平行四边形
平行四边形性质

平行四边形的性质1.平行四边形的概念有两组对边分别平行的四边形叫做平行四边形.作用:(1)给出了一种判定四边形是平行四边形的方法,如果所给四边形的两组对边分别平行,那么它一定是平行四边形.(2)给出了平行四边形的一个重要性质:两组对边分别平行.2.平行四边形的性质详解:(1)平行四边形是中心对称图形,对角线的交点是它的对称中心;(2)平行四边形的对边平行且相等;(3)平行四边形的对角相等,邻角互补;(4)平行四边形的对角线互相平分.3.平行四边形的面积平行四边形的面积等于它的底和该底上的高的积.如图1,拓展:同底(等底)同高(等高)的平行四边形面积相等.如图2,二、平行四边形的判定1.平行四边形的判定方式2.三角形中位线定理定义:连接三角形两边中点的线段叫做三角形中位线;定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半。
作用:(1)位置关系:可以证明两条直线平行;(2)数量关系:可以证明线段的相等或倍分.拓展:(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形;(2)要会区别三角形的中线与中位线.三、平行四边形小结:四、矩形1.矩形定义:有一个角是直角的平行四边形叫做矩形.拓展:矩形首先是一个平行四边形,然后增加一个角是直角这个特殊条件。
2.矩形的性质(1)具有平行四边形的所有性质;(2)对角线相等;(3)四个角都是直角;(4)是轴对称图形,它有两条对称轴.3.直角三角形的性质定理:直角三角形斜边上的中线等于斜边的一半拓展:己学过的直角三角形的性质主要有:(1)两锐角互余;(2)两条直角边的平方和等于斜边的平方;(3)30°角所对的直角边等于斜边的一半;(4)斜边上的中线等于斜边的一半.4.矩形的判定方法(1)有一个角是直角的平行四边形;(2)有三个角是直角的四边形;(3)对角线相等的平行四边形;(4)对角线相等且互相平分的四边形.5.矩形的面积公式:矩形面积=长×宽五、菱形1.概念:有一组邻边相等的平行四边形叫做菱形.2.性质:(1)具有平行四边形的一切性质;(2)四条边都相等;(3)两条对角线互相垂直,并且每一组对角线平分一组对角;(4)既是中心对称图形又是轴对称图形,其对称轴为对角线所在的直线.拓展:由于菱形的对角线互相垂直平分,许多涉及菱形的问题都会在直角三角形中解决.3.判定:(1)定义;(2)四条边都相等的四边形;(3)对角线互相垂直平分的四边形;(4)对角线平分一组对角的平行四边形.4.面积:(1)平行四边形面积公式:底×高(2)两条对角线乘积的一半.若a、b分别表示两条对角线的长,则六、正方形1.概念:有一组邻边相等且有一个角是直角的平行四边形叫做正方形.拓展:正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形.2.性质:(1)边——四条边都相等,邻边垂直,对边平行;(2)角——四个角都是直角;(3)对角线——①相等;②相互垂直平分;③每一条对角线平分一组对角;两条对角线将它分成四个全等的等腰直角三角形.(4)是轴对称图形,有4条对称轴;又是中心对称图形,对称中心就是两条对角线的交点.拓展:(1)若正方形的边长为a,则对角线的长为;(2)正方形的一条对角线上的一点到另一条对角线的两个端点的距离相等.3.判定:(1)先证它是矩形,再证一组邻边相等;(2)先证它是菱形,再证一个角是直角.4.面积:(1)正方形的面积等于边长的平方;(2)正方形的面积等于两条对角线的乘积的一半.拓展:周长相等的四边形中,正方形的面积最大.例题分析:1.如图,ABCD中,AE=CF,AE与CF交于点O,连结BO.求证:∠AOB=∠COB.解:作BM⊥CF于M,BN⊥AE于N,连接BE、BF;根据和AE=CF,可证BN=BM,于是∠AOB=∠COB.2.如图:工人师傅要把一块三角形的钢板,通过切割焊接成一个与其面积相等的平行四边形.请你设计一种方案并在图中标出焊接线,然后证明你的结论.解:如图,分别取边AB、AC的中点D、E,沿线段DE切割开,将△ADE的边AE与边EC重合(点A与点C重合、点E与点E重合)后焊接,点D至点F处,则所得四边形DBCF为平行四边形.证明略.3.如图,ABCD为等腰梯形,AB∥CD,对角线AC,BD交于O,且∠AOB=60°,又E,F,G别离为DO,AO,BC的中点.求证:△EFG为等边三角形.证明:连接EC.∵ABCD为等腰梯形,∴AD=BC,且AC=BD.又∵DC=DC,∴△ADC≌△BCD,∠ACD=∠BDC,∴△ODC为等腰三角形.∵∠DOC=∠AOB=60°,∴△ODC为等边三角形.又∵E为OD中点,∴∠OEC=90°.在Rt△BEC中,G为斜边的中点,∴。
