨯++⨯=解得:22r =,其体积:34233V r =π=π.故答案为:23π.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.27.【2020年高考浙江】已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm )是_______.【答案】1【解析】设圆锥底面半径为r ,母线长为l ,则21222r l r l ππππ⨯⨯=⎧⎪⎨⨯⨯=⨯⨯⨯⎪⎩,解得1,2r l ==.故答案为:1【点睛】本小题主要考查圆锥侧面展开图有关计算,属于基础题.28.【2020年高考江苏】如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm ,高为2cm ,内孔半轻为0.5cm ,则此六角螺帽毛坯的体积是▲cm.【答案】2π【解析】正六棱柱体积为2624⨯⨯⨯,圆柱体积为21()222ππ⋅=,所求几何体体积为2π.故答案为:2π-【点睛】本题考查正六棱柱体积、圆柱体积,考查基本分析求解能力,属基础题.29.【2020年新高考全国Ⅰ卷】已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 为球心,为半径的球面与侧面BCC 1B 1的交线长为________.【答案】22π.【解析】如图:取11B C 的中点为E ,1BB 的中点为F ,1CC 的中点为G ,因为BAD ∠=60°,直四棱柱1111ABCD A B C D -的棱长均为2,所以△111D B C 为等边三角形,所以1D E =111D E B C ⊥,又四棱柱1111ABCD A B C D -为直四棱柱,所以1BB ⊥平面1111D C B A ,所以111BB B C ⊥,因为1111BB B C B = ,所以1D E ⊥侧面11B C CB ,设P 为侧面11B C CB 与球面的交线上的点,则1D E EP ⊥,,1D E =,所以||EP ===,所以侧面11B C CB 与球面的交线上的点到E ,因为||||EF EG ==11B C CB 与球面的交线是扇形EFG 的弧 FG ,因为114B EF C EG π∠=∠=,所以2FEG π∠=,所以根据弧长公式可得 22FGπ==.故答案为:22π.【点睛】本题考查了直棱柱的结构特征,考查了直线与平面垂直的判定,考查了立体几何中的轨迹问题,考查了扇形中的弧长公式,属于中档题.30.【2019年高考全国Ⅲ卷理数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O —EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.【答案】118.8【解析】由题意得,214642312cm 2EFGH S =⨯-⨯⨯⨯=四边形,∵四棱锥O −EFGH 的高为3cm ,∴3112312cm 3O EFGH V -=⨯⨯=.又长方体1111ABCD A B C D -的体积为32466144cm V =⨯⨯=,所以该模型体积为3214412132cm O EFGH V V V -=-=-=,其质量为0.9132118.8g ⨯=.【名师点睛】本题考查几何体的体积问题,理解题中信息联系几何体的体积和质量关系,从而利用公式求解.根据题意可知模型的体积为长方体体积与四棱锥体积之差进而求得模型的体积,再求出模型的质量即可.31.【2019年高考北京卷理数】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.【答案】40【解析】如图所示,在棱长为4的正方体中,三视图对应的几何体为正方体去掉棱柱1111MPD A NQC B -之后余下的几何体,则几何体的体积()3142424402V =-⨯+⨯⨯=.【名师点睛】本题首先根据三视图,还原得到几何体,再根据题目给定的数据,计算几何体的体积.属于中等题.(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.32.【2019年高考北京卷理数】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【答案】如果l ⊥α,m ∥α,则l ⊥m .【解析】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l ⊥α,m ∥α,则l ⊥m ,正确;(2)如果l ⊥α,l ⊥m ,则m ∥α,不正确,有可能m 在平面α内;(3)如果l ⊥m ,m ∥α,则l ⊥α,不正确,有可能l 与α斜交、l ∥α.故答案为:如果l ⊥α,m ∥α,则l ⊥m.【名师点睛】本题主要考查空间线面的位置关系、命题、逻辑推理能力及空间想象能力.将所给论断,分别作为条件、结论加以分析即可.33.【2019年高考天津卷理数】2的正方形,5若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.【答案】π4【解析】由题意,的正方形,借助勾股定理,2=.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,一个底面的圆心为四棱锥底面的中心,故圆柱的高为1,圆柱的底面半径为12,故圆柱的体积为21ππ124⎛⎫⨯⨯= ⎪⎝⎭.【名师点睛】根据棱锥的结构特点,确定所求的圆柱的高和底面半径.注意本题中圆柱的底面半径是棱锥底面对角线长度的一半、不是底边棱长的一半.34.【2019年高考江苏卷】如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E −BCD 的体积是▲.【答案】10【解析】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ⋅⋅=,因为E 为1CC 的中点,所以112CE CC =,由长方体的性质知1CC ⊥底面ABCD ,所以CE 是三棱锥E BCD -的底面BCD 上的高,所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=.