高考数学《立体几何初步》专题 直线和平面平行学案

合集下载

202新数学复习第七章立体几何7.4直线平面平行的判定及其性质学案含解析

202新数学复习第七章立体几何7.4直线平面平行的判定及其性质学案含解析

第四节直线、平面平行的判定及其性质课标要求考情分析1。

以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题.1.直线、平面平行的判定及其性质是高考中的重点考查内容,涉及线线平行、线面平行、面面平行的判定及其应用等内容.2.题型主要以解答题的形式出现,解题要求有较强的推理论证能力,广泛应用转化与化归的思想.知识点一直线与平面平行的判定定理和性质定理应用判定定理时,要注意“内”“外"“平行”三个条件必须都具备,缺一不可.知识点二平面与平面平行的判定定理和性质定理1。

平面与平面平行还有如下判定:如果一个平面内的两条相交直线分别平行于另一个平面的两条直线,那么这两个平面互相平行.2.平面与平面平行还有如下性质:(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.(2)夹在两个平行平面间的平行线段长度相等.(3)两条直线被三个平行平面所截,截得的对应线段成比例.1.思考辨析判断下列结论正误(在括号内打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.(×)(2)若直线a与平面α内无数条直线平行,则a∥α。

(×)(3)若直线a∥平面α,P∈平面α,则过点P且平行于a 的直线有无数条.(×)(4)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.(×)(5)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.(√)2.小题热身(1)如果直线a∥平面α,那么直线a与平面α的(D) A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线都不相交(2)下列命题中正确的是(D)A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α(3)设α,β是两个不同的平面,m是直线且m⊂α,则“m∥β”是“α∥β”的(B)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(4)如图,在正方体ABCD。