平行四边形的概念和定义

平行四边形的概念和定义
平行四边形是一种特殊的四边形,它具有特定的几何属性和定义。
下面是平行四边形的概念和定义:
1.定义:平行四边形是一个四边形,其对边两两平行。
2.性质:
•对边平行性质:平行四边形的对边两两平行,即相对的两边是平行的。
•对角线性质:平行四边形的对角线相互平分,并且相交点将对角线分成相等的两部分。
•边长性质:平行四边形的相邻边长度相等,即相邻边是相等的。
•内角性质:平行四边形的内角相邻补角,即相邻内角的和为180度。
•对边长度比例:平行四边形的对边长度比例相等,即相对的两条边的长度比相等。
3.特殊情况:
•矩形是一种特殊的平行四边形,它的四个角都是直角,对边相等。
•正方形是一种特殊的矩形和平行四边形,它的四边长度相等,四个角都是直角。
•菱形是一种特殊的平行四边形,它的四条边长度相等,对角线互相垂直,且相互平分。
平行四边形是几何学中重要的概念,它的定义和性质可以用于解决各种几何问题和证明定理。
在实际应用中,平行四边形的概念也经常被用于建筑设计、工程测量、图形绘制等领域。
平行四边形是什么

平行四边形是什么
平行四边形是:在同一个二维平面内,由两组平行线段组成的闭合图形。
平行四边形一般用图形名称加四个顶点依次命名。
注:在用字母表示四边形时,一定要按顺时针或逆时针方向注明各顶点。
在欧几里德几何中,平行四边形是具有两对平行边的简单(非自相交)四边形。
平行四边形的相对或相对的侧面具有相同的长度,并且平行四边形的相反的角度是相等的。
相比之下,只有一对平行边的四边形是梯形。
平行四边形的三维对应是平行六面体。
定义:
两组对边分别平行的四边形叫做平行四边形。
1.平行四边形属于平面图形。
2.平行四边形属于四边形。
3.平行四边形属于中心对称图形。
平行四边形的性质及判定

平行四边形1.平行四边形的概念定义:两组对边分别平行的四边形叫做平行四边形.2.平行四边形的性质性质:(1)平行四边形的对边平行且相等;(2)平行四边形的对角相等;(3)平行四边形的对角线互相平分.注意:平行四边形是以对角线的交点为中心的对称图形,但不一定是轴对称图形.3.平行四边形的判定判定:(1)两组对边分别相等的四边形是平行四边形;(2)对角线互相平分的四边形是平行四边形;(3)两组对角分别相等的四边形是平行四边;(4)一组对边平行且相等的四边形是平行四边形.注意:(1)平行四边形的定义既可以作为性质,又可以作为判定;(2)一组对边平行,一组对角相等的四边形是平行四边形;(3)一组对边平行,另一组对边相等的四边形不一定是平行四边形,有可能是等腰梯形. 重点记忆:(1)夹在两平行线间的平行线段相等.(2)如图31-1,四边形ABCD是平行四边形,则有4.两平行线间的距离定义:两条平行线中一条直线上任意一点到另一条直线的距离叫做两条平行线间的距离.1.平行四边形的性质一.填空题.1.如图4.1-1, D,E,F 分别在△ABC 的三边BC,AC,AB 上,且DE ∥AB, DF ∥AC, EF ∥BC,则图中共有_______________个平行四边形,分别是_______________________________________.FED CBA图4.1-12.已知平行四边形的周长是100cm, AB:BC=4 : 1,则AB 的长是________________.3.已知平行四边形的面积是144,相邻两边上的高分别为8和9,则它的周长是______________.4.在平行四边形ABCD 中,∠A : ∠B=3:2,则∠C=_________ 度,∠D=_____________度.5.用20米长的一铁丝围成一个平行四边形,使长边与短边的比为3:2,则它的边长为________短边长为__________.6.如图4.1-2,在平行四边形ABCD 中, BC=2AB, CA ⊥AB,则∠B=______度,∠CAD=______度.DCB A图4.1-2二.选择题.7.平行四边形ABCD 的周长32, 5AB=3BC,则对角线AC 的取值范围为( )A. 6<AC<10B. 6<AC<16C. 10<AC<16D. 4<AC<16 8. 