平面与平面平行的判定说课稿
教案平面与平面平行的判定和性质

教案平面与平面平行的判定和性质一、教学目标1. 知识与技能:(1)理解平面与平面平行的定义及其判定方法;(2)掌握平面与平面平行的性质;(3)能够运用平面与平面平行的知识解决实际问题。
2. 过程与方法:通过观察、思考、交流、归纳等方法,引导学生掌握平面与平面平行的判定和性质。
3. 情感态度与价值观:培养学生的空间想象力,提高对几何图形的认识,激发学生学习几何的兴趣。
二、教学重点与难点1. 教学重点:(1)平面与平面平行的定义及其判定方法;(2)平面与平面平行的性质。
2. 教学难点:(1)平面与平面平行的判定方法的运用;(2)平面与平面平行的性质在实际问题中的应用。
三、教学过程1. 导入:通过复习已学过的平面几何知识,如点、线、面的基本概念,引导学生进入本节课的学习。
2. 新课讲解:(1)平面与平面平行的定义:两个平面在空间中不存在公共点,则称这两个平面平行。
(2)平面与平面平行的判定方法:①如果一个平面过另一个平面的垂线,则这两个平面平行;②如果两个平面分别过第三条交线,且这两条交线互相平行,则这两个平面平行。
(3)平面与平面平行的性质:①平行平面之间的距离相等;②平行平面上的线段在另一个平面上的投影互相平行;③平行平面上的角相等。
3. 案例分析:通过展示一些实际问题,引导学生运用平面与平面平行的知识解决问题。
4. 课堂练习:布置一些有关平面与平面平行的练习题,让学生独立完成,巩固所学知识。
5. 总结与拓展:对本节课的内容进行总结,并提出一些拓展问题,激发学生进一步学习平面几何的兴趣。
四、课后作业1. 完成教材上的相关练习题;2. 查找一些有关平面与平面平行的实际问题,加以解决。
五、教学评价1. 知识与技能:学生能熟练掌握平面与平面平行的定义、判定方法和性质;2. 过程与方法:学生能够运用所学知识解决实际问题,提高空间想象力;六、教学策略与方法1. 采用问题驱动法,引导学生主动探究平面与平面平行的判定和性质;2. 利用多媒体课件,展示平面与平面平行的图形,增强学生的空间想象力;3. 结合实例,让学生直观地理解平面与平面平行的判定和性质;4. 组织小组讨论,培养学生的合作意识和团队精神;5. 运用归纳总结法,引导学生自主总结平面与平面平行的判定和性质。
教案平面与平面平行的判定和性质

平面与平面平行的判定和性质一、教学目标1. 让学生理解平面与平面平行的概念。
2. 引导学生掌握平面与平面平行的判定方法。
3. 让学生了解平面与平面平行的性质。
4. 培养学生运用所学知识解决实际问题的能力。
二、教学内容1. 平面与平面平行的概念2. 平面与平面平行的判定方法3. 平面与平面平行的性质4. 应用实例三、教学重点与难点1. 教学重点:平面与平面平行的判定方法,平面与平面平行的性质。
2. 教学难点:如何运用判定方法和性质解决实际问题。
四、教学方法1. 采用直观演示法,让学生通过观察实物模型,理解平面与平面平行的概念。
2. 运用讲解法,引导学生掌握平面与平面平行的判定方法。
3. 运用案例分析法,让学生通过分析实际案例,了解平面与平面平行的性质。
4. 运用练习法,培养学生运用所学知识解决实际问题的能力。
五、教学过程1. 导入新课:通过展示实物模型,引导学生思考平面与平面之间的关系,引出平面与平面平行的概念。
2. 讲解判定方法:讲解平面与平面平行的判定方法,引导学生通过观察实物模型,理解判定方法。
3. 讲解性质:讲解平面与平面平行的性质,引导学生通过观察实物模型,理解性质。
4. 应用实例:分析实际案例,让学生运用所学知识解决实际问题。
5. 课堂练习:布置练习题,让学生巩固所学知识。
6. 总结与拓展:总结本节课所学内容,引导学生思考平面与平面平行在实际中的应用价值。
7. 布置作业:布置课后作业,让学生进一步巩固所学知识。
六、教学评价1. 评价目标:检查学生对平面与平面平行的判定和性质的理解程度。
2. 评价方法:通过课堂提问、作业批改、课后练习等方式进行评价。
3. 评价内容:a. 学生是否能准确描述平面与平面平行的概念。
b. 学生是否能运用判定方法正确判断平面与平面是否平行。
c. 学生是否能理解并应用平面与平面平行的性质解决实际问题。
七、教学反思1. 反思内容:a. 教学方法是否适合学生的学习需求。
人教版高二数学必修第四册《平面与平面平行》说课稿

人教版高二数学必修第四册《平面与平面平行》说课稿一、教材背景和重点本单元是人教版高二数学必修第四册中的《平面与平面平行》单元。
该单元主要讲解平面的定义、平行的概念与性质以及判断平面与平面之间的关系。
