第二章 卤化反应
合集下载
《卤化反应 》课件

卤化反应
目 录
• 卤化反应概述 • 卤化反应机理 • 卤化反应的条件与影响因素 • 卤化反应的工业应用 • 卤化反应的安全与环保 • 卤化反应的前沿进展与展望
01
卤化反应概述
定义与分类
定义
卤化反应是指将其他元素或基团替换 为卤素(氟、氯、溴、碘)的反应。
分类
根据卤化反应中卤素的不同,可以分 为氟化、氯化、溴化和碘化等。
详细描述
亲核取代卤化反应中,亲核试剂(如醇、胺等)进攻卤代烃的碳原子,卤素原子被取代基取代。这个反应过程中 ,亲核试剂首先与卤代烃形成络合物,然后发生取代反应,生成新的碳-碳键和卤化物。
消除反应卤化
总结词
不饱和烃在加热条件下发生消除反应,同时生成碳-卤键。
详细描述
消除反应卤化中,不饱和烃在加热条件下发生消除反应,同 时生成碳-卤键。这个过程中,不饱和烃首先形成不稳定的消 除中间体,然后发生消除反应,生成新的碳-卤键和烯烃。
氟代烃的合成工艺难度较大, 且氟气具有剧毒和强腐蚀性, 因此研究和应用相对较少。
05
卤化反应的安全与环 保
卤化反应的危险性
卤化反应通常涉及高温、高压和有毒有害物质,操作不当可能导致火灾、爆炸等安 全事故。
卤化反应过程中产生的废气、废水和废渣等废弃物,如未经妥善处理,可能对环境 造成严重污染。
卤化反应过程中使用的原料和催化剂等物质,如对人体有害,可能对操作人员的健 康造成危害。
高选择性卤化反应的研究
研究高选择性卤化反应,以实现特定位置或特定结构的卤化,提高产物的纯度和 收率。
开发高选择性卤化反应的机理和动力学模型,为优化反应条件和提高产物选择性 提供理论支持。
卤化反应在绿色化学领域的应用
探索卤化反应在绿色合成中的实际应用,如药物合成、材料 制备和生物活性分子合成等。
目 录
• 卤化反应概述 • 卤化反应机理 • 卤化反应的条件与影响因素 • 卤化反应的工业应用 • 卤化反应的安全与环保 • 卤化反应的前沿进展与展望
01
卤化反应概述
定义与分类
定义
卤化反应是指将其他元素或基团替换 为卤素(氟、氯、溴、碘)的反应。
分类
根据卤化反应中卤素的不同,可以分 为氟化、氯化、溴化和碘化等。
详细描述
亲核取代卤化反应中,亲核试剂(如醇、胺等)进攻卤代烃的碳原子,卤素原子被取代基取代。这个反应过程中 ,亲核试剂首先与卤代烃形成络合物,然后发生取代反应,生成新的碳-碳键和卤化物。
消除反应卤化
总结词
不饱和烃在加热条件下发生消除反应,同时生成碳-卤键。
详细描述
消除反应卤化中,不饱和烃在加热条件下发生消除反应,同 时生成碳-卤键。这个过程中,不饱和烃首先形成不稳定的消 除中间体,然后发生消除反应,生成新的碳-卤键和烯烃。
氟代烃的合成工艺难度较大, 且氟气具有剧毒和强腐蚀性, 因此研究和应用相对较少。
05
卤化反应的安全与环 保
卤化反应的危险性
卤化反应通常涉及高温、高压和有毒有害物质,操作不当可能导致火灾、爆炸等安 全事故。
卤化反应过程中产生的废气、废水和废渣等废弃物,如未经妥善处理,可能对环境 造成严重污染。
卤化反应过程中使用的原料和催化剂等物质,如对人体有害,可能对操作人员的健 康造成危害。
高选择性卤化反应的研究
研究高选择性卤化反应,以实现特定位置或特定结构的卤化,提高产物的纯度和 收率。
开发高选择性卤化反应的机理和动力学模型,为优化反应条件和提高产物选择性 提供理论支持。
卤化反应在绿色化学领域的应用
探索卤化反应在绿色合成中的实际应用,如药物合成、材料 制备和生物活性分子合成等。
卤化反应课件

