直线与平面平行的判定 平面与平面平行的判定导学案
直线与平面平行的判定(导学案)

2.2.1直线与平面平行的判定导学案班级______ 姓名_______学号一、学习目标:1 能够说出多种现实中的直线与平面平行的情形;2 通过对课本的预习,能够总结出直线与平面平行所需要的条件,并且能用自己的语言叙述出来;3 能够正确运用判定定理证明一些简单的线面平行问题。
二、重点与难点:学习重点:直线与平面平行的判定定理及其应用。
学习难点:将判定定理准确的应用到数学问题中。
三、学习过程:1、课前复习与思考:①先回忆一下以前学过的内容。
想一想,直线和平面都有哪些位置关系?②根据日常生活的观察,你能感知并举出直线与平面平行的具体事例吗?2、预习课本54-55页,思考以下问题:如果平面外的直线a与平面α内的一条直线b平行,那么直线a与平面α平行吗?请写出直线和平面平行的判定定理:简单概括:几何符号表示:作用:四、例题讲解:例1 (教材55页例1)例2空间四边形ABCD中,E、F分别是AB,AD中点求证:EF∥平面BCD.AFEDB C五、课堂练习:教材55页练习1,2题教材61页习题2.2A组 1,2题六、课堂小结:这节课我们主要学了:七、当堂检测:1、下列命题中正确的是()A 如果一条直线与一个平面不相交,它们一定平行B 一条直线与一个平面平行,它就与这个平面内的任何直线平行C 一条直线与另外一条直线平行,它就与经过该直线的任何平面平行D 平面外的一条直线a与平面a内的一条直线平行,则a a//2、直线a,b是异面直线,直线a和平面a平行,则直线b和平面a的位置关系是()A.ab⊂B.ab//C.b与a相交D.以上都有可能3、如果平面a外有两点A、B,它们到平面a的距离都是c,则直线AB和平面a的位置关系一定是()A.平行B.相交C.平行或相交D.aAB⊂八、课后作业:教材62页习题2.2A组 3题。
线面,面面平行判定及性质导学案

2.2.1 直线与平面平行得判定编写:尚辉袁长涛滕璐聂东林校审:高一数学组基础知识:?用三种语言表述。
2。
判断两条直线平行,常用得有几种方法?3。
根据定义,判定直线与平面就是否平行,只需判定直线与平面有没有公共点、但就是,直线就是无限伸长得,平面就是无限延展得,如何保证直线与平面没有公共点呢?用三种语言表述直线与平面平行得判定定理。
,线面得平行有传递性吗?学习任务::1、如图,长方体中,(1)与AB平行得平面就是____________________;(2)与AA1平行得平面就是____________________;(3)与AD平行得平面就是____________________;2、如图,正方体中,为得中点,试判断与平面得位置关系,并说明理由、3。
如图,在空间四边形ABCD中,已知E、F分别就是AB、AD得中点。
求证:EF∥平面BCD二、选做题:1、下列命题中正确得个数就是( )(1)若直线上有无数个点都不在平面内,则;(2)若直线与平面平行,则与平面内得任意一条直线都平行;(3)如果两条平行直线中得一条与一个平面平行,那么另一条也与这个平面平行;(4)若直线与平面平行,则与平面内得任意一条直线都没有公共点;(5)平行于同一平面得两条直线互相平行。
A。
0个 B。
1个 C。
2个 D.3个2、如图,在正方体中,E、F分别就是棱BC、C1D1得中点,求证:EF//平面BDD1B1。
3。
如图,在四棱锥中,已知底面为平行四边形,、分别就是,得中点。
求证:平面;学习报告(学生):教学反思(教师):2。
2.1 直线与平面平行得判定课型:习题编写:尚辉袁长涛滕璐聂东林校审:高一数学组1、判断对错(1)直线a与平面α不平行,即a与平面α相交、 ( )BA DCE P(2)直线a ∥b,直线b平面α,则直线a ∥平面α. ( ) (3)直线a∥平面α,直线b 平面α,则直线a ∥b. ( )2。
直线与平面平行得条件就是这条直线与平面内得 ( )A、一条直线不相交 B.两条直线不相交 C、任意一条直线不相交 D 、无数条直线不相交3。
直线、平面平行的判定和性质导学案