在平行四边形ABCD 中,∠A=65°,则∠D 的度数是 ( )A. 105°B. 115°C. 125°D. 65° 9. 在平行四边形ABCD 中,∠B -∠A=20°,则∠D 的度数是 ( ) A. 80° B. 90° C. 100° D. 110°10. 由等腰三角形底边上任一点(端点除外)作两腰的平行线,则所成的平行四边形的周长等于等腰三角形的 ( ) A. 周长 B. 一腰的长 C. 周长的一半 D. 两腰的和 11. 在以下平行四边形的性质中,错误的是 ( )A. 对边平行B. 对角相等C. 对边相等D. 对角线互相垂直三. 解答题12. 平行四边形ABCD 的两条对角线AC,BD 相交于O.(1) 图4.1-3中有哪些三角形全等? 有哪些相等的线段?(2) 若平行四边形ABCD 的周长是20cm,△AOD 的周长比△ABO 的周长大6cm.求AB,AD 的长.ODCBA图4.1-313. 如图4.1-4,平行四边形ABCD 中,∠ADC 的邻补角的平分线交BC 的延长线于E,延长ED 交BA 的延长线于F,试判断△FBE 的形状.GFEDCBA图4.1-4四. 应用题14. (1) 如图4.1-5,平行四边形ABCD 中,AB=5cm, BC=3cm, ∠D 与∠C 的平分线分别交AB 于F,E, 求AE, EF, BF 的长?(2) 上题中改变BC 的长度,其他条件保持不变,能否使点E,F 重合,点E,F 重合时BC 长多少?求AE,BE 的长. (3) 由(1),(2)题,你想到了什么?请写下来与你同伴交流.F E DCBA图4.1-5五. 综合能力提高题15. 如图4.1-6,平行四边形ABCD 的四个外角的平分线分别两两交于E,F. (1) 试判断∠AED, ∠BFC 的大小.(2) 线段AE, ED, BF, FC, EC, HF 中哪些相等?H GFEDCBA图4.1-616. 如图4.1-7,BD 是平行四边形ABCD 的对角线,AE ⊥BD 于E,CF ⊥BD 于F. (1) 在图中,根据题意补全图形;(2) 试问: △ABE 与△CDF 能全等吗?请说明理由.DCB A图4.1-72. 平行四边形的判定一. 填空题1. 如图4.2-1,平行四边形ABCD 中,AE=CG, DH=BF,连结E,F,G,H,E,则四边形EFGH 是_________________.2. 如图4.2-2,平行四边形ABCD 中,E,F 是对角线AC 上的两点,且AE=CF,连结B,F,D,E,B 则四边形BEDF 是______________.HGFED CBA图4.2-1GFEDCB A图4.2-23. 一组对边平行且相等的四边形一定是_____________形.4. 有公共顶点的两个全等三角形,其中一个三角形绕公共顶点旋转180°后与另一个重合,那么不共点的四个顶点的连线构成____________形.5. 如图4.2-3,E,F 分别是平行四边形ABCD 的边AD 与BC 的三分之一点,则四边形AECF 是________________形.F EDCB A图4.2-3F E DCBA图4.2-4二. 选择题6. 如图4.2-4,平行四边形ABCD 中,E,F 分别为边AB,DC 的中点,则图中共有平行四边形的个数是 ( ) A. 3 B. 4 C. 5 D. 67. 以长为5cm, 4cm, 7cm 的三条线段中的的两条为边,另一条为对角线画平行四边形,可以画出形状不同的平行四边形的个数是 ( )A. 1B. 2C. 3D. 4 8. 能够判定一个四边形是平行四边形的条件是 ( )A. 一组对角相等B. 两条对角线互相平分C. 两条对角线互相垂直D. 一对邻角的和为180°9. 四边形ABCD 中,AD ∥BC,要判定ABCD 是平行四边形,那么还需满足 ( ) A. ∠A+∠C=180° B. ∠B+∠D=180° C. ∠A+∠B=180° D. ∠A+∠D=180° 10. 平行四边形的一组对角的平分线 ( )A. 一定相互平行B. 一点相交C. 可能平行也可能相交D. 平行或共线 三. 解答题11. 如图4.2-5,在平行四边形ABCD 中,M,N 分别是OA,OC 的中点,O 为对角线AC 与BD 的交点,试问四边形BMDN 是平行四边形吗?说说你的理由.OMNDCBA图4.2-512. 