高中立体几何教案5篇

高中立体几何教案5篇

高中立体几何教案5篇第一篇:高中立体几何教案高中立体几何教案第一章直线和平面两个平面平行的性质教案教学目标1.使学生掌握两个平面平行的性质定理及应用;2.引导学生自己探索与研究两个平面平行的性质定理,培养和发展学生发现问题解决问题的能力.教学重点和难点重点:两个平面平行的性质定理;难点:两个平面平行的性质定理的证明及应用.教学过程一、复习提问教师简述上节课研究的主要内容(即两个平面的位置关系,平面与平面平行的定义及两个平面平行的判定定理),并让学生回答:(1)两个平面平行的意义是什么?(2)平面与平面的判定定理是怎样的?并用命题的形式写出来?(教师板书平面与平面平行的定义及用命题形式书写平面与平面平行的判定定理)(目的:(1)通过学生回答,来检查学生能否正确叙述学过的知识,正确理解平面与平面平行的判定定理.(2)板书定义及定理内容,是为学生猜测并发现平面与平面平行的性质定理作准备)二、引出命题(教师在对上述问题讲评之后,点出本节课主题并板书,平面与平面平行的性质)师:从课题中,可以看出,我们这节课研究的主要对象是什么?生:两个平面平行能推导出哪些正确的结论.师:下面我们猜测一下,已知两平面平行,能得出些什么结论.(学生议论)师:猜测是发现数学问题常用的方法.“没有大胆的猜想,就作不出伟大的发现.”但猜想不是盲目的,有一些常用的方法,比如可以对已有的命题增加条件,或是交换已有命题的条件和结论.也可通过类比法即通过两个对象类似之处的比较而由已经获得的知识去引出新的猜想等来得到新的命题.(不仅要引导学生猜想,同时又给学生具体的猜想方法)师:前面,复习了平面与平面平行的判定定理,判定定理的结论是两平面平行,这对我们猜想有何启发?生:由平面与平面平行的定义,我猜想:两个平面平行,其中一个平面内的直线必平行于另一个面.师:很好,把它写成命题形式.(教师板书并作图,同时指出,先作猜想、再一起证明)猜想一:已知:平面α∥β,直线a 求证:a∥β.生:由判定定理“垂直于同一条直线的两个平面平行”.我猜想:一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.[教师板书]α,猜想二:已知:平面α∥β,直线l⊥α.求证:l⊥β.师:这一猜想的已知条件不仅是“α∥β”,还加上了“直线l⊥α”.下面请同学们看课本上关于判定定理“垂直于同一直线的两平面平行”的证明.在证明过程中,“平面γ∩α=a,平面γ∩β=a′”.a与a′是什么关系?生:a∥a′.师:若改为γ不是过AA′的平面,而是任意一个与α,β都相交的平面γ.同学们考虑一下是否可以得到一个猜想呢?(学生讨论)生:如果一个平面与两个平行平面中的一个相交,也必与另一个平面相交.” [教师板书] 猜想三:已知:平面α∥β,平面γ∩α=a,求证:γ与β一定相交.师:怎么作这样的猜想呢?生:我想起平面几何中的一个结论:“一条直线与两条平行线中的一条相交,也必与另一条相交.”师:很好,这里实质用的是类比法来猜想.就是把原来的直线类似看作平面.两平行直线类似看作两个平行平面,从而得出这一猜想.大家再考虑,猜想三中,一个平面与两个平行平面相交,得到的交线有什么位置关系?生:平行师:请同学们表达出这个命题.生:如果两个平行平面同时和第三个平面相交,那么它们的交线平行. [教师板书]猜想四:已知:平面α∥β,平面γ∩α=a,γ∩β=b.求证:a∥b.[通过复习定理的证明方法,既发现了猜想三,猜想四,同时又复习了定理的证明方法,也为猜想四的证明,作了铺垫] 师:在得到猜想三时,我们用到了类比法,实际上,在立体几何的研究中,将所要解决的问题与平面几何中的有关问题作类比,常常能给我们以启示,发现立体几何中的新问题.比如:在平面几何中,我们有这样一条定理:“夹在两条平行线间的平行线段相等”,请同学们用类比的方法,看能否得出一个立体几何中的猜想?生:把两条平行线看作两个平行平面,可得猜想:夹在两个平行平面间的平行线段相等. [教师板书] 猜想五:已知:平面α∥β,AA′∥BB′,且A,B∈α,B,B′∈β.求证:AA′=BB′.[该命题,在教材中是一道练习题,但也是平面与平面平行的性质定理,为了完整体现平面与平面平行的性质定理,故尔把它放在课堂上进行分析]三、证明猜想师:通过分析,我们得到了五个猜想,猜想的结论往往并不完全可靠.得到猜想,并不意谓着我们已经得到了两个平面平行的性质定理,下面主要来论证我们得到的猜想是否正确.[师生相互交流,共同完成猜想的论证] 师:猜想一是由平面与平面平行的定义得到的,因此在证明过程中要注意应用定义.[猜想一证明] 证明:因为α∥β,所以α与β无公共点.又因为a α,所以 a与β无公共点.故a∥β.师:利用平面与平面平行的定义及线面平行的定义,论证了猜想一的正确性.这便是平面与平面平行的性质定理一.简言之,“面面平行,则线面平行.”[教师擦掉“猜想一”,板书“性质定理一”] [论证完猜想一之后,教师与学生共同研究了“猜想二”,发现,若论证了“猜想四”的正确性质,“猜想二”就容易证了,因而首先讨论“猜想三,猜想四”] 师:“猜想三”是类比平面几何中的结论得到的,还记得初中时,是怎么证明的?[学生回答:反证法] 师:那么,大家可否类比初中的证明方法来证明“猜想三”呢?生:用反证法:假设γ与β不相交,则γ∥β.这样过直线a有两个平面α和γ与β平行.与“过平面外一点有且只有一个平面与已知平面平行”矛盾.故γ与β相交.师:很好.由此可知:不只是发现问题时可用类比法,就是证明方法也可用类比方法.不过猜想三,虽已证明为正确的命题,但教材中并把它作为平面与平面平行的性质定理,大家在今后应用中要注意.[猜想四的证明] 师:猜想四要证明的是直线a∥b,显然a,b共面于平面γ,只需推导出a与b无公共点即可.生:(证法一)因为a∥β,所以 a与β无公共点.又因为a α,b β.所以 a与b无公共点.又因为a γ,b 所以a∥b.师:我们来探讨其它的证明方法.要证线线平行,可以转化为线面平行.生:(证法二)因为a α,又因为α∥β,所以a∥β.又因为a γ,且γ∩β=b,所以a∥b.师:用两种不同证法得出了“猜想四”是正确的.这是平面和平面平行的性质定理二.[教师擦掉“猜想四”,板书“性质定理二”] 师:平面与平面平行的性质定理二给出了在两个平行平面内找一对平行线的方法.即:“作一平面,交两面,得交线,则线线平行.”同时也给我们证明两条直线平行的又一方法.简言之,“面面平行,则线线平行”.[猜想二的证明] 师:猜想二要证明的是直线l⊥β,根据线面垂直的判定定理,就要证明l和平面β内的两条相交直线垂直.那么如何在平面β内作两条相交直线呢?[引导学生回忆:“垂直于同一直线的两个平面平行”的定理的证明] γ,生:(证法一)设l∩α=A,l∩β=B.过AB作平面γ∩α=a,γ∩β=a′.因为α∥β,所以a∥a′.再过AB作平面δ∩α=b,δ∩β=b′.同理b∥b′.又因为l⊥α,所以l⊥a,l⊥b,所以l⊥a′,l⊥b′,又a′∩b′=β,故l⊥β.师:要证明l⊥β,根据线面垂直的定义,就是要证明l和平面β内任何一条直线垂直.生:(证法二)在β内任取一条直线b,经过b作一平面γ,使γ∩α=a,因为α∥β,所以a∥b,因此l⊥α,a α,故l⊥a,所以l⊥b.又因为b为β内任意一条直线,所以l⊥β.[教师擦掉“猜想二”,板书“性质定理三”] [猜想五的证明] 证明:因为AA′∥BB′,所以过AA′,BB′有一个平面γ,且γ∩α=AB,γ∩β=A′B′.因为α∥β,所以AB∥A′B′,因此AA′ B′B为平行四边形.故AA′=BB′.[教师擦掉“猜想五”,板书“性质定理四”] 师:性质定理四,是类比两条平行线的性质得到的.平行线的性质有许多,大家还能类比得出哪些有关平行平面的猜想呢?你能证明吗?请大家课下思考.[因类比法是重要的方法,但平行性质定理已得出,故留作课下思考]四、定理应用师:以上我们通过探索一猜想一论证,得出了平面与平面平行的四个性质定理,下面来作简单的应用.例已知平面α∥β,AB,CD为夹在α,β间的异面线段,E、F分别为AB,CD的中点.求证:EF∥α,EF∥β.师:要证EF∥β,根据直线与平面平行的判定定理,就是要在β内找一条直线与EF平行.证法一:连接AF并延长交β于G.因为AG∩CD=F,所以 AG,CD确定平面γ,且γ∩α=AC,γ∩β=DG.因为α∥β,所以AC∥DG,所以∠ACF=∠GDF,又∠AFC=∠DFG,CF=DF,所以△ACF≌△DFG.所以AF=FG.又 AE=BE,所以EF∥BG,BG 故EF∥β.同理:EF∥α.师:要证明EF∥β,只须过EF作一平面,使该平面与β平行,则根据平面与平面平行性质定理即可证.证法二:因为AB与CD为异面直线,所以A CD.β.在A,CD确定的平面内过A作AG∥CD,交β于G,取AG中点H,连结AC,HF.因为α∥β,所以AC∥DG∥EF.因为DG β,所以HF∥β.又因为 E为AB的中点,因此EH∥BG,所以EH∥β.又EH∩FH=H,因此平面EFH∥β,EF 所以EF∥β.同理,EF∥α.平面EFH,师:从以上两种证明方法可以看出,虽然是解决立体几何问题,但都是通过转化为平面几何的问题来解决的.这是解决立体几何问题的一种技能,只是依据的不同,转化的方式也不同.五、平行平面间的距离师:和两个平行平面同时垂直的直线,叫做这两个平行平面的公垂线,它夹在这两个平行平面间的部分,叫做这两个平行平面的公垂线段.两个平行平面有几条公垂线?这些公垂线的位置关系是什么?生:两个平行平面有无数条公垂线,它们都是平行直线.师:夹在两平行平面之间的公垂线段有什么数量关系?根据是什么?生:相等,根据“夹在两个平行平面间的平行线段相等.”师:可见夹在两个平行平面的公垂线段长度是唯一的.而且是夹在两个平行平面间的所有线段中最短的.因此我们把这公垂线段的长度叫做两个平行平面的距离.显然两个平行平面的距离等于其中一个平面上的任一点到另一个平面的垂线段的长度.六、小结1.由学生用文字语言和符号语言来叙述两个平面平行的性质定理.教师总结本节课是由发现与论证两个过程组成的.简单的说就是:由具体问题具体素材用类比等方法猜想命题,并由转化等方法论证猜想的正确性,得到结论.2.在应用定理解决立体几何问题时,要注意转化为平面图形的问题来处理.大家在今后学习中一定要注意掌握这一基本技能.3.线线平行、线面平行与面面平行的判定定理和性质定理构成一套完整的定理体系.在学习中应发现其内在的科学规律:低一级位置关系判定着高一级位置关系;高一级位置关系一定能推导低一级位置关系.下面以三种位置关系为纲应用转化的思想整理如下:七、布置作业课本:p.38,习题五5,6,7,8.课堂教学设计说明1.本节课的中心是两个平行平面的性质定理.定理较多,若采取平铺直叙,直接地给出命题,那样就绕开了发现、探索问题的过程,虽然比较省事,但对发展学生的思维能力是不利的.在设计本教案时,充分考虑到教学研究活动是由发现与论证这样两个过程组成的.因而把“如何引出命题”和“如何猜想”作为本节课的重要活动内容.在教师的启发下,让学生利用具体问题;运用具体素材,通过类比等具体方法,发现命题,完成猜想.然后在教师的引导下,让学生一一完成对猜想的证明,得到两个平面平行的性质定理.也就在这一“探索”、“发现”、“论证”的过程中,培养了学生发现问题,解决问题的能力.在实施过程中,让学生处在主体地位,教师始终处于引导者的位置.特别是在用类比法发现猜想时,学生根据两条平行线的性质类比得出许多猜想.比如:根据“平行于同一条直线的两条直线平行”得到“平行于同一个平面的两个平面平行.”根据“两条直线平行,同位角相等”等,得到“与两个平行平面都相交的直线与两个平面所成的角相等”等等,当然在这些猜想中,有的是正确的,有的是错误的,这里不一一叙述.这就要求教师在教学过程中,注意变化,作适当处理.学生在整节课中,思维活跃,沉浸在“探索、发现”的思维乐趣中,也正是在这种乐趣中,提高了学生的思维能力.2.在对定理的证明过程中,课上不仅要求证出来,而且还考虑多种证法.对于定理的证明,是解决问题的一些常用方法,也可以说是常规方法,是要学生认真掌握的.因此教师要把定理的证明方法,作为教学的重点内容进行必要的讲解,培养学生解决问题的能力.3.转化是重要的数学思想及数学思维方法.它在立体几何中处处体现.实质上处理空间图形问题的基本思想方法就是把它转化为平面图形的问题,化繁为简.特别是在线线平行,线面平行,面面平行三种平行的关系上转化的思想也有较充分的体现,因而在小结中列出三个平行关系相互转让的关系图,一方面便于学生理解,记忆,同时通过此表,能马上发现三者相互推导的关系,能打开思路,发现线索,得到最佳的解题方案.第二篇:高中立体几何高中立体几何的学习高中立体几何的学习主要在于培养空间抽象能力的基础上,发展学生的逻辑思维能力和空间想象能力。