• 氯苯生成量最大时
Cl
72.91%
Cl
20.84 % Cl 6.24%
苯
4、连串卤化处理方法
• • • • • (1)控制卤化深度 (2)选择催化剂 (3)选择卤化剂 (4)调整介质的pH值或改变合成路线 (5)选择溶剂
(1)控制卤化深度
• 卤化深度可以用参加卤化反应的原料的百分数来表示 为了减少多卤化产物的产率,可以依靠降低卤化反应的深度 • 剩余的苯愈多,则从反应混合物中回收的苯量将愈多,操作费用及损耗 将增大,设备的生产能力将下降 • 可以由出口处卤化液的比重来控制卤化深度 见下表
• 催化剂的作用是使氯分子极化,或生成氯正离子。
• 无水状态下,用氯气进行氯气时,最常用的催化剂是各种 金属氯化物,如FeCl3、AlCl3等Lewis酸。 • 无水状态下或在浓硫酸介质中,用氯气进行氯气时,有时 用碘作催化剂。
• 在浓硫酸介质中,用氯气进行氯气时,硫酸起催化作用。
2、催化剂的选择
较难。 蒽醌直接接氯化制1,4,5,8—四氯蒽醌
• ③有机溶剂
水杨酸 氯化采用乙酸作溶剂;萘氯化采用四氯化碳、苯或氯苯作溶剂等
不同的有机溶剂作介质有时会对氯化速度产生影响。
萘、菲等芳烃在乙酸介质中的氯化速度比在CCl4-CH3COOH(3:1体积 比)中大的多
5、氯化重要实例
• (1)氯苯的制备 • 氯苯是制取农药、染料及其他有机合成工业产 品的重要中间体,亦可作为溶剂 • 早期多采用低温氯化工艺(35-40℃) • 现代的合成多采用沸腾氯化法(80℃) • 沸腾氯化法的优点:
卤化剂与催化剂所形成的配合物体积越大,空
间位阻越大,生成邻位异构体的比例越少。
• 苯的一氯化制氯苯----最经济的催化剂FeCl3 • 苯的二氯化制对二氯苯 • 甲苯的氯化制对氯甲苯
第二章 卤化

C6H5Cl + H2O
C6H5Cl + H2O
SiO2/磷 酸 钙
350℃
C6H5OH + HCI
苯的转化率为约10%,氯苯的收率约90%,得到的 氯苯可用气相水解法制取苯酚。 方法的优点:不会生成多氯苯,并且原料费用少; 缺点:腐蚀性强,对设备材质要求很高(淘汰)。
首页 前页 后页
精细有机单元反应
首页 前页 后页
么结论?
精细有机单元反应
第二章 卤化
苯在间歇氯化时的产物组成变化 (连串反应,可生成多氯化产物)
结论: 氯苯为目标产物,则可以控制氯化反应深度停 留在较浅的阶段。
首页 前页 后页
精细有机单元反应
第二章 卤化
3.影响因素 (1)氯化深度的影响 ①对反应深度的控制的意义:氯苯的用途比二 氯苯的大,因此对反应深度的控制具有实际的意义。 ②措施:为了减少多氯产物的产率,可以降低 氯化反应深度。 ③控制氯化深度的方法:工业生产中,根据不同 的氯化液组成有各自的相对密度的特点,通过测定 出口氯化液相对密度的方法来控制氯化深度。
TiCl4,SnCl4 FeCl3 AlCl3-KCl FeCl3-S2Cl2 PtO2
3.3 1.9 1.5 1.1 0.89
1.5 4.5 <1 1.0 2
~99 ~75 ~16 ~99 ~96
邻氯甲苯和对氯甲苯分离:由于邻氯甲苯和对氯 甲苯的沸点相近,不宜用传统的精馏法分离。近年来 已成功采用分子筛分离,得到纯度较高的邻氯甲苯或 对氯甲苯。
4 Cl2 -2 HCl S S S
首页 前页 后页
Cl
CH Cl2 C
CH CCl2
Cl -2 HCl
Cl
第二章卤化反应

