数学专升本考试试题

合集下载

专升本试题2023数学及答案

专升本试题2023数学及答案

专升本试题2023数学及答案一、选择题(每题2分,共10分)1. 函数f(x)=2x^2+3x-5的导数是:A. 4x+3B. 2x+3C. 4x^2+6xD. 4x^2+3x2. 圆的方程为(x-2)^2+(y-3)^2=1,圆心坐标是:A. (2, 3)B. (1, 2)C. (3, 4)D. (0, 0)3. 已知等差数列的首项为a1=3,公差为d=2,第5项a5的值为:A. 11B. 13C. 15D. 174. 极限lim(x→0) (sin(x)/x)的值为:A. 0B. 1C. 2D. 不存在5. 矩阵A = [1 2; 3 4]和矩阵B = [5 6; 7 8]的乘积AB的行列式det(AB)为:A. 22B. 30C. 36D. 44二、填空题(每题2分,共10分)6. 若f(x)=x^3-2x^2+x-2,则f'(x)=______。

7. 若曲线y=x^2-4x+3在点x=1处的切线斜率为______。

8. 一个等比数列的首项为2,公比为3,其第3项为______。

9. 若函数y=ln(x)的图像与直线y=4相交于点(a,4),则a=______。

10. 一个矩阵的秩为2,且该矩阵的行列式为-5,则该矩阵的迹为______。

三、解答题(每题10分,共30分)11. 证明:若函数f(x)在区间(a,b)内连续,且f(a)f(b)<0,则至少存在一点c∈(a,b),使得f(c)=0。

12. 解不等式:|x-2|+|x-5|<7。

13. 计算定积分:∫(0到1) (2x+1)dx。

四、证明题(每题15分,共15分)14. 证明:若数列{an}是单调递增数列,且数列{an}的极限存在,则数列{an}是收敛的。

五、综合题(每题25分,共25分)15. 已知函数f(x)=x^3-6x^2+11x-6,求:a. 函数f(x)的极值点;b. 函数f(x)在区间[0,3]上的最大值和最小值。

专升本高等数学一考试真题及参考答案.doc

专升本高等数学一考试真题及参考答案.doc

专升本高等数学(一)考试真题及参考答案
专升本高等数学(一)考试真题及参考答案
一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。

第1题设b≠0,当x→0时,sinbx是x2的( )
A.高阶无穷小量
B.等价无穷小量
C.同阶但不等价无穷小量
D.低阶无穷小量
参考答案:D
参考答案:C
第3题函数f(x)=x3-12x+1的单调减区间为( )
A.(-∞,+∞)
B.(-∞,-2)
C.(-2,2)
D.(2,+∞)
参考答案:C
参考答案:A 第5题
参考答案:B
参考答案:D 第7题
参考答案:B 参考答案:A 参考答案:B
参考答案:A
二、填空题:本大题共10小题。

每小题4分,共40分,将答案填在题中横线上。

参考答案:1
参考答案:2
第13题设y=x2+e2,则dy=________
参考答案:(2x+e2)dx
第14题设y=(2+x)100,则Y’=_________.
参考答案:100(2+z)99
参考答案:-In∣3-x∣+C
参考答案:0
参考答案:1/3(e3一1)
参考答案:y2cosx
第19题微分方程y’=2x的通解为y=__________.
参考答案:x2+C
参考答案:1
三、解答题:本大翘共8个小题,共70分。

解答应写出推理,演算步骤。

第21题
第22题第23题第24题
第25题
第26题设二元函数z=x2+xy+y2+x-y-5,求z的极值.
第27题第28题。

高等数学专升本试卷(含答案)

高等数学专升本试卷(含答案)

高等数学专升本试卷考试说明:1、考试时间为150分钟;2、满分为150分;3、答案请写在试卷纸上,用蓝色或黑色墨水的钢笔、圆珠笔答卷,否则无效;4、密封线左边各项要求填写清楚完整。