高中数学_直线与平面平行的判定教学设计学情分析教材分析课后反思

高中数学_直线与平面平行的判定教学设计学情分析教材分析课后反思

直线与平面平行的判定(教学设计)一、教学内容分析本节教材选自人教A版数学必修二,本节内容在立体几何学习中起着承上启下的作用,具有重要的意义与地位。

本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。

本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大。

二、设计思想本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,通过直观感知,操作确认,合情推理,归纳出直线与平面平行的判定定理,将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的过程中,揭示直线与平面平行的判定,理解数学的概念,领会数学的思想方法,养成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力,提高学生的数学逻辑思维能力。

三、教学目标通过直观感知——观察——操作确认的认识方法,理解并掌握直线与平面平行的判定定理,掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理。

培养学生观察、探究、发现的能力和空间想象能力,逻辑思维能力。

让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。

四、教学重点与难点重点:理解直线与平面平行的判定定理难点:会用判定定理证明简单的线面平行的问题五、教学过程设计(一)知识准备.新课引入提问1:根据公共点的情况,空间中直线a和平面α有哪几种位置关系?并完成下表:(多媒体幻灯片演示)位置关系公共点符号表示图形表示我们把直线与平面相交或平行的位置关系统称为直线在平面外,用符号表示为提问2:根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法,并指出是否有别的判定途径。