掌握平行线的性质和判断平面与平面之间的关系是理解解析几何和应用问题的基础,也是高中数学的重要部分。
本单元的重点内容包括: 1. 平面的定义,包括点和直线的定义; 2. 平行线的概念与性质,包括平行线的判定定理和平行线的性质; 3. 平行线与平面的关系,包括平面与平行线的垂直关系、平行关系和交叉关系。
二、教学目标通过本单元的学习,学生应掌握以下知识和能力: 1. 理解平面的定义,能够判定给定的元素是否在同一平面上; 2. 理解平行线的概念,能够应用判定平行线的定理; 3. 掌握平行线的性质,能够使用平行线的性质求解相关问题; 4. 理解平面与平行线的垂直关系,能够判定平面与平行线的垂直关系;5. 理解平面与平行线的平行关系,能够判定平面与平行线的平行关系; 6. 理解平面与平行线的交叉关系,能够判定平面与平行线的交叉关系。
三、教学内容和方法3.1 平面的定义平面是平面几何中一个重要的概念,它由无穷多个点组成,能够包含无限多条平行线。
在教学中,我们可以通过以下方法来引导学生理解平面的概念: - 通过举一些实例,如纸张、墙壁等,让学生感性地认识平面的概念; - 引导学生观察平面的特点,如平面上的点是否共面等; - 让学生通过实际操作,绘制平面上的图形,以加深对平面的理解。
3.2 平行线的概念与性质平行线是指在同一平面内不相交的直线,它们永远保持相同的距离。
我们可以通过以下方法来引导学生理解平行线的概念与性质: - 通过展示实际生活中的平行线,如铁轨、楼梯等,引导学生认识平行线的特点; - 引导学生发现平行线之间的性质,如两条平行线与一条横切线所对应的内外角的关系等; - 利用锐角、直角和钝角的性质,引导学生发现平行线与横切线的关系; - 设计一些练习题,引导学生应用平行线的性质解决实际问题。
(完整word版)平面与平面平行的判定说课稿

《平面与平面平行的判定》的教学设计一、教材分析1.《课标》要求几何学是研究现实世界中物体的形状,大小和位置关系的数学学科。
本教材强调“直观感知,操作确认,思辨论证,度量计算”是探索和认识空间图形及其性质的主要方法。
高一阶段立体几何的学习更注重“直观感知,操作确认”并适度进行“思辨论证”。
本节要求通过直观感知,操作确认,归纳出平面与平面平行的判定定理。
借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义,并了解如下可以作为推理依据的公理和定理;直观认识和理解空间点、线、面的位置关系;能用数学语言表述有关平行的性质与判定,并对某些结论进行论证,通过直观感知、操作确认,归纳出判定定理。
2.地位和作用本课是在学生学习了平面的性质、线线关系、线面关系之后,且已具备一定数学能力和方法的基础上进行的。
两个平面平行的判定定理是立体几何中的一个重要定理。
它揭示了线线平行、线面平行、面面平行的内在联系,体现了转化的思想。
通过本课的学习,不仅能进一步培养学生的空间想象能力、逻辑推理能力、分析问题和解决问题的能力,而且能使学生把这些认识迁移到后继的知识学习中去,为以后学习面面垂直打下基础。
所以,本课既是前期知识的发展,又是后继课程有关图形研究的前驱,在教材当中起到一个承上启下的作用。
二、教学内容分析:本节教材选自人教A版数学必修②第二章第一节课,本节内容在立几学习中起着承上启下的作用,具有重要的意义与地位。
本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,类比直线与平面平行的判定定理探究过程,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出平面与平面平行的判定定理。
本节课的学习对培养学生空间感与逻辑推理能力起到重要作用。
三、学情分析:学生已有一些平面几何基础,在学习了线线、线面关系后,已具备了本节课所需的预备知识,具有一定的分析问题、解决问题的能力,并且空间想象能力,逻辑推理能力已初步形成。
面面平行说课稿(王容)

b
m
P
a
n
合作交流 运用新知
(定理的理解)
2、(课本练习第3题)平面和平面平行的条件可以是( D )
(A) 内有无数多条直线都与 平行 (B)直线 a // , a // , 设计意图
通过例1和课后两道例题 (C)直线 a ,直线 b ,且a // , b // 的练习,让学生对定理 加深理解,“直线的数 (D) 内的任何一条直线都与 平行 量不是关键,关键是相 交”。
平面与平面平行的判定方法 判定方法1:定义法 如果两平面没有公共点,那么两平面平行 实质:其中一个平面内任何一条直线都 平行于另一平面
?