如图4.2-6,AC 是平行四边形ABCD 的一条对角线,BM ⊥AC, DN ⊥AC,垂直分别为M,N,四边形BMDN 是平行四边形吗?你有几种判别方法?NMDCBA图4.2-6 四. 应用题13. 如图4.2-7,在平行四边形ABCD 中,AC 的平行线MN 交DA 的延长线于M,交DC 的延长线于N,交AB,BC 于P,Q. (1) 请指出图中平行四边形的个数,并说明理由. (2) MP 与QN 能相等吗?NMQP DCBA图4.2-714. 已知如图4.2-8,在平行四边形ABCD 中,EF ∥DC,试说明图中平行四边形的个数.NMH G FE D CBA图4.2-8五. 综合能力提高题15. 如图4.2-9,为公园的一块草坪,其四角上各有一棵树,现园林工人想使这个草坪的面积扩大一倍,又要四棵树不动,并使扩大后的草坪为平行四边形,试问这个想法能否实现,若能请你设计出草图,否则说明理由.DCBA图4.2-916. 楠楠想出了一个测量池塘的两端A,B 引两条直线AC,BC 相交于点C,在BC 上取点E,G,使BE=CG,再分别过E,G 作EF ∥AB,交AC 于F,H.测出EF=8m, GH=3m,(如图4.2-10),她就得出了结论: 池塘的宽AB 为11m .你认为她说的对吗?图4.2-103.平行四边形性质和判定综合。
关于平行四边形的公式

关于平行四边形的公式
平行四边形公式:S(面积)=a(底)h(高),边长=2×(一条边的边长+另一条边的边长)。
如用“h”表容示高,“a”表示底,“S”表示平行四边形面积,则S平行四边形=a*h。
平行四边形的面积等于两组邻边的积乘以夹角的正弦值;如用“a”“b”表示两组邻边长,α表示两边的夹角,“S”表示平行四边形的面积,则S平行四边形=ab*sinα。
平行四边形,是在同一个二维平面内,由两组平行线段组成的闭合图形。
平行四边形一般用图形名称加四个顶点依次命名。
注:在用字母表示四边形时,一定要按顺时针或逆时针方向注明各顶点。
平行四边形的定义和性质

平行四边形的定义和性质定义平行四边形是一种四边形,其中四条边两两平行。
性质1. 对角线互相平分:- 平行四边形的对角线互相平分,即对角线的交点分割两条对角线成相等的线段。
- 证明:设平行四边形的对角线交点为O,连接OA、OC和OB、OD。
- 由于平行四边形的边互相平行,所以可以证明三角形OAB与三角形OCB相似,且三角形ODB与三角形ODA相似。
- 因此,可得OA/OC = OB/OD = AB/CD = AD/BC。
由此可知,对角线互相平分。
2. 相邻角互补:- 平行四边形的相邻内角互补,即相邻内角的和为180度。
- 证明:设平行四边形的内角为A、B、C、D,其中A和B是相邻角。
- 由于平行四边形的边互相平行,可证明角A与角C互补,角B与角D互补。
- 因此,角A + 角B = 180度,角C + 角D = 180度。
由此可知,相邻角互补。
3. 边长相等:- 平行四边形的对边长度相等,即相对的两条边长度相等。
- 证明:设平行四边形的对边长度为AB、CD和AD、BC。
- 由于平行四边形的边互相平行,所以可以证明三角形ABC与三角形CDA相似,且三角形ABD与三角形BCD相似。
- 因此,可得AB/CD = AD/BC。
由此可知,边长相等。
4. 所有内角和为360度:- 平行四边形的内角之和为360度。
- 证明:设平行四边形的内角为A、B、C、D。
- 由于平行四边形的相邻内角互补,可得角A + 角B + 角C +角D = 180度 + 180度 = 360度。
由此可知,所有内角和为360度。
以上是关于平行四边形的定义和性质的简要介绍。
平行四边形专题详解

平行四边形专题详解18.1 平行四边形知识框架{基础知识点{ 平行四边形的定义平行四边形的性质平行四边形的判定定理三角形中位线定理典型题型{利用平行线的性质求角度平行线间距离的运用平行四边形的证明难点题型{平行四边形间距离的应用平行四边形有关的计算平行四边形的有关证明一、基础知识点知识点1 平行四边形的定义1)平行四边形的定义:两组对边分别平行的四边形。
平行四边形用“▱”表示,平行四边形ABCD 表示为“▱ABCD ”,读作“平行四边形ABCD ”注:只要满足对边平行的四边形都是平行四边形。
矩形、菱形、正方形都是特殊的平行四边形 2)平行四边形的高:一条边上任取一点作另一边的垂线,该垂线的长度称作平行四边形在该边上的高。