一. 选择题(每个小题给出的选项中,只有一项符合要求.本题共有5个小题,每小题4分,共20分)1函数1arccos2x y +=的定义域是 ( ) .A 1x < .B ()3,1-.C {}{}131x x x <⋂-≤≤ .D 31x -≤≤.2.极限sin 3limx xx→∞等于 ( ).A 0 .B 13.C 3 .D 1.3.下列函数中,微分等于1ln dx x x的是 ( ) .A ln x x c + .B ()ln ln y x c =+ .C 21ln 2x c + .D ln xc x+.4.()1cos d x -=⎰( ).A 1cos x - .B cos x c -+.C sin x x c -+ .D sin x c +.5.方程2222x y z a b=+表示的二次曲面是(超纲,去掉) ( ).A 椭球面.B 圆锥面.C 椭圆抛物面 .D 柱面.二.填空题(只须在横线上直接写出答案,不必写出计算过程, 本题共有10个小题,每小题4分,共40分)1.2226lim _______________.4x x x x →+-=-2.设函数(),,x e f x a x ⎧=⎨+⎩00x x ≤>在点0x =处连续,则________________a =.3.设函数xy xe =,则()''0__________________y =.4.函数sin y x x =-在区间[]0,π上的最大值是_____________________.5.sin 1_______________________.4dx π⎛⎫+= ⎪⎝⎭⎰6.()() ____________________________.aax f x f x dx -+-=⎡⎤⎣⎦⎰7.设()() xa x F x f t dt x a=-⎰,其中()f t 是连续函数,则()lim _________________.x aF x +→=8.设32, 2a i j k b i j k =--=+-,则____________________.a b ⋅=9.设()2,yz x y =+则()0,1____________________________.zx ∂=∂(超纲,去掉) 10.设(){},01,11,D x y x y =≤≤-≤≤则_____________________.Ddxdy =⎰⎰(超纲,去掉)三.计算题( 本题共有10个小题,每小题6分,共60分)1.计算0lim.x xx e e x-→-2.设函数y =求.dy3.计算1xxe dx e +⎰.4.设 2 02sin cos tx u du y t⎧=⎪⎨⎪=⎩⎰,求.dy dx5.计算 2 .22dxx x +∞-∞++⎰6. 设曲线()y f x =在原点与曲线sin y x =相切,求n7.求微分方程'tan 3y x y +=-满足初值条件02y π⎛⎫= ⎪⎝⎭的特解. .8.设(),z z x y =是由方程2224x y z z ++=所确定的隐函数,求.zx∂∂(超纲,去掉) 9.求D⎰⎰ ,其中区域(){}2222,4D x y x y ππ=≤+≤ .(超纲,去掉)10.求幂级数21113n n n x ∞-=∑的收敛域.四.综合题(本题有3个小题,共30分,其中第1题14分,第2题8分,第3题8分) 1.求函数21x y x+=的单调区间,极值及其图形的凹凸区间.(本题14分)2.设()f x 在[]0,1上可导,()()00,11f f ==,且()f x 不恒等于x ,求证:存在()0,1ξ∈使得()' 1.f ξ> (本题8分)3.设曲线22y x x =-++与y 轴交于点P ,过P 点作该曲线的切线,求切线与该曲线及x 轴围成的区域绕x 轴旋转生成的旋转体的体积. (本题8分)参考答案及评分标准一. 选择题(每小题4分,共20分)1.D ,2.A ,3.B ,4.B ,5.C . (超纲,去掉) 二. 填空题(每小题4分,共40分) 1.54 , 2.1 , 3.2 , 4.0 , 5.sin 14x c π⎛⎫++ ⎪⎝⎭ ,6.0 ,7.()af a ,8.3 ,9.2 , (超纲,去掉) 10.2 . (超纲,去掉) 三. 计算题(每小题6分,共60分)1. 解.00lim lim 1x x xxx x e e e e x --→→-+=5分2.=6分2.解.()3221',1y x ==+ 5分故()3221+dxdy x =.6分3.解.原式=()11x xde e++⎰3分()ln 1.x e c =++6分4.解法1.dy dy dtdxdx dt=3分222sin 2.sin t t t t -==-6分解法2.因为22sin ,2sin dx t dt dy t t dt ==-, 4分故2.dyt dx=- 6分 5.解.原式()()2111d x x +∞-∞+=++⎰3分=()tan 1arc x +∞-∞+5分 =.π6分6.解.由条件推得()()'00,1 1.f f ==2分于是()1220lim 220n n f f n n →∞⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎢⎥=⎢⎥-⎢⎥⎣⎦5分(第1页,共3页)==6分注:若按下述方法:原式()()112200'lim lim 1f x f x x ++→→⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭解答者,只给4分. 7.解法1.分离变量,得到cot ,3dyxdx y=-+2分积分得到ln 3ln sin y x c +=-+或 ()3 .sin cy c x =-∈4分代入初值条件02y π⎛⎫= ⎪⎝⎭,得到3c =.于是特解为33.sin y x=-6分解法2.由()()(),p x dx p x dxy e q x e dx c -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰ 其中()()13,tan tan p x q x x x ==-,得到 ()3 .sin c y c x=-∈4分代入初值条件02y π⎛⎫=⎪⎝⎭,得到3c =.于是特解为 3 3.sin y x=-6分8.解.方程两边对x 求偏导数,得到(超纲,去掉)224,z zx z x x∂∂+=∂∂4分故.2z x x z∂=∂-6分9(超纲,去掉)解原式 2 2 0 sin d r rdrπππθ=⎰⎰3分= 222cos cos r r rdr πππππ⎡⎤-+⎢⎥⎣⎦⎰5分=26.π-6分10.解.由121121321131lim lim3n nn n n n n nx ax a x +++-→∞→∞==,可知收敛半径R =4分又当x =,对应数项级数的一般项为级数均发散,故该级数的收敛域为( .6分(第2页,共3页)四. 综合题(第1小题14分,第2小题8分, 第3小题8分,共30分) 1.解.定义域()(),00,-∞⋃+∞,()34232',",x x y y x x++=-= 令'0,y =得驻点12x =- ,5分令"0,y =得23x =- ,610分函数的单调增加区间为()2,0,-单调减少区间为(),2-∞-及()0,,+∞在2x =-处,有极小值14-. 其图形的凹区间为)0,3(-及()0,+∞,凸区间为(),3.-∞-14分2.证明.由于()f x 不恒等于x ,故存在()00,1,x ∈使得()00.f x x ≠2分如果()00,f x x >根据拉格朗日定理,存在()00,,x ξ∈使得 10)0()()('f 000=>--=x x x f x f ξ ,5分若()00,f x x <根据拉格朗日定理,存在()0,1,x ξ∈使得 ()()()000011'111f f x x f x x ξ--=>=--.8分注:在“2分”后,即写“利用微分中值定理可证得,必存在ξ,使得()'1f ξ>”者共得3分.3.解.P 点处该曲线的切线方程为2y x =+,且与x轴的交于点()2,0A -2分曲线与x 轴的交点()1,0B -和()2,0C ,因此区域由直线PA 和AB 及曲线弧PB所围成.4分该区域绕x 旋转生成的旋转体的体积 () 02218292330V xx dx πππ-=--++=⎰ .8分注:若计算由直线PA 与AC 及曲线弧PC 所围成,从而() 222 081362315V x x dx πππ=+-++=⎰者得6分.。