不可能把其中一个平面内所有直线 都取出逐一证明其平行另一平面。
1、平面β内有一条直线与平面α平行,平面α, β一定平行吗?
(不一定)
平面内两条直线位置关系有
平行和相交两种哦!
例3 如图,在正方体ABCD——A1B1C1D1中,E、F、G分别是棱BC、C1D1、
C1B1的中点。 求证:面EFG//平面BDD1B1.
证明:∵ ∴ ∴ F、G分别的C1D1、C1B1的中点 FG是△C1D1B1的中位线 FG∥D1B1 又 FG 平面BDD1B1 D1BI 平面BDD1B1 思路:只要证明一个平面内 ∴ FG∥平面BDD1B1 ∵ ABCD—A1B1C1D1为正方体 有两条相交的直线与另一个 ∴ B1C1∥BC,B1C1=BC 又 G、E分别是B1C1、BC的中点 平面平行 ∴ B1G∥BE B1G=BE ∴ 四边形B1BEG是平行四边形 ∴ GE∥B1B 又 GE 平面BDD1B1 B1B 平面BDD1B1 ∴ GE ∥ 平面BDD1B1 又 FG GE=G ∴ 面EFG//平面BDD1B1.
平面与平面平行的判定(说课课件)

发探究式教学为主来完成教学。通过引导学
生自主思考、探索,让学生发现平面与平面 平行的判定方法,加深对判定定理的理解。
学法指导
倡议学生以自主探究为主,学会主动观 察、积极思考。在学习中体会将面面问题转
化为线面问题的思维方法。
教学程序设计
为实现既定教学目标并突破本节课的重难点, 制定以下教学流程: 复习回顾,导入新课
是立体几何中重要定理之一,它揭示了线线平行、 线面平行、面面平行的内在联系,体现了转化的思 想。通过本节的学习,还能使学生把这些认知迁移 到后继的知识学习中去,为以后学习面面垂直、多 面体打下基础。
教材分析
(二)目标分析:
知识与技能 过程与方法 情感态度价值观
1.知识与技能目标:
理解并掌握两平面平行的判定定理,能够应用判定 定理解决问题。
用数学符号表示判定定理
Pa b
a ,b a b p // a // , b //
培养学生用 数学符号来 表示文字内 容的意识。
教学程序设计
三.即时训练,深化新知 判断对错
1、平面 内有两条直线a、b,直线a、b都平 行平面 ,所以平面 与平面 平行。
教学程序设计
二.启发诱导,探求新知
1、面面平行定义的推论:
设计意图
Байду номын сангаас
如果两个平面平行,那么在其中一个平面内的 所有直线一定都和另一个平面平行;
2、反过来,如果一个平面内的所有直线都和 另一个平面平行,那么这两个平面平行. 3、两个平面平行的问题可以转化为线面平 行的问题来解决,那么最少需要几条线与面 平行呢?