【名师点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积.35.【2019年高考全国Ⅱ卷理数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)【答案】261【解析】由图可知第一层(包括上底面)与第三层(包括下底面)各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有18826+=个面.如图,设该半正多面体的棱长为x ,则AB BE x ==,延长CB 与FE 的延长线交于点G ,延长BC 交正方体的棱于H ,由半正多面体对称性可知,BGE △为等腰直角三角形,22,21)122BG GE CH x GH x x x ∴===∴=⨯+=+=,1x ∴=1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图 21俯视图侧视图正视图211.(北京8)如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点,则P 到各顶点的距离的不同取值有( )A .3个B .4个C .5个D .6个2.(广东卷6)某三棱锥的三视图如图所示,则该三棱锥的体积是( )A .16B .13C .23D .13. (广东卷8)设l 为直线,,αβ是两个不同的平面,下列命题中正确的是( ) A .若//l α,//l β,则//αβ B .若l α⊥,l β⊥,则//αβ C .若l α⊥,//l β,则//αβ D .若αβ⊥,//l α,则l β⊥4. (湖南卷7)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于 A .32B.1C.212+ D.2 5. 江西卷8).一几何体的三视图如右所示,则该几何体的体积为( ) A.200+9π B. 200+18π C. 140+9πD. 140+18π 6. (辽宁卷10)已知三棱柱1116.34ABC A B C O AB AC -==的个顶点都在球的球面上若,,,AB AC ⊥112AA O =,则球的半径为A .3172 B .210 C .132D .310 B .. (全国卷11)已知正四棱柱1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于(A )23 (B )33 (C )23 (D )138. (四川卷2)一个几何体的三视图如图所示,则该几何体可以是( )(A )棱柱 (B )棱台 (C )圆柱 (D )圆台9. (全国新课标9)一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )(A) (B) (C) (D) 10.(浙江卷4)设m 、n 是两条不同的直线,α、β是两个不同的平面,A 、若m ∥α,n ∥α,则m ∥nB 、若m ∥α,m ∥β,则α∥βC 、若m ∥n ,m ⊥α,则n ⊥αD 、若m ∥α,α⊥β,则m ⊥β11.(浙江卷5)已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是A 、108cm 3B 、100 cm 3C 、92cm 3D 、84cm 312. (重庆卷8)某几何体的三视图如题(8)所示,则该几何体的表面积为( )(A )180 (B )200 (C )220 (D )24013. (辽宁卷13)某几何体的三视图如图所示,则该几何体的体积是 .14.(安徽15)如图,正方体1111ABCD A B C D -的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点,,A P Q 的平面截该正方体所得的截面记为S ,则下列命题正确的 是 (写出所有正确命题的编号)。
①当102CQ <<时,S 为四边形②当12CQ =时,S 为等腰梯形 ③当34CQ =时,S 与11C D 的交点R 满足113C R =④当314CQ <<时,S 为六边形 ⑤当1CQ =时,S 的面积为6215.(北京10)某四棱锥的三视图如图所示,则该四棱锥的体积为 。
16.(广东卷15)如图,在矩形ABCD 中,3,AB =3BC =,BE AC ⊥,垂足为E ,则ED = .17. (江苏卷8)如图,在三棱柱ABC C B A -111中,F E D ,,分别是1,,AA AC AB 的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V .18. (江西卷15)如图,正方体的底面与正四面体的底面在同一平面α上,且AB//CD,则直线EF 与正方体的六个面所在的平面相交的平面个数为 。
19. (全国卷16)已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,图 3EBDA B C 1AD E F 1B1C3602OK O K =,且圆与圆所在的平面所成角为,则球O 的表面积等于 .20. (陕西卷12)某几何体的三视图如图所示, 则其表面积为 .21. (天津卷10)已知一个正方体的所有顶点在一个球面上. 若球的体积为92π, 则正方体的棱长为 .22. (全国新课标15)已知正四棱锥O ABCD -的体积为322,底面边长为3,则以O 为球心,OA 为半径的球的表面积为________。