专升本高等数学考试题及答案

专升本高等数学考试题及答案

一、 判断下列命题是否正确,正确的在题后的括号划“√ ”,错误的划“×”(每小题2分,共10分)1. 设函数()f x 在点0x 处连续,则0lim ()0x x f x →'⎡⎤=⎢⎥⎣⎦( )2. 若()f x 为可导函数,则()f x 也为可导函数 ( )3. 设()f x 在[],a a -上连续,且()()f x f x -=,则(2)0aaxf x dx -=⎰( )4. 方程2520x x -+=在区间(1,2)内必有一个正实根 ( )5. 若()1f x < ,且在区间[]0,1上连续,则()21()xF x x f t dt =--⎰是区间[]0,1上的单调增函数 ( )二、填空题(每小题2分,共10分)1. 21lim()2xx x x→∞+= . 2. 设函数211ln(),21x x y e x -+=-则dy dx= . 3. 曲线12cos y x =+在(,2)3π出的法线方程为4. 设()arcsin xf x dx x c =+⎰,则1()dx f x ⎰= . 5.72= .三.选择题(每小题2分,共10分)1.曲线32y ax bx =+的拐点为(1,3),则 ( )(A )0a b +> (B )0a b += (C )0a b +≥ (D )0a b +< 2 设xy x =,则dydx为 ( )(A )1x x x-⋅ (B )ln xx x (C )(ln 1)xx x + (D )ln 1x +3[()()]aax f x f x dx -+-=⎰( )(A )04()axf x dx ⎰(B ) 02[()()]ax f x f x dx +-⎰(C ) 0 (D )前面都不正确4 设20()(2)xf x t t dt =-⎰,则它在12x =处取 ( ) (A )极大值 (B )极小值 (C ) 单调下降 (D ) 间断点5 直线111:314x y z L ---==-与平面:3x y z π++=的位置关系为 ( )(A )垂直 (B )斜交 (C )平行 (D )L π在内四 计算下列各题(每小题6分,共48分)1 设(cos )(sin ),yxdy x y dx=求 2 arctan x xdx ⋅⎰341⎰4 2303cos sin x xdx π⎰5 设空间三点为(1,1,1),(2,2,2),(1,1,3)A B C ----,试写出过点A ,B,C 的平面方程及过AB 中点M 的直线MC 的方程 61⎰7 若1y ≤,计算11x x y e dx --⋅⎰8 已知参数方程()()()x u y u u u ϕϕϕ'=⎧⎨'=⋅-⎩,且()0u ϕ''≠,求22d ydx五 证明不等式(8分)1ln(x x x +⋅≥-∞<<+∞六 应用题(8分)计算a 为何值时,曲线21y x ax a =-+-与直线0,2,0x x y =-=围城的封闭图形绕轴x 旋转一周所形成的旋转体的体积最小?并求出该体积。

四川2023年大专生专升本数学考试及答案 (1)

四川2023年大专生专升本数学考试及答案 (1)