教学目标
2.过程与方法目标:
让学生通过观察、探究、思考,得出两平面平行 的判定定理,体验如何用数学符号去描述语言文字。
《两个平面平行的判定及应用》说课稿

《两个平面平行的判定及应用》说课稿1教材分析我选用的教材是天津科学技术出版社出版的中职数学第四册,本节课是第十三章《立体几何》第五节《平面和平面平行》的第一课时,此前,学生学习了平面的基本性质,空间中的线线关系,线面关系。
本节主要学习两个平面的位置关系、两个平面平行的判定定理,其中两个平面平行的判定定理是本章中的一个重要定理,它揭示了线线平行、线面平行、面面平行的内在联系,体现了转化的思想,也为以后学习面面垂直,多面体打下基础。
所以本节既是对前面所学知识的巩固和加深,又是后面继续学习立体几何的基础。
根据上述分析,制定如下教学目标。
1.1教学目标:●教学要求理解平面和平面的位置关系,能正确运用符号和画出图形表示这些关系;理解两个平面平行的判定定理,并能用它进行推理和计算。
●能力训练要求培养锻炼学生观察、分析、总结的能力;通过解决问题,提高空间想象能力。
●德育渗透目标培养学生用转化思想解决问题;通过问题的解决,寻求事物的统一性。
根据教学大纲的要求及本节课在本章中所处的地位,确立了如下重点与难点。
1.2教学重点和难点重点:两个平面的位置关系,两个平面平行的判定定理。
难点:两个平面平行的判定定理的证明及其应用。
那么如何突出重点,突破难点呢?主要从以下两个方面:(1)利用多媒体课件展示直观的立体图形,并联系生活实际,帮助学生理解图形,锻炼学生的空间想象能力,更好的理解两个平面的位置关系。
(2)结合线线、线面位置关系,在教师启发、引导下,结合设计的问题,通过学生自己的观察、分析、总结,探究出新知,得到两个平面平行的判定定理,并能够在教师启发、引导下完成定理的证明,在例题、练习中加强巩固,同时注意转化思想在立体几何中的应用。
学情分析教学活动是师生双方共同来完成的,我所任教的年级为计算机应用专业二年级,本班学生的数学基础相对其他班级学生较好,主动参与意识,自主探求意识较强,而且对立体图形有一定的认知能力,因此教学活动多采用以学生探求、发现为主,教师启发、引导为辅的教学模式。
《平面与平面平行的判定》教案-公开课-优质课(人教A版必修二精品)

《平面与平面平行的判定》教案教学目标1、理解并掌握平面与平面平行的判定定理,学会运用等价转化思想在解决问题.2、通过解决问题,进一步培养学生观察,发现的能力和空间想象能力.3、渗透问题相对论的观点。
培养学生逻辑思维能力,养成学生办事仔细认真的习惯及合情合理的探究精神.教学重、难点1.重点:平面和平面平行的判定定理的探索过程及应用.2.难点:平面和平面平行的判定定理的探究发现及其应用.教学过程:一、创设情景1.你知道建筑师是如何检验屋顶平面是与水平面平行的吗?2.三角板的一条边所在直线与地面平行,这个三角板所在平面与地面平行吗?三角板的两条边所在直线与地面平行,情况又如何呢?二、温故知新线面平行的判定方法有几种?(1)定义法:若直线与平面无公共点,则直线与平面平行.(2)面面平行定义的推论:若两平面平行,则其中一个平面内的直线与另一平面平行.(3)判定定理:证明面外直线与面内直线平行.三、探求新知师:平面与平面平行的定义是什么?如何判断两平面平行?生:如果两个平面没有公共点,我们就说这两个平面互相平行;判定两个平面平行可依定义,看它们的公共点如何?师:如果两个平面平行,那么其中一个平面内的直线与另一个平面关系如何?为什么?生:如果两个平面平行,那么在其中一个平面内的所有直线一定都和另一个平面平行.这是因为如果有一条直线和另一平面有公共点,这个点也必是这两个平面的公共点,那么这两个平面就不可能平行了.师:若一个平面内所有直线都和另一个平面平行,那么这两个平面会平行吗?生:会。
否则这两个平面相交,那么前锋线就不可能平行于另一个平面了.师:由此将判定两个平面平行的问题可以转化为线面平行的问题来解决,可是最少需要几条线与面平行呢?师:平面β内有一条直线与平面α平行,α、β平行吗?请举例说明. 生:不一定平行。