[设计意图:通过提问,学生复习并归纳空间直线与平面位置关系引入本节课题,并为探寻直线与平面平行判定定理作好准备。

高中数学第一章立体几何初步1.2.3第1课时直线与平面平行学案苏教版必修20722192

高中数学第一章立体几何初步1.2.3第1课时直线与平面平行学案苏教版必修20722192

高中数学第一章立体几何初步1.2.3第1课时直线与平面平行学案苏教版必修207221921.通过直观感知、操作确认直线与平面的位置关系及线面平行的判定定理.(重点) 2.理解并会证明直线与平面平行的性质定理.(难点)3.会用图形语言和符号语言描述直线和平面平行的判定定理和性质定理.(重点、易错点)[基础·初探]教材整理1 直线和平面的位置关系阅读教材P32的内容,完成下列问题.直线和平面的位置关系位置关系直线a在平面α内直线a与平面α相交直线a与平面α平行公共点有无数个公共点有且只有一个公共点没有公共点符号表示a⊂αa∩α=A a∥α图形表示判断(正确的打“√”,错误的打“×”)(1)若直线l平行于平面α内的无数条直线,则l∥α.(×)(2)若直线a在平面α外,则a∥α.(×)(3)若直线a∩b=∅,b⊂α,则a∥α.(×)(4)若直线a∥平面α,则直线a平行于平面α内的无数条直线.(√)教材整理2 直线与平面平行的判定阅读教材P33例1以上部分内容,完成下列问题.直线与平面平行的判定定理(1)自然语言:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.(2)图形语言:如图1-2-34所示.图1-2-34(3)符号语言:⎭⎪⎬⎪⎫a ⊄αb ⊂αa ∥b ⇒a ∥α.1.如果直线a ∥b ,且a ∥平面α,那么b 与平面α的位置关系是________. 【解析】 若a ∥b ,且a ∥平面α,则b 与平面α的位置关系如图所示.【答案】 b ∥α或b ⊂α2.能保证直线a 与平面α平行的条件是__________(填序号).【导学号:41292026】(1)b ⊂α,a ∥b ;(2)b ⊂α,c ∥α,a ∥b ,a ∥c ;(3)b ⊂α,A ,B ∈a ,C ,D ∈b ,且AC ∥BD ; (4)a ⊄α,b ⊂α,a ∥b .【解析】 由线面平行的判定定理可知(4)正确. 【答案】 (4)教材整理3 直线与平面平行的性质阅读教材P 33例1以下部分内容,完成下列问题. 直线与平面平行的性质定理(1)自然语言:如果一条直线和一个平面平行 ,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行.图1-2-35(2)图形语言:如图1-2-35所示. (3)符号语言:⎭⎪⎬⎪⎫l ∥αl ⊂βα∩β=m ⇒l ∥m .1.已知a ,b 是两条相交直线,a ∥α,则b 与α的位置关系是________. 【答案】 相交或平行2.如图1-2-36所示的三棱柱ABC -A 1B 1C 1中,过A 1B 1的平面与平面ABC 交于直线DE ,则DE 与AB 的位置关系是__________.图1-2-36【解析】 ∵ABC -A 1B 1C 1是三棱柱, ∴A 1B 1∥AB .又∵A 1B 1⊄平面ABC ,AB ⊂平面ABC , ∴A 1B 1∥平面ABC .∵A 1B 1⊂平面A 1B 1ED ,平面A 1B 1ED ∩平面ABC =DE , ∴A 1B 1∥DE ,∴DE ∥AB . 【答案】 平行[小组合作型]直线与平面的位置关系(1)下列说法中,正确的有__________.(填序号)①如果一条直线与一个平面平行,那么这条直线与平面内的任意一条直线平行;②如果一条直线与一个平面相交,那么这条直线与平面内无数条直线垂直;③过平面外一点有且只有一条直线与已知平面平行;④一条直线上有两点到平面的距离相等,则这条直线平行于这个平面.(2)下列命题中,a,b,l表示直线,α表示平面.①若a⊂α,b⊄α,且a,b不相交,则a∥b;②若a⊂α,b⊂α,a∩b=A,l⊄α,且l和a,b均不相交,则l∥α;③若点A∉a,则过点A可以作无数个平面与a平行;④若a与α内的无数条直线不相交,则a∥α.其中正确的命题有______.(把你认为正确的序号都填上)【精彩点拨】利用线面平行的定义,借助图形分析判断.【自主解答】(1)如果一条直线与一个平面平行,那么这条直线与平面内的直线平行或异面,所以①错;如果一条直线与一个平面相交,在这个平面内作过交点的直线垂直于这条直线,那么在这个平面内与所作直线平行的直线都与已知直线垂直,有无数条,所以②正确;对于③显然错误;而④,也有可能相交,所以也错误.(2)①错误.如图(a),满足a⊂α,b⊄α,且a,b不相交,但a与b不平行.②错误.如图(b),满足a⊂α,b⊂α,a∩b=A,l⊄α,且l和a,b均不相交,但l 与α相交.③正确.如图(c),点A∉a,过点A可以作无数个平面与a平行.④错误.当a与α相交时,也有a与α内的无数条直线不相交.【答案】(1)②(2)③空间中直线与平面的位置关系有:直线在平面内、直线与平面相交、直线与平面平行三种.在判断直线与平面的位置关系时,这三种情形都要考虑到,避免疏忽或遗漏.另外,我们可以借助空间几何图形,把要判断关系的直线、平面放在某些具体的空间图形中,以便于正确作出判断,避免凭空臆断.[再练一题]1.下列命题中正确的个数是________个.①若直线l 上有无数个点不在平面α内,则l ∥α;②若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行;③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行; ④若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点. 【解析】 ①中,l 可与α相交,故①错.②中,α内的直线可能与l 异面,故②错.③中,另一条直线可能在这个平面内,故③错.④中,由l 与α平行的定义知④正确.【答案】 1直线与平面平行的判定定理的应用如图1-2-37, M ,N 分别是底面为矩形的四棱锥P -ABCD 的棱AB ,PC 的中点,求证:MN ∥平面PAD .图1-2-37【精彩点拨】 取PD 中点E ,证明EN 綊AM .【自主解答】 如图所示,取PD 的中点E ,连结AE ,NE ,∵N 是PC 的中点,∴EN 綊12DC .又∵AM 綊12CD ,∴NE 綊AM .∴四边形AMNE 是平行四边形. ∴MN ∥AE .又∵AE ⊂平面PAD ,MN ⊄平面PAD , ∴MN ∥平面PAD .利用判定定理证明直线与平面平行的关键是找平面内与已知直线平行的直线.可先直观判断平面内是否已有,若没有,则需作出该直线,常考虑三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线.[再练一题]2.如图1-2-38,S 是平行四边形ABCD 平面外一点,M ,N 分别是SA ,BD 上的点,且AM SM =DN NB.图1-2-38求证:MN ∥平面SBC .【证明】 连结AN 并延长交BC 于P ,连结SP ,∵AD ∥BC ,∴DN NB =ANNP,又∵AM SM =DN NB, ∴AM SM =AN NP,∴MN ∥SP ,又MN ⊄平面SBC ,SP ⊂平面SBC , ∴MN ∥平面SBC .[探究共研型]线面平行的性质定理的应用探究1 若a ∥α,b ⊂α,那么a 与b 的位置关系是怎样的?a 与b 有没有可能平行?在什么条件下平行?【提示】 a 与b 平行或异面,当a ,b 同在一平面内时,a ∥b .探究2 如图1-2-39,若a ∥b ,a ⊂α,b ⊂α,α∩β=c ,且c ∥a .那么a 与β,b与β是什么关系?图1-2-39【提示】a∥β,b∥β.探究3 一个长方体木块如图1-2-40所示,要经过平面A1C1内一点P和棱BC将木块锯开,应该怎样画线?图1-2-40【提示】在平面A1C1内,过点P作EF∥B1C1,分别交A1B1,C1D1于E,F.连结BE,CF,则BE,CF和EF就是所要画的线,如图.四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM 上取一点G,过G和AP作平面交平面BDM于GH.求证:PA∥GH.图1-2-41【精彩点拨】要证线线平行,先证线面平行,再证另一线为过已知直线的平面与已知平面的交线.【自主解答】如图,连结AC交BD于点O,连结MO,∵四边形ABCD 是平行四边形,∴O 是AC 的中点. 又M 是PC 的中点, ∴AP ∥OM .根据直线和平面平行的判定定理,则有PA ∥平面BMD . ∵平面PAHG ∩平面BMD =GH ,根据直线和平面平行的性质定理,∴PA ∥GH .证明与平行有关的问题时,线面平行的判定定理、性质定理、公理4常结合起来使用,并常利用下面的关系:线线平行――→判定定理线面平行――→性质定理线线平行.运用线面平行的性质定理时,应寻找过已知直线的平面与已知平面的交线,有时为了得到交线需作出辅助平面.[再练一题]3.如图1-2-42,将上例条件改为“已知四边形ABCD 是平行四边形,四边形BDPF 也是平行四边形,M 是线段PF 的中点.求证:BM ∥平面APC .图1-2-42【证明】 记AC 与BD 的交点为O ,连结OP .∵O,M分别为BD,PF的中点,四边形BDPF是平行四边形,∴OB∥MP且OB=MP,∴四边形OBMP是平行四边形,∴BM∥OP,∵OP⊂平面APC,BM⊄平面APC,∴BM∥平面APC.1.以下说法(其中a,b表示直线,α表示平面)正确的个数为________.①若a∥b,b⊂α,则a∥α;②若a∥α,b∥α,则a∥b;③若a∥b,b∥α,则a∥α;④若a∥α,b⊂α,则a∥b.【答案】02.长方体ABCD-A1B1C1D1中,E为AA1的中点,F为BB1的中点,与EF平行的长方体的面有________个.【导学号:41292027】【解析】如图,∵EF∥A1B1,∴EF∥平面A1B1C1D1.同理EF∥平面ABCD,EF∥平面DD1C1C.【答案】 33.在长方体ABCD -A 1B 1C 1D 1中, (1)与直线AB 平行的平面是________; (2)与直线AA 1平行的平面是________; (3)与直线AB 1平行的平面是________. 【解析】 如图,可知:AB ∥平面A 1B 1C 1D 1,AB ∥平面CDD 1C 1; AA 1∥平面BCC 1B 1,AA 1∥平面CDD 1C 1; AB 1∥平面CDD 1C 1.【答案】 (1)平面A 1B 1C 1D 1,平面CDD 1C 1 (2)平面BCC 1B 1,平面CDD 1C 1 (3)平面CDD 1C 14.直线a ∥平面α,过α内一点A 的所有直线中与直线a 平行的直线条数为__________. 【解析】 过直线a 和点A 的平面与平面α有一条交线l ,只有l 满足在平面α内过点A 且与a 平行.【答案】 15.正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE ,BD 上各取一点P ,Q ,且AP =DQ .图1-2-43求证:PQ ∥平面BCE .【证明】 如图所示, 在平面ABEF 内过P 作PM ∥AB 交BE 于点M ,在平面ABCD 内过点Q 作QN ∥AB 交BC 于点N ,连结MN .∵PM ∥AB ,∴PM AB =PEAE.又∵QN∥AB∥CD,∴QNDC=BQBD,即QNAB=BQBD.∵正方形ABEF与ABCD有公共边AB,∴AE=DB.∵AP=DQ,∴PE=BQ,∴PM=QN.又∵PM∥AB,QN∥AB,∴PM∥QN.∴四边形PQNM为平行四边形.∴PQ∥MN.又∵MN⊂平面BCE,PQ⊄平面BCE.∴PQ∥平面BCE.11。