23.(安徽18)如图,四棱锥P ABCD -的底面ABCD 是边长为2的菱形,60BAD ∠=.已知2,6PB PD PA ===.(Ⅰ)证明:PC BD ⊥(Ⅱ)若E 为PA 的中点,求三菱锥P BCE -的体积.24.(北京17)如图,在四棱锥P ABCD -中,//AB CD ,AB AD ⊥,2CD AB =,平面PAD ⊥底面ABCD ,PA AD ⊥,E 和F 分别是CD 和PC 的中点,求证:(1)PA ⊥底面ABCD (2)//BE 平面PAD (3)平面BEF ⊥平面PCDGEF ABCD25.(福建18)如图,在四棱锥P ABCD -中,PD ABCD ⊥面,//AB DC ,AB AD ⊥,5BC =,3DC =,4AD =,60PAD ∠=.(1)当正视图方向与向量AD 的方向相同时,画出四棱锥P ABCD -的正视图.(要求标出尺寸,并画出演算过程);(2)若M 为PA 的中点,求证://DM PBC 面; (3)求三棱锥的体积.26.(广东卷18)如图4,在边长为1的等边三角形中,分别是边上的点, ,是BC 的中点,AF 与DE 交于点G ,将ABF ∆沿AF 折起,得到如图5所示的三棱锥A BCF -,其中22BC =.(1) 证明:DE //平面BCF ; (2) 证明:CF ⊥平面ABF ; (3) 当23AD =时,求三棱锥F DEG -的体积F DEG V -.图 5DGBFCAE27.(湖南卷17)如图,在直菱柱ABC-A 1B 1C 1中,∠ABC=90°,AB=AC=,AA 1=3,D 是BC 的中点,点E 在菱BB 1上运动。
(I ) 证明:AD ⊥C 1E ;(II ) 当异面直线AC ,C 1E 所成的角为60°时,求三菱锥C 1-A 2B 1E 的体积28.(江苏卷16)如图,在三棱锥S ABC -中,平面SAB ⊥平面SBC ,AB BC ⊥,AS AB =. 过A 作AF SB ⊥,垂足为F ,点E ,G 分别是侧棱SA ,SC 的中点.求证:(1) 平面EFG //平面ABC ;(2) BC SA ⊥.(29.(江西卷19)如图,直四棱柱ABCD – A 1B 1C 1D 1中,AB//CD ,AD ⊥AB ,AB=2,AD=,AA 1=3,E 为CD 上一点,DE=1,EC=3(1) 证明:BE ⊥平面BB 1C 1C;(2) 求点B1 到平面EA 1C 1 的距离30.(辽宁卷18)如图,.AB O PA O C O 是圆的直径,垂直圆所在的平面,是圆上的点 (I )求证:BC PAC ⊥平面;(II )设//.Q PA G AOC QG PBC ∆为的中点,为的重心,求证:平面31.(全国卷19)如图,四棱锥902,P ABCD ABC BAD BC AD PAB PAD -∠=∠==∆∆中,,与都是边长为2的等边三角形.(I )证明:;PB CD ⊥(II )求点.A PCD 到平面的距离32.(陕西卷18)如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O ⊥平面ABCD ,12AB AA ==.(Ⅰ) 证明: A 1BD // 平面CD 1B 1; (Ⅱ) 求三棱柱ABD -A 1B 1D 1的体积.D 1B 1C 1A 133.(四川卷19)如图,在三棱柱11ABC A B C -中,侧棱1AA ⊥底面ABC ,122AB AC AA ===,120BAC ∠=,1,D D 分别是线段11,BC B C 的中点,P 是线段AD 上异于端点的点。
(Ⅰ)在平面ABC 内,试作出过点P 与平面1A BC 平行的直线l ,说明理由,并证明直线l ⊥平面11ADD A ; (Ⅱ)设(Ⅰ)中的直线l 交AC 于点Q ,求三棱锥11A QC D -的体积。
(锥体体积公式:13V Sh =,其中S 为底面面积,h 为高)34.(天津卷17)如图, 三棱柱ABC -A 1B 1C 1中, 侧棱A 1A ⊥底面ABC ,且各棱长均相等. D , E , F 分别为棱AB , BC , A 1C 1的中点.(Ⅰ) 证明EF //平面A 1CD ;D 1DCBA 1B 1C 1A P(Ⅱ) 证明平面A 1CD ⊥平面A 1ABB 1;(Ⅲ) 求直线BC 与平面A 1CD 所成角的正弦值.35.(全国新课标18)如图,直三棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点, (Ⅰ)证明:1//BC 平面11A CD ;(Ⅱ)设12AA AC CB ===,22AB =,求三棱锥1C A DE -的体积。
36.(浙江卷19)如图,在在四棱锥P-ABCD 中,PA ⊥面ABCD ,ED B 1C 1A CB A 1AB=BC=2, AD=CD=7,PA=3,∠ABC=120°,G 为线段PC 上的点.(Ⅰ)证明:BD ⊥面PAC ;(Ⅱ)若G 是PC 的中点,求DG 与PAC 所成的角的正切值;(Ⅲ)若G 满足PC ⊥面BGD ,求PG GC的值.37.(重庆卷19)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,23PA =,2BC CD ==, 3ACB ACD π∠=∠=.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若侧棱PC 上的点F 满足7PF FC =,求三棱锥P BDF -的体积.38.如图,某地质队自水平地面A ,B ,C 三处垂直向地下钻探,自A 点向下钻到A 1处发现矿藏,再继续下钻到A 2处后下面已无矿,从而得到在A 处正下方的矿层厚度为121A A d =.同样可得在B ,C 处正下方的矿层厚度分别为122B B d =,123C C d =,且123d d d <<. 过AB ,AC 的中点M ,N 且与直线2AA 平行的平面截多面体111222A B C A B C -所得的截面DEFG 为该多面体的一个中截面,其面积记为S 中. (Ⅰ)证明:中截面DEFG 是梯形;(Ⅱ)在△ABC 中,记BC a =,BC 边上的高为h ,面积为S . 在估测三角形ABC 区域内正下方的矿藏储量(即多面体111222A B C A B C -的体积V )时,可用近似公式V S h =⋅估中来估算. 已知1231()3V d d d S =++,试判断V 估与V 的大小关系,并加以证明.。