如右图,借助长方体模型,我们可以看出,平面''A ADD 中直线'//,A A ''平面DCC D''A ADD ''但平面与平面DCC D 相交.师:若平面α内有两条直线a 、b 都平行于平面β,能保证α∥β吗?生:如果平面内的两条直线是平行直线,平面和平面不一定平行.如上图,借助长方体模型,在平面内,有一条与'A A 平行的直线EF ,显然'A A 与EF 都平行与平面''DCC D ,但这两条平行直线所在的平面''A ADD 与平面''DCC D 相交.师:如下图,平面β内有两条相交直线与平面α平行,情况如何?生:如图,借助长方体模型,平面ABCD 内两条相交直线AC ,BD 分别与平面''''A B C D 内两条相交直线'''',ACB D 平行,由直线与平面的判定定理可知,这两条相交直线AC ,BD 都与平面''''A B C D 平行,此时,平面ABCD 平行与平面''''A B C D .师:一般地,我们有如下的判定平面平行的定理:如果一个平面内的两条交直线与另一个平面平行,则这两个平面平行. 以上是两个平面平行的文字语言表述,你能写出定理的符号语言吗? 生:若,,,//a b a b P ββαααβ⊂⊂⋂=,且a//,b//则.师:利用判定定理证明两个平面平行,必须具备哪些条件?生:(1)由两条直线平行与另一个平面,(2)这两条直线必须相交.师:在从转化的角度认识该定理就是:线线相交,线面相交⇒面面平行.四、拓展应用例1、 已知正方体ABCD -1111A B C D ,求证:平面11AB D //平面1C BD . 证明:因为ABCD -1111A B C D 为正方体,所以11,AB A B = 1111//D C A B 1111D C A B =,又11//AB A B ,11,AB A B =所以11//D C AB ,11D C AB =,所以11D C BA 为平行四边形.所以11,C B C BD ⊂平面11//D A C B .又11D A C BD ⊄平面,11C B C BD ⊂平面, 由直线与平面的判定定理得11//D A C BD 平面,同理111//D B C BD 平面,又1111D A D B D ⋂=,所以平面111//AB D C BD 平面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《平面与平面平行的判定》的教学设计一、教材分析1.《课标》要求几何学是研究现实世界中物体的形状,大小和位置关系的数学学科。
本教材强调“直观感知,操作确认,思辨论证,度量计算”是探索和认识空间图形及其性质的主要方法。
高一阶段立体几何的学习更注重“直观感知,操作确认”并适度进行“思辨论证”。
本节要求通过直观感知,操作确认,归纳出平面与平面平行的判定定理。
借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义,并了解如下可以作为推理依据的公理和定理;直观认识和理解空间点、线、面的位置关系;能用数学语言表述有关平行的性质与判定,并对某些结论进行论证,通过直观感知、操作确认,归纳出判定定理。
2.地位和作用本课是在学生学习了平面的性质、线线关系、线面关系之后,且已具备一定数学能力和方法的基础上进行的。
两个平面平行的判定定理是立体几何中的一个重要定理。
它揭示了线线平行、线面平行、面面平行的内在联系,体现了转化的思想。
通过本课的学习,不仅能进一步培养学生的空间想象能力、逻辑推理能力、分析问题和解决问题的能力,而且能使学生把这些认识迁移到后继的知识学习中去,为以后学习面面垂直打下基础。
所以,本课既是前期知识的发展,又是后继课程有关图形研究的前驱,在教材当中起到一个承上启下的作用。
二、教学内容分析:本节教材选自人教A版数学必修②第二章第一节课,本节内容在立几学习中起着承上启下的作用,具有重要的意义与地位。
本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,类比直线与平面平行的判定定理探究过程,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出平面与平面平行的判定定理。
本节课的学习对培养学生空间感与逻辑推理能力起到重要作用。
三、学情分析:学生已有一些平面几何基础,在学习了线线、线面关系后,已具备了本节课所需的预备知识,具有一定的分析问题、解决问题的能力,并且空间想象能力,逻辑推理能力已初步形成。
也学习了直线和平面平行的判定,本节课与上一节课的研究顺序和方法基本相同,学生也有了一定的研究经验。