2.2直线、平面平行的判定和性质导学案学习目标1.理解并掌握直线与平面平行、平面与平面平行的判定定理;2.理解并掌握直线与平面平行、平面与平面平行的性质定理及其应用;3. 体会直线、平面平行的判定和性质中的“转化”的思想;4. 体会掌握“直观感知——归纳猜想——推理论证”的认知过程.学习过程一、课前准备复习:直线与平面、平面与平面的位置关系和画法.二、新课导学学习探究探究1:直线与平面平行的判定动手做做看:(1)将课本的一边AB紧靠桌面,并绕AB转动,观察AB的对边CD在各个位置时与桌面的位置关系;(2)生活中,我们注意到门扇的两边是平行的. 当门扇绕着一边转动时,观察门扇转动的一边与门框所在平面的位置关系如何?思考讨论:(1)上述两个实例有何共同点?你能得到一个一般的结论吗?(2)如何证明你的结论?新知:直线与平面平行的判定定理:.用符号表示为反思:(1)根据判定定理,如何证明一条已知直线与一个平面平行?(2)通过直线间的平行,推证直线与平面平行,即将直线与平面的平行关系(空间问题)转化为直线间的平行关系(平面问题).试试:(1)写出长方体中的线面平行;(2)列举生活中的直线与平面平行的实例.探究2:平面与平面平行的判定动手做做看:(1)图1中,三角板的一条边BC所在直线与桌面平行,这个三角板所在平面与桌面平行吗?(2)图1中,三角板中有两条线段BC和DE所在直线与桌面平行,这个三角板所在平面与桌面平行吗?(3)图2中,三角板的两条边BC和CD所在直线与桌面平行,这个三角板所在平面与桌面平行吗?归纳总结:两个平面平行的条件由哪些?新知:平面与平面平行的判定定理:.用符号表示为反思:(1)根据判定定理,如何证明两个平面平行?(2)定理中有怎样的转化的思想?(3)结合直线与平面的判定定理,你能根据直线间的平行关系得到平面间的平行关系吗?试试:(1)写出长方体中的面面平行;(2)列举生活中的平面与平面平行的实例.探究3:直线与平面、平面与平面平行的性质思考讨论:(1)已知a∥α,b⊂α,那么直线a与b有怎样的位置关系?(2)平面α内的直线b满足什么条件就能与直线a平行?归纳总结:根据(1)(2)的讨论,你得到了什么结论?新知:直线与平面平行的性质定理:.用符号表示为反思:(1)根据判定定理,已知线面平行,如何在面内做直线的平行线?(2)定理中有怎样的转化的思想?(3)请仿照上面的思考讨论,探究平面与平面平行的性质.新知:平面与平面平行的性质定理:.用符号表示为小结:(1)体会直线与直线、直线与平面、平面与平面之间平行关系的相互转化.(2)你有哪些方法可以证明线线平行、线面平行、面面平行?。
直线与平面平行的判定定理教学设计(教案)

直线与平面平行的判定定理教学设计(教案)一、教学目标1. 让学生理解直线与平面平行的概念。
2. 引导学生掌握直线与平面平行的判定定理。
3. 培养学生的空间想象能力和逻辑思维能力。
二、教学内容1. 直线与平面平行的定义。
2. 直线与平面平行的判定定理。
三、教学重点与难点1. 教学重点:直线与平面平行的判定定理及其证明。
2. 教学难点:直线与平面平行的判定定理的证明和应用。
四、教学方法1. 采用问题驱动法,引导学生探究直线与平面平行的判定定理。
2. 利用几何模型和动画,直观展示直线与平面平行的判定过程。
3. 设计典型例题,培养学生运用判定定理解决问题的能力。
五、教学过程1. 导入新课:通过生活中的实例,引导学生思考直线与平面之间的关系。
2. 讲解直线与平面平行的定义,让学生明确直线与平面平行的概念。
3. 引导学生探究直线与平面平行的判定定理,讲解定理的证明过程。
4. 利用几何模型和动画,直观展示直线与平面平行的判定过程,加深学生理解。
5. 设计典型例题,引导学生运用判定定理解决问题,巩固所学知识。
6. 课堂小结:总结本节课的主要内容和知识点。
7. 布置作业:布置一些有关直线与平面平行的判定定理的练习题,巩固所学知识。
这五个章节的内容是教案的核心部分,后续的章节可以根据这五个章节的内容进行扩展和延伸。
希望这个教案能对你有所帮助!六、教学评估1. 课堂提问:通过提问了解学生对直线与平面平行判定定理的理解程度。
2. 作业批改:检查学生作业,了解学生对直线与平面平行判定定理的掌握情况。
3. 课堂练习:设计一些有关直线与平面平行的判定定理的练习题,让学生当堂练习,及时了解学生学习效果。
七、教学策略的调整1. 根据学生掌握情况,对直线与平面平行判定定理的讲解进行调整,使之更易于学生理解。
2. 对于学习有困难的学生,提供个别辅导,帮助他们理解直线与平面平行的判定定理。
3. 对于理解较深刻的学生,提供一些拓展性的问题,激发他们的思维。
§2.2.1导学案直线与平面平行的判定

§2.2.1直线与平面平行的判定
学习目标
1. 通过生活中的实际情况,建立几何模型,了解直线与平面平行的背景;
2. 理解和掌握直线与平面平行的判定定理,并会用其证明线面平行.