普通高等学校招生全国统一考试数学(满分150分,考试时间120分钟)一、选择题:(本题共12小题,每小题5分,共60分)1.“a =1”是“直线0=+y x 和直线0=-ay x 互相垂直”的().A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件2.在ABC ∆中,AB=3,AC=2,BC=10,则AB AC ⋅=().A .23-B .32-C .32D .233.为得到函数πcos 3y x ⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin y x =的图像().A .向左平移π6个长度单位B .向右平移π6个长度单位C .向左平移5π6个长度单位D .向右平移5π6个长度单位4.函数|lg |)(x x x f -=在定义域上零点个数为().A .1B .2C .3D .45.如图是一个空间几何体的主视图、侧视图、俯视图,如果直角三角形的直角边长均为1,那么这个几何体的体积为().A .1B .21C .31D .616.一个等差数列{an}中,a1=-5,它的前11项的平均值是5,若从中抽取一项,余下项的平均值是4,则抽取的是()A.a11B.a10C.a9D.a87.设函数f(x)=logax(a>0,且a ≠1)满足f(9)=2,则f -1(log92)等于()A.2B.2C.21 D.±28.将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD=a,则三棱锥D —ABC 的体积为()A.63a B.123a C.3123a D.3122a 9.设O 、A 、B 、C 为平面上四个点,OA =a ,OB =b ,OC =c ,且a+b+c=0,a ·b=b ·c=c ·a=-1,则|a|+|b|+|c|等于()A.22B.23C.32D.3310.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是()A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞⎥⎝⎦11.已知a ∈(0,π2),2sin2α=cos2α+1,则sin α=()A .15BC .3D .512.设F 为双曲线C :22221x y a b -=(a>0,b>0)的右焦点,O为坐标原点,以OF 为直径的圆与圆x2+y2=a2交于P 、Q 两点.若|PQ|=|OF|,则C 的离心率为()ABC .2D二、填空题(共4小题,每小题5分;共计20分)1、如果∆ABC 的三个内角A ,B ,C 成等差数列,则B 一定等于______.2、已知2tan -=α,71tan =+)(βα,则βtan 的值为______.3.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E-BCD 的体积是______.4.在平面直角坐标系xOy 中,P 是曲线4(0)y x x x =+>上的一个动点,则点P 到直线x+y=0的距离的最小值是______.三、大题:(满分70分)1、已知函数3()x x bf x x++=,{}n a 是等差数列,且2(1)a f =,3(2)a f =,4(3)a f =.(1)求{}n a 的前n 项和;(2)求()f x 的极值.2、已知集合A 是由a -2,2a2+5a,12三个元素组成的,且-3∈A ,求a.3.(本题满分12分)已知四边形ABCD 是菱形,060BAD ∠=四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,G H 、分别是CE CF 、的中点.(1)求证:平面//AEF 平面BDGH(2)若平面BDGH 与平面ABCD 所成的角为060,求直线CF 与平面BDGH 所成的角的正弦值4.设),(),,(2211y x Q y x P 是抛物线px y 22=)0(>p 上相异两点,P Q 、到y 轴的距离的积为4且0=⋅OQ OP .(1)求该抛物线的标准方程.(2)过Q 的直线与抛物线的另一交点为R ,与x 轴交点为T ,且Q 为线段RT 的中点,试求弦PR 长度的最小值.5.已知椭圆C1以直线所过的定点为一个焦点,且短轴长为4.(Ⅰ)求椭圆C1的标准方程;(Ⅱ)已知椭圆C2的中心在原点,焦点在y 轴上,且长轴和短轴的长分别是椭圆C1的长轴和短轴的长的λ倍(λ>1),过点C (﹣1,0)的直线l 与椭圆C2交于A ,B 两个不同的点,若,求△OAB 的面积取得最大值时直线l 的方程. 6.已知函数(a ∈R ).(Ⅰ)讨论g (x )的单调性;(Ⅱ)若.证明:当x >0,且x ≠1时,.参考答案:一、选择题:1-5题答案:CDCCC 6-10题答案:ABDCB 11-12题答案:BA 二、填空题:1、︒60;2、3;3、10;4、4.三、大题:1、【解析】(1)由3()x x b f x x++=得211(1)21b a f b ++===+,3322(2)522b ba f ++===+,3433(3)1033b ba f ++===+,由于{}n a 为等差数列,∴2432a a a +=,即(2)(10)2(5)32b b b +++=+,解得6b =-,∴22624a b =+=-+=-,3655222b a =+=-+=,461010833b a =+=-+=,设数列{}n a 的公差为d ,则326d a a =-=,首项1210a a d =-=-,故数列{}n a 的通项公式为1(1)616n a a n d n =+-=-,∴数列{}n a 的前n 项和为21()(10616)31322n n n a a n n S n n +-+-===-;(2)法一(导数法):33266()1(0)x x b x x f x x x x x x +++-===-+≠,332226262(3)()2x x f x x x x x ++'=+==,当330x +<,即x <()0f x '<,函数()f x 在(,-∞上单调递减,当330x +>,即x >时,()0f x '>,函数()f x 在()+∞上单调递增,故函数()f x 在x =极小值为53(31f =+,无极大值.