故在本节课的教学中可以充分利用学生已有的知识和空间构图的想象能力进行教学;但在如何发现判定两个平面平行的判定方法上存在难点,故可以借助教师事务的展示和多媒体课件的演示,使学生在一系列的设问中找到正确的结论四、设计思想本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助实物模型,通过直观感知,操作确认,合情推理,归纳出平面与平面平行的判定定理,让学生在观察分析、自主探索、合作交流的过程中,揭示直线与平面平行的判定、理解数学的概念,领会数学的思想方法,养成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力,提高学生的数学逻辑思维能力。
五、教学目标1、知识与技能(1)能够通过直观感知和操作确认,归纳并理解面面平行的判定定理,并能用它证明一些简单问题。
(2)能准确使用数学符号语言、文字语言,图形语言表述判定定理,进一步培养学生观察、发现的能力和空间想象能力;2、过程与方法通过对图形的直观感知,合情推理得出两个平面平行的判定定理。
3、情感、态度与价值观(1)培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力。
让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。
让学生在发现中学习,增强学习的积极性;(2)学生体会转化思想方法的应用,提高空间想象力和逻辑思维能力。
六、教学重点,难点,疑点1、重点:平面与平面平行的判定定理及应用依据:教学重在过程,重在研究,而不是重在结论。
学生不应该死背定理内容,而是理解知识发生、发展的过程。
这样,知识就成了一个数学模式,可用来解决具体问题。
2、难点:平面与平面平行的判定定理的探究发现及应用。
依据:因为问题的产生与解决具有一定的隐蔽性,虽然学生了解两个平面平行的判定,但在问题中应用的时候就不够灵活或找不到需要的条件。
为此,本节的难点是两个平面平行的判定。
重点是判定定理的引入与理解,难点是判定定理的应用及立几空间感、空间观念的形成与逻辑思维能力的培养。
3.疑点:正确理解并应用两个平面平行的判定定理时,要注意定理中的关键词:相交.七、教法与学法分析,教学用具1、教学方法:引导发现法、问题探究、互动式教学法为了把发现创造的机会还给学生,把成功的体验让给学生;为了立足于学生思维发展,着力于知识建构,就必须让学生有观察、动手、表达、交流、表现的机会。
采用引导发现法,可激发学生学习的积极性和创造性,分享到探索知识的方法和乐趣,使数学教学成为再发现、再创造的过程。
2、学法指导:根据“倡导积极主动、勇于探索的学习方式”的基本理念,教材内容的特点以及学生的知识、能力、情感等因素从而把学法定为问题探究学习方法,借助实例,通过观察、思考、交流、讨论等,理解判定定理。
八.教学过程设计(一)创设问题情景,引入新课基于新课程的理念和本节课的教学目标,使学生体会到数学知识发生在现实背景只需按为此结合一道习题即回归了上节课直线与平面的判定也引出了本节课的内容,自然流畅,更让学生了解到本节课学习的必要性。
1. 利用多媒体课件展示:教师:上节课我们学习了直线与平面的判定你能利用你所学的知识解决本题吗?实例:如图,在正方体ABCD —A 1B 1C 1D 1求证:B 1D 1 || 平面C 1BD[知识链接:根据空间问题平面化的思想,因此把找空间平行直线问题转化为找平行四边形或三角形中位线问题,这样就自然想到了找中点。
平行问题找中点解决是个好途径好方法。
这种思想方法是解决立几论证平行问题,培养逻辑思维能力的重要思想方法]学生上黑板板演,其他同学下面做,师生共同评价点明,对旧知识复习,又有深入,同时又点出了“转化”的思想方法,为引入新课作铺垫点明证明线面平行的方法及思想(转化的思想) 2. 提出课题思考1:如果将上题中正方体中的AB 1 , AD 1连接构成了一个新的平面AB 1D 1如何证明:平面AB 1D 1∥平面C 1BD[设计意图:说明面面平行证明的必要性,通过提问引入本节课题,并为探寻平面与平面平行判定定理作好准备。
](二)判定定理的探求过程AB C DA1B1C1D11、直观感知思考1:根据同学们日常生活的观察,你们能举出平面与平面平行的具体事例吗?生1:教室的天花板与地面给人平行的感觉。