高考数学一轮复习 第十章 立体几何初步 第68课 直线与平面平行教案

高考数学一轮复习 第十章 立体几何初步 第68课 直线与平面平行教案

直线与平面平行一、教学目标1.借助手中的笔与课本,让学生直观感受直线与平面平行的位置关系,并能够用图形来表示,进一步培养学生的空间想象能力;2.理解并掌握直线与平面平行的判定定理和性质定理,能运用其解决有关问题;3.通过运用两个定理解决有关问题,是学生感受化归的数学思想,培养学生数学地分析问题、解决问题的能力.二、基础知识回顾与梳理【回顾要求】1:阅读必修二第32-34页完成以下任务:其中2.直线和平面平行的判定理与性质定理;(1) 直线和平面平行的判定理:一条直线与的一条直线平行,则该直线与此平面平行,用符号表示为. 用图形表示为:_______________(2).直线和平面平行的性质定理:一条直线与一个,则过这条直线的任一平面与此平面的与该.用符号表示为:⇒a∥b.用图形表示为:_______________【要点解析】1.线面平行,线面相交,线在面内是通过公共点个数定义.2:利用直线和平面平行的判定定理来证明线面平行,关键是寻找平面内与已知直线平行的直线,把握几何体的结构特征,合理利用几何体中的三角形的中位线,平行四边形对边平行等平面图形的特点找线线平行关系是常用方法.同时线面平行的位置关系是最基本的位置,证明方法当然是用线面平行的判定定理,但更多的情况下,用面面平行的性质定理反而方便.3:一要熟练掌握所有判定定理与性质定理,梳理好几种位置关系的常见证明方法,如证明线面平行,既可以构造线线平行,也可以构造面面平行.而证明线线平行常用的是三角形中位线性质,或构造平行四边形;二要用分析与综合相结合的方法来寻找证明的思路;三要注意表述规范,推理严谨,避免使用一些虽然正确但不能作为推理依据的结论.4本节内容是高考考查的重点内容,主要以考查线面平行、面面平行为主,试题主要分两大类:一类是空间中线面平行、面面平行的判断与证明;另一类是围绕平行的探究性问题.5解决探究性问题一般要采用执果索因的方法,假设求解的结果存在,从这个结果出发,寻找使这个结论成立的充分条件,如果找到了符合题目结果要求的条件,则存在;如果找不到符合题目结果要求的条件(出现矛盾),则不存在.6:线面平行的判定,可供选用的定理有:①若a ∥b ,a ⊄α,b ⊂α,则a ∥α. ②若α∥β,a ⊂α,则a ∥β.(3)判定两平面平行,可供选用的定理有:若a ,b ⊂α,a ,b 相交,且a ∥β,b ∥β,则α∥β.三、诊断练习1、教学处理:课前由学生自主完成4道小题,并要求将解题过程扼要地写在学习笔记栏.课前抽查批阅部分同学的解答,了解学生的思路及主要错误.本课诊断练习4小题也可以当堂完成训练和讲评.2、结合课件点评.必要时借助实物投影仪,有针对地投影几位学生的解答过程. 题1. 在长方体ABCD-A 1B 1C 1D 1的侧面和底面所在的平面中 (1)与直线AB 平行的平面是_______________________ (2)与直线AC 平行的平面是_______________________【分析与点评】问题1:空间中直线与平面的位置关系有哪些?问题2:要找线面平行,只要找什么?答案:111111D C B A C CDD 和面面, 1111D C B A 面 题2.已知不重合的直线a ,b 和平面α, ① 若a∥α,b ⊂α,则a∥b; ② 若a∥α,b∥α,则a∥b; ③ 若a∥b,b ⊂α,则a∥α; ④ 若a∥b,a∥α,则b∥α或b ⊂α,上面命题中正确的是 (填序号).【分析与点评】借助实物(笔和课桌)让学生自己动手,摆放所有的可能性.通过最熟悉的几何体—长方体,让学生在图形中画出上述的几种情形,增强学生的空间想象力和读图能力. 【答案】④题3. 如果直线a 平行于平面α,则平面α内有 条直线与a 平行. 【分析与点评】问题1:空间中两条直线的位置关系有哪些?问题2:在α内任意作一条直线b ,由线面平行的定义知道直线a 与直线b 没有公共点,那么可以由此就断定a 与b 平行吗?【交流与讨论】1.关键词“任意”、“所有”、“无数”的区别.2.如果直线a 垂直于平面α,则平面α内有 条直线与a 垂直. 【答案】无数(交流与讨论中2的答案为“任意”或“所有”)题4.已知直线,a b ,平面α,且b α⊂,则“a ∥b ”是“a ∥α”的 条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”之一) 【分析与点评】先引导学生回忆命题的充分性与必要性的定义.提出下列问题:11111D 11111B 1A 1M'1. 由“a ∥b ”能推出“a ∥α”吗?(直线a 与平面α是怎样的位置关系) 2. 由“a ∥α”能推出“a ∥b ”吗?3. 已知直线,a b ,平面α,且b α⊂,则“a ∥α”是“a ∥b ”的 条件. 【答案】既不充分也不必要 3、要点归纳(1)判断命题正确与错误时,一般错误的命题只要举出反例,正确的命题要进行简单的证明。