法二(基本不等式法):33266()1(0)x x b x x f x x x x x x +++-===-+≠,当0x >时,26()1f x x x =-+为单调递增函数,故()f x 在(0,)+∞上无极值.当0x <时,则6x ->,∴2226633()1()()1()()()11f x x x x x x x x =-+=-++=-+++≥+---53131==+,当且仅当23()x x-=-,即x =综上所述,函数()f x 在x =53(31f =+,无极大值.【评注】本题考查等差数列的通项公式以及前n 项和、函数单调性及应用,数列与函数进行结合考查,综合性较强,属于中档题.2、解:由-3∈A ,可得-3=a -2或-3=2a2+5a ,∴a =-1或a =-32.则当a =-1时,a -2=-3,2a2+5a =-3,不符合集合中元素的互异性,故a =-1应舍去.当a =-32时,a -2=-72,2a2+5a =-3,∴a =-32.3.参考答案:解:(1)G H 、分别是CE CF 、的中点所以//EF GH ------①---1分连接AC 与BD 交与O ,因为四边形ABCD 是菱形,所以O 是AC 的中点,连OG ,OG 是三角形ACE 的中位线//OG AE -②-----3分由①②知,平面//AEF 平面BDGH ----4分(2),BF BD ⊥平面BDEF ⊥平面ABCD ,所以BF ⊥平面ABCD -------5分取EF 的中点N ,//ON BF ON ∴⊥平面ABCD ,建系{,,}OB OC ON设2AB BF t ==,,则()()()100,03,0,10B C F t ,,,,,13,,222t H ⎛⎫⎪ ⎪⎝⎭--------6分()131,0,0,,222t OB OH ⎛⎫== ⎪ ⎪⎝⎭ 设平面BDGH 的法向量为()1,,n x y z = 110130222n OB x t n OH x y z ⎧⋅==⎪⎨⋅=++=⎪⎩,所以(10,3n t =- 平面ABCD 的法向量()20,0,1n = ----9分12231|cos ,|23n n t <>==+ ,所以29,3t t ==----10分所以()1,3,3CF =,设直线CF 与平面BDGH 所成的角为θ13133321336|,cos |sin 1=⨯=〉〈=n CF θ4.参考答案:解:(1)∵OP→·OQ →=0,则x1x2+y1y2=0,-1分又P 、Q 在抛物线上,故y12=2px1,y22=2px2,故得y122p ·y222p+y1y2=0,y1y2=-4p2222212144)(||pp y y x x ==∴-------3分又|x1x2|=4,故得4p2=4,p=1.所以抛物线的方程为:22y x =-------------4分(2)设直线PQ 过点E(a,0)且方程为x =my +a联立方程组⎩⎨⎧=+=x y amy x 22消去x 得y2-2my -2a =0∴⎩⎨⎧-==+ay y m y y 222121①设直线PR 与x 轴交于点M(b,0),则可设直线PR 方程为x =ny +b,并设R(x3,y3),同理可知,⎩⎨⎧-==+by y n y y 223131②--7分由①、②可得32y b y a=由题意,Q 为线段RT 的中点,∴y3=2y2,∴b=2a又由(Ⅰ)知,y1y2=-4,代入①,可得-2a =-4∴a =2.故b =4.∴831-=y y ∴3123123124)(1||1|PR |y y y y n y y n -+⋅+=-+=2481222≥+⋅+=n n .当n=0,即直线PQ 垂直于x 轴时|PR|取最小值245.已知椭圆C1以直线所过的定点为一个焦点,且短轴长为4.(Ⅰ)求椭圆C1的标准方程;(Ⅱ)已知椭圆C2的中心在原点,焦点在y 轴上,且长轴和短轴的长分别是椭圆C1的长轴和短轴的长的λ倍(λ>1),过点C (﹣1,0)的直线l 与椭圆C2交于A ,B 两个不同的点,若,求△OAB 的面积取得最大值时直线l 的方程.【解答】解:(Ⅰ)所给直线方程变形为,可知直线所过定点为.∴椭圆焦点在y 轴,且c=,依题意可知b=2,∴a2=c2+b2=9.则椭圆C1的方程标准为;(Ⅱ)依题意,设椭圆C2的方程为,A(x1,y1),B(x2,y2),∵λ>1,∴点C(﹣1,0)在椭圆内部,直线l与椭圆必有两个不同的交点.当直线l垂直于x轴时,(不是零向量),不合条件;故设直线l为y=k(x+1)(A,B,O三点不共线,故k≠0),由,得.由韦达定理得.∵,而点C(﹣1,0),∴(﹣1﹣x1,﹣y1)=2(x2+1,y2),则y1=﹣2y2,即y1+y2=﹣y2,故.∴△OAB的面积为S△OAB=S△AOC+S△BOC====.上式取等号的条件是,即k=±时,△OAB的面积取得最大值.∴直线的方程为或.6.已知函数(a∈R).(Ⅰ)讨论g(x)的单调性;(Ⅱ)若.证明:当x>0,且x≠1时,.【解答】(Ⅰ)解:由已知得g(x)的定义域为(0,+∞),…(1分)方程2x2+x﹣a=0的判别式△=1+8a.…(2分)①当时,△≤0,g'(x)≥0,此时,g(x)在(0,+∞)上为增函数;…(3分)②当时,设方程2x2+x﹣a=0的两根为,若,则x1<x2≤0,此时,g'(x)>0,g(x)在(0,+∞)上为增函数;…(4分)若a>0,则x1<0<x2,此时,g(x)在(0,x2]上为减函数,在(x2,+∞)上为增函数,…..…(5分)综上所述:当a≤0时,g(x)的增区间为(0,+∞),无减区间;当a>0时,g(x)的减区间为(0,x2],增区间为(x2,+∞).…(6分)(Ⅱ)证明:由题意知,…(7分)∴,…(8分)考虑函数,则…(9分)所以x≠1时,h'(x)<0,而h(1)=0…(10分)故x∈(0,1)时,,可得,x∈(1,+∞)时,,可得,…(11分)从而当x>0,且x≠1时,.。