教学重点:线面平行的判定定理。
探究: 1 根据日常生活的观察,你能感知并举出直线与平面平行的具体事例吗?2.请写出直线和平面平行的判定定理:
例1已知:如图所示,空间四边形ABCD中,E、F分别是AB,AD中点.
求证:EF∥平面BCD.
A
F
E
D
B C 练习1.完成教科书55页第1题
2.教科书56页练习2.
如图,正方体ABCD-A1B1C1D1 中,E为DD1的中点,
试判断BD1 与平面AEC的位置关系,并说明理由。
3.(2017年新课标高考题)
如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面 ABCD, AB=BC=0.5AD, ∠BAD= ∠ABC=90 °,E是PD的中点。
证明:直线CE ∥平面PAB.
学习评价
学始于疑:
请将预习中自己解决不了的问题记下来,供上课解决。
《直线与平面平行的判定》教案、导学案、课后作业

《8.5.2 直线与平面平行》教案第1课时直线与平面平行的判定【教材分析】在直线与平面的位置关系中,平行是一种非常重要的关系,本节内容既是直线与直线平行关系延续和提高,也是后续研究平面与平面平行的基础,既巩固了前面所学的内容,又为后面内容的学习做了知识上和方法上的准备,在教材中起着承前启后的作用。
【教学目标与核心素养】课程目标1.理解直线和平面平行的判定定理并能运用其解决相关问题.2.通过对判定定理的理解和应用,培养学生的空间转化能力和逻辑推理能力.数学学科素养1.逻辑推理:探究归纳直线和平面平行的判定定理,找平行关系;2.直观想象:题中几何体的点、线、面的位置关系.【教学重点和难点】重点:直线与平面平行的判定定理及其应用.难点:直线与平面平行的判定定理,找平行关系.【教学过程】一、情景导入问题1.观察开门与关门,门的两边是什么位置关系.当门绕着一边转动时,此时门转动的一边与门框所在的平面是什么位置关系?【答案】平行.问题2.请同学门将一本书平放在桌面上,翻动书的封面,观察封面边缘所在直线l 与桌面所在的平面具有怎样的位置关系?桌面内有与l 平行的直线吗?【答案】平行,有.问题3.根据以上实例总结在什么条件下一条直线和一个平面平行? 要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探. 二、预习课本,引入新课阅读课本135-137页,思考并完成以下问题 1、直线与平面平行的判定定理是什么?2、怎样用符号语言表示直线与平面平行的判定定理?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1、直线与平面平行的判定定理四、典例分析、举一反三题型一直线与平面平行的判断定理的理解 例1 下列命题中正确的个数是( )①若直线a 不在α内,则a ∥α ②若直线l 上有无数个点不在平面α内,则l ∥α ③若直线l 与平面α平行,则l 与α内的任意一条直线都平行 ④若l 与平面α平行,则l 与α内任何一条直线都没有公共点 ⑤平行于同一平面的两直线可以相交A.1B.2C.3D.4【答案】B【解析】①a⊄α,则a∥α或a与α相交,故①不正确;②当l与α相交时,满足条件,但得不出l∥α,故②不正确;③若l∥α,则l与α内的无数条直线异面,并非都平行,故③错误;若l∥α,则l与α内的任何直线都没有公共点,故④正确;若a∥α,b∥α,则a与b可以相交,也可以平行或异面,故⑤正确.解题技巧(判定定理理解的注意事项)(1)明确判定定理的关键条件.(2)充分考虑各种可能的情况.(3)特殊的情况注意举反例来说明.跟踪训练一1.设a,b是空间中不同的直线,α,β是不同的平面,则下列说法正确的是( )A.a∥b,b⊂α,则a∥αB.a⊂α,b⊂β,α∥β,则a∥bC.a⊂α,b⊂α,a∥β,b∥β,则α∥βD.α∥β,a⊂α,则a∥β【答案】D.【解析】A,B,C错;在D中,α∥β,a⊂α,则a与β无公共点,所以a∥β,故D正确.故选D.题型二直线与平面平行的判断定理的应用例2 在空间四边形ABCD中,E,F分别是AB,AD的中点,求证:EF∥平面BCD.