3)两条平行线之间的距离:一条直线上任一点到另一直线的距离。
平行线间距离处处相等。
例1.如图,AB ∥EG ,EF ∥BC ,AC ∥FG ,A ,B ,C 分别在EF ,EG 上,则图中有 个平行四边形,可分别记作 。
例2.如图,▱ABCD 中,DE ⊥AB ,BF ⊥CD ,垂足分别为E ,F .求证:BE=DF 。
例3.如图,a∥b,AB∥CD,CE⊥b,FG⊥b,点E,G为垂足,则下列说法错误的是()A.AB=CDB.CE=FGC.直线a,b之间的距离是线段AB的长D.直线a,b之间的距离是线段CE的长知识点2 平行四边形的性质平行四边形的性质,主要讨论:边、角、对角线,有时还会涉及对称性。
如下图,四边形ABCD是平行四边形:1)性质1(边):①对边相等;②,即:AB=CD,AD=BC;AB∥CD,AD∥BC2)性质2(角):对角相等,即:∠BAD=∠BCD,∠ABC=∠ADC3)性质3(对角线):对角线相互平分,即:AO=OC,BO=OD注:①平行四边形仅对角线相互平分,对角线不相等,即AC≠BD(矩形的对角线才相等);②平行四边形对角相等,但对角线不平分角,即∠DAO≠∠BAO(菱形对角线才平分角)4)性质4(对称性):平行四边形不是轴对称图形,是中心对称图形。
平行四边形的性质与应用

平行四边形的性质与应用平行四边形是一种具有特定性质和广泛应用的几何图形。
在本文中,我们将探讨平行四边形的性质以及它在现实中的应用。
一、平行四边形的定义与性质平行四边形是指具有两组对边平行的四边形。
它具有以下几个重要性质:1. 对边性质:平行四边形的对边相等。
即相对的两条边长度相等。
2. 对角线性质:平行四边形的对角线互相平分,并且互相垂直。
这意味着平行四边形的两条对角线长度相等且互相垂直。
3. 内角性质:平行四边形的内角之和为360度。
换句话说,平行四边形的任意两个相邻内角之和为180度。
4. 对顶角性质:平行四边形的对顶角相等。
即相对的两个内角大小相等。
二、平行四边形的应用平行四边形在几何学和实际生活中都有广泛的应用。
以下是一些常见的应用场景:1. 建筑设计:平行四边形的性质被广泛应用于建筑设计中,用于绘制平行四边形的模型,计算建筑物的面积和体积,以及确定建筑物内部布局的合理性。
2. 航空航天工程:在航空航天工程中,平行四边形的性质被用于计算飞机的机翼面积,帮助设计师设计出更加稳定和高效的飞行器结构。
3. 地理测量:在地理测量中,平行四边形的性质被应用于测量地表的形状、面积以及地表变动的研究。
同时,平行四边形也是测量工具中常用的标志物,用于校准和校正测量仪器。
4. 平行四边形的证明与运用:在数学课堂上,我们经常需要证明平行四边形的性质,通过证明和推理,培养学生的逻辑思维和问题解决能力。
此外,平行四边形的性质也应用于解决三角函数和向量等数学问题。
5. 平行四边形的网格结构:平行四边形的性质使其成为一种理想的结构形式,例如篮球场地板、瓷砖地板、蜂窝状网格等。
这些结构具有稳定性、坚固性和美观性。
结论平行四边形作为一种常见的几何图形,在我们的日常生活和学习中有着广泛的应用。
通过了解平行四边形的性质和运用,我们能够更好地理解和应用几何学知识,同时也能培养我们的逻辑思维和问题解决能力。
平行四边形不仅仅是数学课堂上的概念,它在各行各业中都发挥着重要的作用,为我们的生活和工作带来了便利和创造力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行四边形的面积
你知道它们的面积吗?
1 厘 米
1厘米
你知道它们的面积吗?
交流要求:
“我们组的想法和做 法”
1、有序发言,分享各自的想法。
2、组长整理本组有( )种方法,每种方法 是怎样做的?
3、小丽家花坛的面积怎样算,你发现了吗?
转化 高
底
宽 长
转化 高
底
宽 长
25分米
下面图中两个平行四边形的面积相等吗?它们 的面积各是多少?
1.5cm 2.8cm
S
平行四边形的面积
=Байду номын сангаасa× h
= 底× 高
长方形的面积
=长 ×宽
口算出下面每个平行四边形的面积。 3厘米 4厘米
口算出下面每个平行四边形的面积。
5 分 米
4分米
口算出下面每个平行四边形的面积。
3米 5米
下面平行四边形的面积是:
A:30×25=750平方分米 B:25×20=500平方分米 C:30×20=600平方分米