数学专升本考试试题(含答案解析)

数学专升本考试试题(含答案解析)

数学专升本考试试题(含答案解析)一、选择题(每题2分,共20分)1. 若函数f(x) = x^2 4x + 3在区间[1, 3]上的最大值为M,最小值为m,则Mm的值为()A. 2B. 4C. 6D. 8答案:C解析:函数f(x) = x^2 4x + 3在区间[1, 3]上的最大值和最小值分别为f(1)和f(3),计算可得M = f(1) = 0,m = f(3) = 0,所以Mm = 00 = 0,故选C。

2. 若等差数列{an}的前n项和为Sn,且S5 = 25,则数列{an}的公差d为()A. 2B. 3C. 4D. 5答案:A解析:等差数列的前n项和公式为Sn = n/2 (a1 + an),代入S5 = 25,得到5/2 (a1 + a5) = 25,又因为a5 = a1 + 4d,所以5/2 (a1 + a1 + 4d) = 25,化简得到a1 + 2d = 5。

又因为S5 =5/2 (a1 + a5) = 5/2 (2a1 + 4d) = 5(a1 + 2d),代入S5 = 25,得到5(a1 + 2d) = 25,解得a1 + 2d = 5。

联立两个方程,得到d = 2,故选A。

3. 若圆x^2 + y^2 = 1上的点到原点的距离为r,则r的取值范围是()A. 0 < r < 1B. 0 ≤ r ≤ 1C. r > 1D. r ≥ 1答案:B解析:圆x^2 + y^2 = 1上的点到原点的距离为r,即r^2 = x^2 + y^2,因为x^2 + y^2 = 1,所以r^2 = 1,即0 ≤ r ≤ 1,故选B。

4. 若函数f(x) = ax^2 + bx + c在x = 1时的导数为2,则b的值为()A. 2B. 3C. 4D. 5答案:A解析:函数f(x) = ax^2 + bx + c在x = 1时的导数为2,即f'(1) = 2,计算f'(x) = 2ax + b,代入x = 1,得到f'(1) = 2a +b = 2,解得b = 2 2a,故选A。

黑龙江专升本考试高等数学1试题

黑龙江专升本考试高等数学1试题

黑龙江专升本高等数学试题(仅供个人复习参考,未经同意不得转载和做为商业用途)一、单项选择题(每题3分,共15分)1. 设]1,0[,)()(0∈=⎰x dt t f x g x且)(x f 是定义在区间]1,0[上的连续函数,)(x g 的图像一定不是( )。

A. B. C. D.2. 若幂级数∑∞=1n n n x a 和∑∞=1n nn x b 的收敛半径都是R ,级数∑∞=+1)(n n n n x b a 的收敛半径是1R ,则下列关系正确的是( )。

R R A =1. R R B ≥1. R R C ≤1. R R D <1.3. 设)(x g 在a x =附近有界,∞=→)(lim x f ax ,下列各式错误的是( )。

0)()(lim .=→x f x g A a x ∞=+→)]()([lim .x g x f B a x ∞=-→)]()([lim .x g x f C a x ∞=⋅→)()(lim .x g x f D ax 4. 设函数)(x f 在其定义域内二阶可导,且对任意x 有0)('>x f ,0)(''<x f ,若记x x f D ∆⋅=)(',)()(x f x x f y -∆+=∆,当0>∆x 时对1 o y x 1 o y 1 o y y1 o于任意x 有( )。

A. 0>∆>y D ;B. 0>>∆D y ;C. 0<<∆D y ;D. 0<∆<y D .5. 设二元函数),(y x f z =在)0,0(点的邻域内有定义,下列说法正确的是( )。

A. ),(y x f z =在)0,0(点处连续,则z 在该点处的偏导数存在;B. ),(y x f z =在)0,0(点处偏导数存在,则z 在该点处连续;C. ),(y x f z =在)0,0(点处可微,则z 在该点处必连续;D. ),(y x f z =在)0,0(点处偏导数存在,则z 在该点处可微。