【答案】证明见解析【解析】∵AE=EB,AF=FB,∴EF∥BD.EF⊄平面BCD,BD⊂平面BCD.∴ EF ∥平面BCD解题技巧: (判定定理应用的注意事项) (1)欲证线面平行可转化为线线平行解决.(2)判断定理中有三个条件,缺一不可,注意平行关系的寻求.常常利用平行四边形、三角形中位线、等比例线段、相似三角形.跟踪训练二1.如图,已知OA,OB,OC 交于点O,AD 12OB,E,F 分别为BC,OC 的中点.求证:DE∥平面AOC.【答案】证明见解析 【解析】 证明 在△OBC 中, 因为E,F 分别为BC,OC 的中点, 所以FE 12OB,又因为AD12OB,所以FE AD.所以四边形ADEF 是平行四边形. 所以DE ∥AF.又因为AF ⊂平面AOC,DE ⊄平面AOC. 所以DE ∥平面AOC. 五、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计七、作业课本139页练习1、2、3题,143页习题8.5的4、5、6题.【教学反思】本节课,从内容上来说,学生基本掌握判定定理,但是在应用中,书写证明过程不太规范,需提高学生的逻辑思维能力.从方法上来说,通过本节课判定定理的学习,学生理解证明一条直线与一个平面平行,只要在这个平面内找出一条与此直线平行的直线就可以了,让学生初步感知空间问题可以转化为平面问题解决.《8.5.2 直线与平面平行》导学案第1课时直线与平面平行的判定【学习目标】知识目标1.理解直线和平面平行的判定定理并能运用其解决相关问题.2.通过对判定定理的理解和应用,培养学生的空间转化能力和逻辑推理能力.核心素养1.逻辑推理:探究归纳直线和平面平行的判定定理,找平行关系;2.直观想象:题中几何体的点、线、面的位置关系.【学习重点】:直线与平面平行的判定定理及其应用.【学习难点】:直线与平面平行的判定定理,找平行关系.【学习过程】一、预习导入阅读课本135-137页,填写。
线面平行的判定与性质导学案

8.4 直线、平面平行的判定与性质(学案)【考点分布】直线和平面平行的判定和性质;两个平面平行的判定和性质.【考试要求】认识和理解空间中线面平行的有关性质与判定定理;能运用公理、定理和已经获得的结论证明一些空间图形的位置关系的简单命题.【基础知识】1.直线和平面的位置关系(1)直线在平面内:直线和平面的公共点的个数是 ;符号表示为: . (2)直线和平面相交:直线和平面的公共点的个数是 个公共点;符号表示为: .(3)直线和平面平行:直线和平面的公共点的个数是 个.符号表示为: .2.直线和平面平行(1)定义:若一直线与一平面 ,则直线与平面平行.(2)判定定理:若 一直线与 一直线平行,则平面外这直线平行于平面.(3)性质定理:如果一条直线和一个平面平行, 的平面和这个平面相交,那么这条直线和交线平行.3.两个平面平行(1)定义:若两个平面 ,则这两个平面平行.(2)判定定理:如果一个平面内的 直线分别平行于另一个平面,那么这两个平面平行.(3)性质定理:如果两个平行平面同时与第三个平面 ,那么它们的交线平行. 【基础练习】1.βα、表示平面,b a 、表示直线,则a ∥α的一个充分不必要条件是 ( )(A)α⊥β,a ⊥β (B)α∩β=b ,且a ∥b(C) a ∥b 且b ∥α (D)α∥β且a ⊂β; 2.βα,是两个不重合的平面,在下列条件中,不能判定平面βα//的条件是 ( ) (A)n m ,是α内一个三角形的两条边,且ββ//,//n m (B)α内有不共线的三点到β的距离都相等 (C) βα,都垂直于同一条直线a(D)n m ,是两条异面直线,βα⊂⊂n m ,,且αβ//,//n m ;3. 一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是(A)异面(B)相交(C)平行(D)不能确定4.设a 、b 是两条互不垂直的异面直线,过a 、b 分别作平面βα、,对于下面四种情况:①b ∥α,②b ⊥α,③α∥β,④α⊥β.