高三数学高考(立体几何初步)专题学案:平面与平面平行 学案

高三数学高考(立体几何初步)专题学案:平面与平面平行 学案

- 1 - / 3第6课时平面与平面平行1.两个平面的位置关系: 2.两个平面平行的判定定理如果一个平面内有两条直线分别平行于另一个平面,那么这两个平面平行. (记忆口诀:线面平行,则面面平行) 3、两个平面平行的性质定理如果两个平行平面同时与第三个平面相交,那么它所有的平行. (记忆口诀:面面平行,则线线平行) 4.两个平行平面距离和两个平行平面同时的直线,叫做两个平面的公垂线,公垂线夹在平行平面间的部分叫做两个平面的,两个平行面的公垂线段的,叫做两个平行平面的距离.例1.如图,正方体ABCD -A 1B 1C 1D 1中,M 、N 、E 、F 分别是棱A 1B 1、A 1D 1、B 1C 1、C 1D 1中点. (1) 求证:平面AMN ∥平面EFDB ; (2) 求异面直线AM 、BD 所成角的余弦值. 解:(1) 易证EF ∥B 1D 1 MN ∥B 1D 1∴EF ∥MN AN ∥BE 又MN∩AN =N EF∩BE =E ∴面AMN ∥面EFDB(2) 易证MN ∥BD ∴∠AMN 为AM 与BD 所成角 易求得 cos ∠AMN =1010变式训练1:如图,α∥β,AB 交α、β于A 、B ,CD 交α、β于C 、D ,AB ⋂CD =O ,O 在两平面之间, AO =5,BO =8,CO =6.求CD . 解:依题意有AC ∥DBOD COOB AO =即OD685=∴OD =548∴CD =548+6=578例2 . 已知平面α∥平面β,AB 、CD 是夹在平面α和平面β间的两条线段,点E 、F 分别在AB 、CD 上,且nm FDCF EBAE ==.求证:EF ∥α∥β.证明:1°若AB 与CD 共面,设AB 与CD 确定平面γ,则α∩γ=AC β∩γ=BDA 1 ABC B 1 C 1 EF M ND 1 DBDβ αACO- 2 - / 3∵α∥β ∴AC ∥BD 又∵FDCFEB AE =∴EF ∥AC ∥BD ∴EF ∥α∥β 2°若AB 与CD 异面,过A 作AA'∥CD 在AA'截点O ,使nmFD CF EB AE OA AO ===1' ∴EO ∥BA' OF ∥A'D∴平面EOF ∥α∥β ∴EF 与α、β无公共点 ∴EF ∥α∥β变式训练2:在正方体ABCD -A 1B 1C 1D 1中,M 、N 、P 分别是CC 1、B 1C 1、C 1D 1的中点. 求证:(1) AP ⊥MN ; (2) 平面MNP ∥平面A 1BD .证明:(1) 连BC 1易知AP 在BCC 1B 1内射影是BC 1 BC 1⊥MN ∴AP ⊥MN (2) ∵⇒⎭⎬⎫PM B A BD PN ////1面MNP ∥面A 1BD例3.已知a 和b 是两条异面直线.(1) 求证:过a 和b 分别存在平面α和β,使α∥β; (2) 求证:a 、b 间的距离等于平面α与β的距离.(1) 在直线a 上任取一点P ,过P 作b'∥b ,在直线b 上取一点Q 过Q 作a'∥a 设a, b'确定一个平面α a', b 确定平面β a'∥aa ⊂α ∴a'∥α 同理b ∥α 又a'、b ⊂β ∴α∥β 因此,过a 和b 分别存在两个平面α、β(2) 设AB 是a 和b 的公垂线,则AB ⊥b ,AB ⊥a ∴AB ⊥a' a'和b 是β内的相交直线,∴AB ⊥β 同理AB ⊥α 因此,a, b 间的距离等于α与β间的距离.变式训练3:如图,已知平面α∥平面β,线段PQ 、PF 、QC 分别交平面α于A 、B 、C 、点,交平面β于D 、F 、E 点,PA =9,AD =12,DQ =16,△ABC 的面积是72,试求△DEF 的面积.解:平面α∥平面β,∴AB ∥DF ,AC ∥DE , ∴∠CAB =∠EDF .在△PDF 中,AB ∥DF ,DF =AD PA PA +AB =37AB ,同理DE =74AC .QFD ECABαβP- 3 - / 3S △DEF =21DF·DE sin ∠EDF =34S △ABC =96.例4.如图,平面α∥平面β,∆ABC .∆A 1B 1C 1分别在α、β内,线段AA 1、BB 1、CC 1交于点O ,O 在α、β之间,若AB =2AC =2,∠BAC =60°,OA :OA 1=3:2. 求∆A 1B 1C 1的面积.解:∵α∥β AA 1∩BB 1=O ∴AB ∥A 1B 1 同理AC ∥A 1C 1 BC ∥B 1C 1∴△ABC ∽△A 1B 1C 1 S △ABC =21AB·AC·sin60°=2323111==OA OA B A AB ∴49111=∆∆C B A ABC S S ∴111C B A S ∆=932 变式训练4:如图,在底面是菱形的四棱锥P -ABCD 中,∠ABC =60°,PA =AC =a ,PB =PD =2a ,点E 是PD 的中点.(1)证明:PA ⊥平面ABCD ,PB ∥平面EAC ;(2)求以AC 为棱,EAC 与DAC 为面的二面角θ的正切值. (1)证:因为底面ABCD 是菱形,∠ABC =60°, 所以AB =AD =AC =a ,在△PAB 中,由PA 2+AB 2=2a 2=PB 2知PA ⊥AB , 同理,PA ⊥AD ,所以PA ⊥平面ABCD . 因为PB =PD +DC +CB =2ED +DC +DA =(ED +DA )+(ED +DC )=EA +EC ∴PB 、EA 、EC 共面.PB ⊄平面EAC ,所以PB ∥平面EAC .(2) 解:作EG ∥PA 交AD 于G ,由PA ∥平面ABCD ,知EG ⊥平面ABCD .作GH ⊥AC 于H ,连结EH ,则EH ⊥AC ,∠EHG 即为二面角θ的平面角.又E 是PD 的中点,从而G 是AD 的中点,EG =21a ,AG =21a ,GH =AG sin 60°=43a ,332. 1.判定两个平面平行的方法:(1)定义法;(2)判定定理. 2.正确运用两平面平行的性质.3.注意线线平行,线面平行,面面平行的相互转化:线∥线⇔线∥面⇔面∥面.B 1A 1C 1 βα BCAO DEACBP。