2020年陕西专升本高等数学真题和解析

2020年陕西专升本高等数学真题和解析

l ln l

14.计算定积分 m
l l
l
-2-
15.设函数 m
ll
,其中 具有连续二阶偏导数,求 及
l
16.求函数 ul i m l l 数.
在点 u i处沿方向 m u
i的方向导
17.计算二重积分 m ul i l ,其中积分区城 是由 m l 和 l 所围成的闭区域
m及轴
18.计算对坐标的曲线积分 m u l ൅ t i l ultt m l 的边界曲线,方向为逆时针方向。
2020 年陕西省专科升本科统一考试
高等数学试卷
一、单项选择题:
1.设函数
uliቤተ መጻሕፍቲ ባይዱ
m
sin ll
l
,则间断点个数为(
)
A.0
B.1
C.2
D.3
2.设函数 uli m l l 䁫l 䳌䁫,则( )
A.点 l m 是 uli的极值点,点u i是曲线 m uli的拐点
B.点 l m 是 uli的极值点,点u i不是曲线 m uli的拐点
䳌li ,其中 是:l
-3-
19.将函数 l m 䳌 l展开为ul i的幂级数
20.求微分方程
m 䳌 l的通解
四、应用题与证明题:
21.当 l
l
时,证明:
l
22.求由曲线 m l,l m 所围成的平面图形的面积 ,并求由该平面图形绕 l 轴 旋转一周所形成旋转体的体积 .
添加小学士(xueshi005) 查看高数真题解析
C.点 l m 不是 uli的极值点,点u
i是曲线 m uli的拐点
D.点 l m 不是 uli的极值点,点u i不是曲线 m uli的拐点
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学(二)命题预测试卷(二)一、选择题(本大题共5个小题,每小题4分,共20分。

在每个小题给出的选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内)1.下列函数中,当1→x 时,及无穷小量)1(x -相比是高阶无穷小的是( )A .)3ln(x -B .x x x +-232C .)1cos(-xD .12-x 2.曲线在),1(+∞内是( )A .处处单调减小B .处处单调增加C .具有最大值D .具有最小值 3.设)(x f 是可导函数,且1)()2(lim000=-+→hx f h x f x ,则)(0x f '为( )A .1B .0C .2D .21 4.若,则⎰1)(dx x f 为( )A .21 B .2ln 1- C .1 D .2ln 5.设等于( )A .z zxyB .1-z xyC .1-z yD .z y二、填空题:本大题共10个小题,10个空,每空4分,共40分,把答案填在 题中横线上。

6.设2yx e z xy +=,则= .7.设x e x f x ln )(+=',则='')3(f . 8.,则 .9.设二重积分的积分区域D 是4122≤+≤y x ,则 .10.= .11.函数的极小值点为 . 12.若,则=a .13.曲线x y arctan =在横坐标为1点处的切线方程为 .14.函数在处的导数值为 . 15. .三、解答题:本大题共13小题,共90分,解答应写出推理、演算步骤。