其中可能的情况有 (A) 1种 (B) 2种 (C) 3种 (D) 4种5.若,a b 是两条异面直线, 则存在唯一确定的平面β, 满足 ( )(A) //a β且//b β (B) a β⊂且//b β (C) a β⊥且b β⊥ (D) a β⊂且b β⊥6. a 、b 、c为三条不重合的直线,γβα、、为三个不重合的平面,直线均不在平面内,给出六个命题:.⇒⎭⎬⎫;⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫αγγαβαγβγαααβαβαγγ∥∥∥⑥∥∥∥⑤∥∥∥④∥∥∥③∥∥∥②∥∥∥①a a a c a c c c b a b a b a c b c a ;;;;其中正确的命题是________________.(将正确的序号都填上)【典型例题】题型一: 线面平行的判断与性质例 1 两个全等的正方形ABCD 和ABEF 所在平面相交于AB,M ∈AC,N ∈FB,且AM=FN,求证:MN ∥平面BCE.变式练习 :1.如图,四面体A —BCD 被一平面所截,截面EFGH 是一个矩形.(1)求证:CD ∥平面EFGH .(2)求异面直线AB 、CD 所成的角.αE C AN PM D B β 2. 异面直线AB 、CD 分别与两个平行平面α和β相交于A 、B 和C 、D ,M 、N 分别是AB 和CD 的中点,求证:MN //α.题型二:面面平行判定与性质例2 已知P 为△ABC 所在平面外一点,321G G G 、、分别是△PAB 、△PCB 、△PAC 的重心.(1)求证:平面321G G G //平面ABC; (2) 求ABC G G G S S ∆∆:321变式练习:1. 如图所示,在棱长为2cm 的正方体''''D C B A ABCD -中,''B A 的中点是P ,问过点'A 作与截面PBC 1平行的截面也是三角形吗?该截面的面积.C2.已知:平面α、β 都垂直于平面γ,交线分别为a 、b ,且a //b . 求证:α//β.1.已知a 、b 表示直线,α表示平面,给出四个命题: ①a //b , b ⊂α, 则a //α; ②a //α, b ⊂α, 则a //b ; ③a //α, b //α, 则a //b ; ④a //b , b //α, 则a //α. 其中正确命题的个数为 ( ) (A )0 (B )1 (C )2 (D )32.直线a 平行于平面α,点A ∈α,则过点A 且平行于a 的直线是 ( ) (A )只有一条,但不一定在平面α内 (B )只有一条,一定在平面α内 (C )有无数条,但不都在平面α内 (D )有无数条,都在平面α内 3.a 和b 是异面直线,下列结论正确的是 ( ) (A )过不在a 、b 上的任一点,可以作一个平面与a 、b 都平行 (B )过不在a 、b 上的任一点,可以作一条直线与a 、b 都相交 (C )过不在a 、b 上的任一点,可以作一条直线与a 、b 都平行 (D )过a 可以作一个并且只能作一个平面与直线b 平行β α a bB dc Aγα a A α' c β' l β B b 4.下列命题中错误的是 ( ) (A )平行于同一条直线的两个平面平行 (B )平行于同一平面的两个平面平行 (C )垂直于同一直线的两个平面平行(D )过平面外一点与这个平面平行的平面有且只有一个5.已知直线a ,b ,c 与平面α,β,γ ,下列条件中能推出α//β的是 ( ) (A )a ⊂α,b ⊂β,a //b (B )a ⊂α,b ⊂α,a //β,b //β (C )a ⊥α,b ⊥β,a //b (D )α⊥γ,β⊥γ6.已知线段AB 和CD 是夹在两平行平面α、β之间的两条线段,AB ⊥CD ,AB =2,AB 与平面成30︒的角.则线段CD 的长度的范围是 ( )(A )⎪⎭⎫⎝⎛32,332 (B )⎪⎭⎫⎢⎣⎡+∞,332 (C )⎪⎭⎫⎝⎛332,1 (D )[1,+∞) 7.已知a 、b 是相交直线,且a 平行于平面α,那么b 与α的位置关系是 .8.AB 、CD 是夹在两个平行平面α、β间的线段,AB =13,CD =15,AB 、CD 在β上射影的长的和是14,那么AB 在平面β内的射影的长为 ;α与β之间的距离为 .9.