直线与平面平行判定教学设计

直线与平面平行判定教学设计

直线与平面平行判定教学设计直线与平面平行的判定一、教材分析直线和平面平行额判定是高中数学必修课第二册第一章第三节的内容,本章的前两节的内容是分别介绍了平面的基本的性质和空间的平行直线与异面直线,因此我们在学习了这些基本的知识之后,从而来进一步的研究直线与平面之间的关系。

直线与平面的问题是高考考查的重点之一,求解的关键是根据线与面之间的互化关系,借助创设辅助线与面,找出符号语言与图形语言之间的关系把问题解决。

通过对有关概念和定理的概括、证明和应用,是学生体会“转化”的观点,提高学生的空间想象能力和逻辑推理的能力。

二、学情分析由于学生在初中已学习了平面上两直线平行的各种判定办法,但由于时间长了,也需要再作一些必要的复习。

通过对两条直线的平行的判定的复习,让学生从中获得一些关于直线与平面平行的知识。

线面平行来转换成线线平行这样的转换思想也是学生首次接触的,应该加以必要的强化与引导。

让学生的对抽象概括的能力以及推理论证的能力得以提高。

三、教学目标1.知识能力的目标(1)直观感知、操作确认,归纳概括出判定定理,对判定定理的构成要素及其关系有较清晰的认识,能用三种语言对判定定理进行表述。

初步掌握利用线面平行判定定理证明线面平行的一般步骤。

(2)使学生进一步了解平行的判定方法,学会准确地使用数学语言表述集合对象的位置关系,并运用判定定理解决一些简单的直线和平面平行的推理论证。

2.过程方法目标(1)通过观察、思考、探究等提出问题,以问题引导学生思维活动,经历从实际背景中抽象出数学模型、从现实的生活空间抽象出几何图形和几何问题的过程,发展学生的空间观念、几何直觉(即把握图形的能力)与一定的归纳概括能力;(2)学习和证明问题的过程在想想、猜猜、证证的过程中完成.培养学生先猜后证,运用合情推理去猜想,再运用逻辑推理去证明的推理论证能力.进一步理解掌握化归与转化思想。

懂得将立体问题平面化、线面问题线线化)3.情感态度价值观目标(1)通过数学思辨和推理过程培养学生说理、批判、质疑的严谨风格和理性精神;(2)领会数学科学的应用价值,激发学生的数学学习兴趣.四、教学重点、教学难点教学重点:判定定理的引入与理解。

高中数学第一章立体几何初步1.2.2第1课时平行直线、直线与平面平行学案新人教B版必修2(2021

高中数学第一章立体几何初步1.2.2第1课时平行直线、直线与平面平行学案新人教B版必修2(2021

2017-2018学年高中数学第一章立体几何初步1.2.2 第1课时平行直线、直线与平面平行学案新人教B版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学第一章立体几何初步1.2.2 第1课时平行直线、直线与平面平行学案新人教B版必修2)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学第一章立体几何初步1.2.2 第1课时平行直线、直线与平面平行学案新人教B版必修2的全部内容。

1.2。

2 第1课时平行直线、直线与平面平行[学习目标] 1.能认识和理解空间平行线的传递性,会证明空间等角定理.2.掌握直线与平面平行的判定定理和性质定理,并能利用两个定理解决空间中的平行关系问题.[知识链接]1。