16.(本题满分6分)求函数⎪⎩⎪⎨⎧=≠==0001arctan )(x x xx f 的间断点. 17.(本题满分6分)计算.18.(本题满分6分)计算⎥⎦⎤⎢⎣⎡++→x x x x 1)1(arcsin ln lim .19.(本题满分6分)设函数⎪⎩⎪⎨⎧≤<-+>=-01)1ln(0 )(1x x x xe x f x ,求)(x f '. 20.(本题满分6分)求函数)sin(y x y +=的二阶导数. 21.(本题满分6分)求曲线342)(x x x f -=的极值点. 22.(本题满分6分)计算.23.(本题满分6分)若)(x f 的一个原函数为x x ln ,求⎰⋅dx x f x )(. 24.(本题满分6分)已知,求常数k 的值. 25.(本题满分6分)求函数5126),(23+-+-=y x x y y x f 的极值. 26.(本题满分10分)求,其中D 是由曲线2x y =及2y x =所围成的平面区域. 27.(本题满分10分)设⎰-=adx x f x x f 02)()(,且常数1-≠a ,求证:.28.(本题满分10分)求函数的单调区间、极值、此函数曲线的凹凸区间、拐点以及渐近线并作出函数的图形.参考答案一、选择题1.B 2.B 3.D 4.D 5.D 二、填空题6.122+e 7. 8.11-x 9.π3 10.21-e 11.0=x 12.5 13. 14. 15.0 三、解答题16.解 这是一个分段函数,)(x f 在点0=x 的左极限和右极限都存在.21arctan lim )(lim 00π-==-→-→x x f x x21arctan lim )(lim 00π==+→+→x x f x x)(lim )(lim 00x f x f x x +→-→≠故当0→x 时,)(x f 的极限不存在,点0=x 是)(x f 的第一类间断点.17.解 原式=222112111lim121lim 222==--+=--++∞→+∞→xx x x x x x x .18.解 设xx x x f 1)1(arcsin )(++=. 由于0=x 是初等函数)(lnx f 的可去间断点,故 []⎥⎦⎤⎢⎣⎡++==→→→x x x x x x x f x f 100)1(arcsin lim ln )(lim ln )(ln lim⎥⎦⎤⎢⎣⎡++=→→xx x x x 100)1(lim arcsin lim ln1ln )0ln(==+=e e .19.解 首先在0≠x 时,分别求出函数各表达式的导数,即 当0>x 时,)11(1)()(12111x e xxeexex f x xxx+=⋅+='='----当01<<-x 时,[]11)1ln()(+='+='x x x f . 然后分别求出在0=x 处函数的左导数和右导数,即0)11(lim )0(1=+='-+→+xe f xx 从而)0()0(+-'≠'f f ,函数在0=x 处不可导. 所以⎪⎪⎩⎪⎪⎨⎧<+>+='-0 110 )11()(1x x x x e x f x 20.解 )sin(y x y +=)cos()cos()1)(cos(y x y y x y y x y +'++='++=' ① [])1()sin()cos()1)(sin(y y x y y x y y y x y '++-'++''+'++-='' []2)1)(sin()cos(1y y x y y x '++-=''+-)cos(1)1)(sin(2y x y y x y +-'++-='' ②又由①解得代入②得2)cos(1)cos(1)cos(1)cos(y x y x y x y x y +-⎥⎦⎤⎢⎣⎡+-+++='21.解 先出求)(x f 的一阶导数:)23(464)(223-=-='x x x x x f 令0)(='x f 即 解得驻点为.再求出)(x f 的二阶导数)1(121212)(2-=-=''x x x x x f . 当时,,故是极小值. 当01=x 时,0)0(=''f ,在)0,(-∞内,0)(<'x f ,在内0)(<'x f故 01=x 不是极值点.总之 曲线242)(x x x f -=只有极小值点.22.解 11)1(112222323+-=+-+=+-+=+x xx x x x x x x x x x x∴ ⎰⎰⎰⎰+-=+-=+dx x xxdx dx x x x dx x x 1)1(12223⎰++-=++-=C x x x x d x )1ln(21211)1(21212222 23.解 由题设知1ln )(ln ln )ln ()(+='+='=x x x x x x x f 故⎰⎰+=⋅dx x x dx x f x )1(ln )( ⎰⎰+=xdx xdx x ln[]22221)(ln ln 21x x d x x x +-⋅=⎰22221121ln 21x dx x x x x ⎰+-⋅=222121ln 21x xdx x x ⎰+-=. 24.解 ⎰⎰⎰+⋅=+=+-∞→∞-∞-02020211lim 111a a dx xk dx x k dx x k2)arctan (lim arctan lim 0π⋅=-⋅=⋅=-∞→-∞→k a k x k a a a又故 解得. 25.解123,622-=∂∂+-=∂∂y yf x x f 解方程组得驻点)2,3(),2,3(00-B A 又 y f C f B f A yy xy xx 6,0,2=''==''=-=''=对于驻点126,0,2:230-===-===y x y C B A A ,故0242>=-AC B∴ 驻点0A 不是极值点.对于驻点126,0,2:230-===-=-==y x y C B A B故 0242<-=-AC B ,又02<-=A .∴ 函数),(y x f 在)2,3(0-B 点取得极大值 30524189)2()2,3(3=+++--=-f26.解 由2x y =及2y x =得两曲线的交点为)0,0(O 及)1,1(A )0(2≥=y y x 的反函数为xy =.∴ dx y y x dy y x dx dxdy y x x xxx D2102222102)21()()(⎰⎰⎰⎰⎰+=+=+14033)1034172()21()21(105227104425=-+=⎥⎦⎤⎢⎣⎡+-+=⎰x x x dx x x x x 27.证 ⎰⎰⎰⎥⎦⎤⎢⎣⎡-=aa a dx dx x f x dx x f 0020)()( dx dx x f dx x aaa⎰⎰⎰⎥⎦⎤⎢⎣⎡-=0002)( ⎰⎰⋅-=aa adx dx x f x 0003)(31∴ 3)()(30a dx x f a dx x f a a=+⎰⎰于是.28.解 (1)先求函数的定义域为),0(+∞. (2)求y '和驻点:,令0='y 得驻点e x =.(3)由y '的符号确定函数的单调增减区间及极值. 当e x <<0时,,所以y 单调增加; 当e x >时,0<'y ,所以y 单调减少. 由极值的第一充分条件可知为极大值. (4)求y ''并确定y ''的符号: ,令0=''y 得23e x =.当230e x <<时,0<''y ,曲线y 为凸的; 当23e x >时,0>''y ,曲线y 为凹的. 根据拐点的充分条件可知点为拐点.这里的y '和y ''的计算是本题的关键,读者在计算时一定要认真、仔细。

另外建议读者用列表法来分析求解更为简捷,现列表如下:x),0(ee),(23e e23e),(23+∞ey '+ 0 - - - y ''-+就表上所给的y '和y ''符号,可得到: 函数的单调增加区间为),0(e ; 函数的单调减少区间为),(+∞e ; 函数的极大值为; 函数的凸区间为),0(23e ; 函数的凹区间为),(23+∞e ;函数的拐点为. (5)因为, 所以曲线有 水平渐近线0=y 铅垂渐近线0=x(6)根据上述的函数特性作出函数图形如下图.。

相关文档
最新文档