在△ABC 中,AB =5,AC =7,∠BAC =60︒,G 是△ABC 的重心,过点G 的平面α与BC 平行,AB α=M , AC α=N ,则MN = .10. 给出以下六个命题:①垂直于同一直线的两个平面平行;②平行于同一直线的两个平面平行;③平行于同一平面的两个平面平行;④与同一直线成等角的两个平面平行;⑤一个平面内的两条相交直线于另一个平面内的两条相交直线平行,则这两个平面平行;⑥两个平面分别与第三个平面相交所得的两条交线平行,则这两个平面平行。
直线与平面平行的判定定理教学设计(教案)

直线与平面平行的判定定理教学设计(教案)第一章:直线与平面平行的概念引入1.1 教学目标让学生了解直线与平面平行的概念。
学生能够通过实例判断直线与平面是否平行。
1.2 教学内容直线与平面平行的定义。
直线与平面平行的判定方法。
1.3 教学步骤1. 引入直线与平面平行的概念,展示实例图片,引导学生观察并描述直线与平面的关系。
2. 给出直线与平面平行的定义,解释其含义。
3. 引导学生通过实例判断直线与平面是否平行,引导学生运用定义进行判断。
1.4 教学评估通过课堂提问,检查学生对直线与平面平行概念的理解。
通过实例判断练习,检查学生能否运用定义判断直线与平面是否平行。
第二章:直线与平面平行的判定定理2.1 教学目标让学生了解直线与平面平行的判定定理。
学生能够运用判定定理判断直线与平面是否平行。
2.2 教学内容直线与平面平行的判定定理。
判定定理的证明。
2.3 教学步骤1. 引入直线与平面平行的判定定理,展示实例图片,引导学生观察并描述直线与平面的关系。
2. 给出判定定理,解释其含义。
3. 进行判定定理的证明,解释证明过程。
4. 引导学生通过实例判断直线与平面是否平行,引导学生运用判定定理进行判断。
2.4 教学评估通过课堂提问,检查学生对直线与平面平行判定定理的理解。
通过实例判断练习,检查学生能否运用判定定理判断直线与平面是否平行。
第三章:直线与平面平行的判定定理的应用3.1 教学目标让学生能够运用直线与平面平行的判定定理解决实际问题。
3.2 教学内容直线与平面平行的判定定理在实际问题中的应用。
3.3 教学步骤1. 引入实际问题,展示实例图片,引导学生观察并描述直线与平面的关系。
2. 引导学生运用判定定理解决实际问题,解释解题过程。
3. 提供练习题,让学生独立解决实际问题,并提供解答。
3.4 教学评估通过课堂提问,检查学生对直线与平面平行判定定理在实际问题中的应用的理解。
通过练习题,检查学生能否独立解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.1直线与平面平行的判定平面与平面平行的判定
一、学习目标:
知识与技能:理解并掌握直线与平面平行的判定定理及平面与平面平行的判定定理.
过程与方法:掌握由“线线平行”证得“线面平行”的数学证明思想。
进一步熟悉反证法;进一步培养观察能力、空间想象力和类比、转化能力,提高逻辑推理能力。
情感态度价值观:培养认真、仔细、严谨的学习态度。
建立“实践―理论―再实践”的科学研究方法。
二、学习重、难点
学习重点:掌握直线与平面平行的判定定理.掌握平面与平面平行的判定定理.
学习难点:理解直线与平面平行的判定定理.理解平面与平面平行的判定定理.
三、使用说明及学法指导:
1、限定45分钟完成,注意逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。
2、把学案中自己易忘、易出错的知识点和疑难问题以及解题方法规律,及时整理在解题本,多复习记忆。
3、对小班学生要求完成全部问题,实验班完成80%以上,平行班完成60%以上.
4、A级是自主学习,B级是合作探究,C级是提升
四、知识链接
1、直线与平面有哪几种位置关系?
(1)直线与平面平行;(2)直线与平面相交;(3)直线在平面内。
2、判断两条直线平行有几种方法?