生2:,前后两块黑板也是平行的,然后教师用多媒体动画演示。
思考2:两个平面满足什么条件时,就可以说它们是平行的?下面我们来探索结论。
[学情预设:此处的预设与生成应当是很自然的,但老师要预见到可能出现的情况]2,探索思路,体验过程探索一:问题的转化生:根据定义,关键在于判断它们没有公共点。
教师:定义法判断平面与平面平行方便吗?谈谈你的看法教师:类比上一节,研究线面平行时,我们转化成线线的平行的“平面化”的思想,平面与平面平行可转化成什么?生:点动成线,线动成面,平面也是由直线组成的,因此我们可以证明其中一个平面中的所有直线都平行于另一个平面教师:也就是我们可以研究平面中的直线。
(多媒体展示)在长方体上表面内随意画出一些直线,你观察到什么?(由观察结合前面学习的公理,这些直线都与下表面平行,否则两个平面就会有公共点)只要满足什么,两个平面就平行?(上表面的所有直线都与下表面平行)问题于是转化为:说明上表面内的直线与下表面平行的问题。
教师:研究上表面的所有直线与下表面的平行问题。
一个平面内有无数条直线,逐一检验未免太麻烦了。
可否研究部分直线与平面的平行?如“人大代表”到底需要几条?探索二:需要几条直线?需要什么样的直线?思考:(1)上表面有一条直线与下表面平行,两平面平行吗?(2)上表面有两条直线与下表面平行,两平面平行吗?借助几何画板和长方体模型,很容易观察出问题(1)不能保证平行。
对于问题(2)分两种情况讨论(依据平面内两条直线的位置关系:平行和相交)当两条直线平行时,如何?(观察模型有不成立的情况)当两条直线相交时,如何?(多次操作,直观感知)[设计意图:设置这样动手实践的情境,是为了引导学生用身边的典型实例,直观感知、观察,动手操作获得①结论,然后教师演示。
在探究②时特别要注意引导学生注意两条直线是什么样的位置,培养学生考虑问题的全面性。
使学生学在情境中,思在情理中,感悟在内心中,学自己身边的数学,领悟空间观念与空间图形性质。
]3,拓展规律,得出结论教师:通过上面的探究我们知道:当上平面的两条相交直线与下平面平行时,两个平面是平行的。
两个平面平行的问题可转化为一个平面内直线和另一个平面平行的问题.实际上判定两个平面平行的条件不需要一个平面内的所有直线都平行于另一个平面,只需要在一个平面内有两条相交直线都平行于另一个平面.请给出平面与平面平行的判定定理(升华定理)生:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.简单概括:线面平行⇒面面平行思想:空间问题转化为平面问题教师:你能用符号来表示两个平面平行的判定定理吗?a⊂α,b⊂α,a∩b=A,a∥β,b∥β⇒β∥β意图:培养和发展学生的几何直觉、归纳概括能力、运用图形语言进行交流的能力,并能准确地使用数学语言表述几何对象的位置关系。
作用:判定或证明面面平行。
关键:在平面内找(或作)出两条相交直线与另一个平面平行。
总结:利用判断定理证明两个平面平行必须具备以下两个条件:(1)有两条直线平行同一个平面(2)这两条直线必须相交意图:教师引导学生找出定理中的关键词语,并概括出以上两个条件,在应用的过程中特别要注意(2)中是相交的两条直线。
(三)定理运用,问题探究(多媒体幻灯片演示)1、想一想:例1:判断下列命题是否正确,正确说明理由,错误举例说明:(1)已知平面α和β,直线a和b,若a∥ β ,b∥ β,则α∥β。
()(2)平面α内有无穷多条直线与平面β平行,则α∥β。
()(3)平面α内的任何直线都与平面β平行,则α∥β。
()(4)已知平面α和β,直线a和b,若aα,bβ且a∥β,b∥α则α∥β()学情预设:设计这组问题目的是强调定理中三个条件的重要性,为了更好的理解平面与平面平行的判定定理并能灵活的判断两个平面平行,同时提高了学生数学符号语言和文字语言之间的转换的能力。
2、体验定理,简单应用例1、已知正方体ABCD-A1B1C1D1,求证:平面AB1D1∥平面C1BD。
证明:因为ABCD-A1B1C1D1正方体,所以D1C1∥A1B1,D1C1=A1B1又AB∥A1B1,AB=A1B1,∴D1C1∥AB,D1C1=AB,∴D1C1AB是平行四边形,∴D1A∥C1B,由直线与平面平行的判定,可知D1A∥平D1B1=D1,所以,平面AB1D1∥平面C1BD。