直线和平面的位置关系有:平行、相交、直线在平面内.2.当直线与平面无公共点时,直线和平面平行。

[预习导引]1.平行直线的定义及平行公理在平面几何中,我们把在同一个平面内不相交的两条直线叫做平行线。

平行公理:过直线外一点有且只有一条直线和已知直线平行。

2.基本性质4平行于同一条直线的两条直线互相平行,即如果直线a∥b,c∥b,那么a∥c.3。

等角定理如果一个角的两边与另一个角的两边分别对应平行,并且方向相同,那么这两个角相等。

解决学生凝难点:4。

直线和平面的位置关系位置关系直线a在平面α内直线a与平面α相交直线a与平面α平行公共点有无数个公共点有且只有一个公共点没有公共点符号表示a⊂αa∩α=A a∥α图形表示5.定理条件结论符号语言判定如果不在一个平面内的一条这条直线和这个l⊄α,m⊂直线和平面内的一条直线平行平面平行α,l∥m⇒l∥α性质如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交这条直线和这两个平面的交线平行l∥α,l⊂β,α∩β=m⇒l∥m要点一基本性质4及等角定理的应用例1 如图,已知棱长为a的正方体ABCDA1B1C1D1中,M,N分别是棱CD、AD的中点.(1)求证:四边形MNA1C1是梯形;(2)求证:∠DNM=∠D1A1C1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学《立体几何初步》专题 直线和平面平行学案
第3课时 直线和平面平行
1.直线和平面的位置关系 、 、 . 直线在平面内,有 公共点. 直线和平面相交,有 公共点. 直线和平面平行,有 公共点.
直线与平面平行、直线与平面相交称为直线在平面外. 2.直线和平面平行的判定定理
如果平面外 和这个平面内 平行,那么这条直线和这个平面平行. (记忆口诀:线线平行 线面平行) 3.直线和平面平行的性质定理
如果一条直线和一个平面 ,经过 平面和这个平面相交,那么这条直线和交线平行.(记忆口诀:线面平行 线线平行)
例1.如图,P 是∆ABC 所在平面外一点,M ∈PB , 试过AM 作一平面平行于BC ,并说明画法的理论依据. 解:在平面PBC 内过M 点作MN∥BC,交PC 于N 点, 连AN 则平面AMN 为所求
根据线面平行的性质定理及判定定理
变式训练1:在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是A 1B 和AC 上的点,且A 1M =AN . 求证:MN∥平面BB 1C 1C .
证明:在面BA 1内作MM 1∥A 1B 1交BB 1于M 1 在面AC 内作NN 1∥AB 交BC 于N 1 易证MM 1 NN 1即可
例2. 设直线a∥α,P 为α内任意一点,求证:过P 且平行a 的直线 必在平面α内. 证明:设a 与p 确定平面β,且α∩β=a' ,则a'∥a 又a ∥l l ∩a'=p ∴a 与a'重合 ∴l ⊂α
典型例题 B
C
A P M
基础过关
变式训练2:求证:如果一条直线和两个相交平面都平行,那么这条直线和它们的交线平行. 解:已知α∩β=l a ∥α a ∥β 求证:a ∥l 证明:过a 作平面γ交平面α于b ,交平面β于C , ∵a ∥α,∴a ∥b
同理,∵a ∥β ∴a ∥c ∴b ∥c 又∵b ⊄β 且c ⊂β ∴b∥β 又平面α经过b 交β于l ∴b ∥l 且a ∥b ∴a ∥l
例3. 如图,在四棱锥P -ABCD 中,底面ABCD 是正方形,侧菱PD⊥底面ABCD ,PD =DC ,E 是PC 的中点.
( 1 ) 证明:PA∥平面EDB ;
( 2 ) 求EB 与底面ABCD 所成的角的正切值. (1 ) 证明:提示,连结AC 交BD 于点O ,连结EO . ( 2) 解:作EF⊥DC 交DC 于F ,连结BF .
设正方形ABCD 的边长为a .∵ PD⊥底面ABCD ,∴PD⊥DC. ∴ EF∥PD,F 为DC 的中点.∴EF⊥底面ABCD , BF 为BE 在底面ABCD 内的射影, ∠EBF 为直线EB 与底面ABCD 所成的角. 在Rt△BCF 中,BF =a CF BC 2
522=+ ∵ EF=2
1
PD =2
a
,∴ 在Rt△EFB 中, tan∠EBF=
55
=
BF EF .所以EB 与底面ABCD 所成的角的正切值为5
5. 变式训练3:如图,在四面体中截面EFGH 平行于对棱 AB 和CD ,试问:截面在什么位置时,其截面的面积最大? 解:易证截面EFGH 是平行四边形
设AB =a CD =b ∠FGH=α(a 、b 为定值,α为异面直线AB 与CD 所成的角) 又设FG =x GH =y 由平几得 CB
CG a x =
BC
BG b y =

b
y
a x +=1 ∴y =a
b (a -x)
∴S □ EFGH =FG·GH·sinα=x ·a
b (a -x )sinα
=a
b αsin x(a -x)
∵x >0 a -x >0 且x +(a -x)=a 为定值
B
A
D
C
E P
A E F
B
H
G
C
D
∴当且仅当 x =a -x 即x =2
a 时(S □ EFGH )max =4
sin αab
例4.已知:∆ABC 中,∠ACB =90°,D 、E 分别为AC 、AB 的中点,沿DE 将∆ADE 折起使A 到A'的位置,若平面A'DE⊥面BCDE ,M 是A'B 的中点,求证:ME∥面A'CD . 证明:取A'C 的中点N ,连MN 、DN , 则MN 2
1BC ,DE 2
1BC
∴MN DE ∴ME∥ND 又ME ⊄面A'CD ND ⊂面A'CD ∴ME∥面A'CD
变式训练4: (2005年北京)如图,在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4,点D 是AB 的中点. ( 1 ) 求证:AC⊥BC 1; (2) 求证:AC 1∥平面CDB 1;
(3) 求异面直线AC 1与B 1C 所成角的余弦值.
解:(1)直三棱柱ABC -A 1B 1C 1,底面三边长AC =3,BC =4,AB =5.
∴AC⊥BC,且BC 1在平面ABC 内的射影为BC ,∴AC⊥BC 1;
(2)设CB 1与C 1B 的交点为E ,连结DE ,∵D 是AB 的中点,E 是BC 1的中点,∴DE∥AC 1 ∴DE ⊂平面CDB 1,AC 1⊄平面CDB 1,∴AC 1∥平面CDB 1;
(3)∵DE∥AC 1,∴CED 为AC 1与B 1C 所成的角,在△CED 中,ED =2
1AC 1=2
5,CD =2
1AB =2
5,CE =2
1
CB 1=22,∴cos∠CED =
5
2
22
52228=

⨯ ∴异面直线AC 1与B 1C 所成角的余弦值为5
2
2.
1.证明直线和平面平行的方法有:(1)依定义采用反证法;(2)判定定理;(3)面面平行性质;(4)向量法.
2.辅助线(面)是解、证有关线面问题的关键,要充分发挥在化空间问题为平面问题的转化作
A
D
B
B 1
C 1
A 1
C
小结归纳
用.。

相关文档
最新文档