(1)三角形中位线定理;(2)平行四边形的两边;(3)平行公理;(4)成比例线段。
3、平面与平面之间的位置关系:
(1)两个平面平行------没有公共点
(2)两个平面相交------有一条公共直线
若α、β平行,记作β∥α
五、学习过程:
一、直线与平面平行的判定
实例探究:
1.门扇的两边是平行的,当门扇绕着一边转动时,另一边与门框所在平面具有什么样的位置关系?
2.课本的对边是平行的,将课本的一边紧贴桌面,沿着这条边转动课本,课本的上边缘与桌面所在平面具有什么样的位置关系?
学习过程自主探究a
A问题1:如图,1 .直线a与直线b共面吗?
b
2.直线a与平面α相交吗?α
A问题2:直线与平面平行的判定定理:
平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.
判定定理告诉我们,判定直线与平面平行的条件有三个分别是
(1) a在平面α外,即a⊄α(面外)
(2) b在平面α内,即b⊂α(面内)
(3) a与b平行,即a∥b(平行)
符号语言:
思 想: 线线平行线面平行
A 判断对错:直线a 与平面α不平行,即a 与平面α相交. ( )
直线a ∥b ,直线b 平面α,则直线a ∥平面α. ( ) 直线a ∥平面α,直线b 平面α,则直线a ∥b . ( )
A 例1、求证:空间四边形相邻两边中点的连线平行于经过另外两边所在的平面。
已知:空间四边形ABCD ,E 、F 分别是AB 、AD 的中点。
求证:EF ∥平面 BCD
要证EF ∥平面BCD ,关键是在平面BCD 中找到和EF 平行的直线,将证明线面平行的问题转化为证明直线的平行
B 练习1:如图,三棱柱AB
C -111A B C 中,M 、 N 分别是BC 和11A B 的中点,求证:MN ∥平面
11AAC C
要证明直线与平面平行,只要在这个平面内找出一条直线与已知直线平行,把证明线面问题转化为证明线线问题.
二、平面与平面平行的判定
A 自主探究问题3:(1)平面β内有一条直线与平面α平行,α、β平行吗? (2)平面β内有两条直线与平面α平行,α、β平行吗? A 问题4: 平面与平面平行的判定定理
////a b a a b ααα⊄⎫
⎪
⊂⇒⎬⎪⎭
⇒C 1
A
C
B 1
B
M
N
A 1 A
B
C D
E F
一个平面内的两条交直线与另一个平面平行,则这两个平面平行。
符号表示:若,,,//a b a b P ββαααβ⊂⊂⋂=,且a//,b//则。
利用判定定理证明两个平面平行,必须具备两个条件: (1)有两条直线平行于另一个平面,(2)这两条直线必须相交。
思想:线线相交,线面平行⇒面面平行。
A 判断对错:
(1)、如果一个平面内有两条直线分别平行于另一个平面,那么这两个平面平行.( ) (2)、如果一个平面内有无数条直线分别平行于另一个平面,那么这两个平面平行.( ) (3)、如果一个平面内任意一条直线平行于另一个平面,那么这两个平面平行.( ) A 例2、 已知正方体ABCD-1111A B C D ,求证:平面11AB D //平面1C BD 。
证题思路:要证明两平面平行,关键是在其中一个平面内找出两条相交直线分别平行于另一个平面.
B 练习2:如图:B 为∆ACD 所在平面外一点,M 、N 、G 分别为∆AB
C 、∆AB
D 、∆BCD 的重心, (1)求证:平面MNG //平面ACD ; (2)求ADC MNG S S ∆∆:
六、达标训练
A1.直线a ∥平面α,平面α内有无数条直线交于一点,那么这无数条直线中与直线 a 平行的( )
(A )至少有一条 (B )至多有一条 (C )有且只有一条 (D )不可能有
A2.已知三条互相平行的直线,,,,a b c a b c αββ⊂⊂⊂中,,,则两个平面,αβ的位置关系是 .
A3.如果两个平面分别平行于第三个平面,那么这两个平面的位置关系是
A
B
D C P H
F M
G
N
B4、正方体中,E 为的中点,判断与平面AEC 的位置关系,并给出证明。
七、小结与反思: 线面平行的判定定理
平面外一条直线与此平面内一条直线平行,则该直线与此平面平行. 线线平行
线面平行 平面与平面平行的判定定理
一个平面内的两条交直线与另一个平面平行,则这两个平面平行。
【金玉良言】在学业的峰峦上,有汗水的溪流飞淌;在智慧的珍珠里,有勤奋的心血闪光.
1111ABCD A B C D 1DD 1BD 1
A A。