1.卤素与烯烃的离子型亲电加成 (1)反应历程
X C
C
X C C C X
C X
X-X (X=Cl ,Br)
2.1 卤加成反应
烯烃的π键具有供电性,卤素分子受π键影响发生 极化.其正电部分作为亲电试剂,对烯烃的双键进 行亲电进攻,生成三圆环卤翁离子。然后,卤负离 子从环的背面向缺电子的碳正离子作亲核进攻,结 果生成反式加成产物。 究竟从三圆环背面进攻哪一个碳原于,这取决于形 成碳正离子的稳定性。烯键碳原于上连有烷基、烷 氧基、苯基等具有分散碳正离子正电荷作用的基团, 则该碳原于形成的碳正离子更趋于稳定,此处正是 x-优先进攻的位置。
特点:高度的立体选择性,产率高。纯度好,且反应温和。操作方便。
反应历程:离子型亲电加成。卤正离子是由质子化的N—卤代酰胺提 供、一OH等负离子来自反应溶剂。
2.2 卤取代反应
一、烷烃的卤取代反应
自由基取代历程 卤化试剂:氯、溴、硫酰氯、磺酰氯、次卤酸叔丁酯、N—卤 代仲胺、N—溴代丁二酰亚胺 卤素的选择性Br· >Cl·
C6H5 C H C H CO 2 C 2 H 5 Br CO 2 C 2 H 5 C6H5 Br 2 /CCl C C H
Br C6H5 C H Br C Br CO 2 C 2 H 5 H H C6H5 C C Br CO 2 C 2 H 5 H
主要产物
2.1 卤加成反应
(2)影响反应的主要因素
1.3卤化反应目的
(1)通过卤化反应制备的许多有机卤化物本身就
是重要的中间体,可以用来合成染料、农药、 香料、医药等精细化学品。如:农药2,6-二氯 苯腈的合成。
(2)通过卤化物的转化可制备含有其它取代基的衍生物, 如:利用引入卤素置换成羟基、氨基、烷氧基等。 (3)向某些精细化学品中引入一个或多个卤原子,可 以改进其性能。如:向某些有机化合物分子中引入多个 卤原子,可以增强有机物的阻燃性。
X C
C
X C C C X
C X
X-X (X=Cl ,Br)
2.1 卤加成反应
烯烃的π键具有供电性,卤素分子受π键影响发生 极化.其正电部分作为亲电试剂,对烯烃的双键进 行亲电进攻,生成三圆环卤翁离子。然后,卤负离 子从环的背面向缺电子的碳正离子作亲核进攻,结 果生成反式加成产物。 究竟从三圆环背面进攻哪一个碳原于,这取决于形 成碳正离子的稳定性。烯键碳原于上连有烷基、烷 氧基、苯基等具有分散碳正离子正电荷作用的基团, 则该碳原于形成的碳正离子更趋于稳定,此处正是 x-优先进攻的位置。
特点:高度的立体选择性,产率高。纯度好,且反应温和。操作方便。
反应历程:离子型亲电加成。卤正离子是由质子化的N—卤代酰胺提 供、一OH等负离子来自反应溶剂。
2.2 卤取代反应
一、烷烃的卤取代反应
自由基取代历程 卤化试剂:氯、溴、硫酰氯、磺酰氯、次卤酸叔丁酯、N—卤 代仲胺、N—溴代丁二酰亚胺 卤素的选择性Br· >Cl·
C6H5 C H C H CO 2 C 2 H 5 Br CO 2 C 2 H 5 C6H5 Br 2 /CCl C C H
Br C6H5 C H Br C Br CO 2 C 2 H 5 H H C6H5 C C Br CO 2 C 2 H 5 H
主要产物
2.1 卤加成反应
(2)影响反应的主要因素
1.3卤化反应目的
(1)通过卤化反应制备的许多有机卤化物本身就
是重要的中间体,可以用来合成染料、农药、 香料、医药等精细化学品。如:农药2,6-二氯 苯腈的合成。
(2)通过卤化物的转化可制备含有其它取代基的衍生物, 如:利用引入卤素置换成羟基、氨基、烷氧基等。 (3)向某些精细化学品中引入一个或多个卤原子,可 以改进其性能。如:向某些有机化合物分子中引入多个 卤原子,可以增强有机物的阻燃性。
药明康德Level 2题目-卤化反应

CHCl3
OH
Cl
B)
OH Cl
OH
C)
Cl
O
Cl
D)
7. 下面反应产物正确的是( ) tBuOCl
HOAc, H2O
HO Cl
Cl OH
Cl Cl
HO OH
A)
B)
C)
D) Cl
8. 下面吡啶类化合物最容易发生溴代的是( )
NO2
NH2
A) N
B) N
C) N
Cl
D) N
9.下面的那种化学试剂能使下面的化学反应顺利进行( )
28. 酚羟基活性较高,一般用氢卤酸、卤化亚砜卤化。 ( ) 29. 叔卤代烃的卤交换反应中常发生消除副反应。 ( ) 30. 在羧酸做酰氯反应中:脂肪羧酸比芳香羧酸活性更高( ) 31. 卤素对烯烃的加成反应中,卤素的反应活性: F2 > Cl2 > Br2 > I2, 所 以通常用 F2 对烯烃加成得到氟化物( )。 32. 卤素对烯烃的加成反应中, 有两种过渡态:一是桥型卤正离子; 二是开放 式碳正离子。( ) 33. 卤加成反应以对向加成机理为主,但对于含有能稳定碳正离子取代基的烯 烃,同向加成的比例大大增加,并可能成为占优势的途径( )。 34. 卤素对烯烃加成,溴的极化能力强,易形成桥型卤正离子,生成对向加成产 物;氯的极化性比溴小,不易形成桥氯正离子,同向加成倾向增加( )。 35. 在卤素对烯烃的加成反应中,溴的极化能力强,易形成桥型卤正离子,生成 反式加成产物。( ) 36. 在卤素对烯烃的加成反应中,氯的极化性比溴小,不易形成桥氯正离子,顺 式加成倾向增加。 ( ) 37. 卤素对烯烃的加成, 卤素的反应活性为: F2 > Cl2 > Br2 > I2。同理, 在 Pd 催化的偶联反应中,卤素的反应活性为: F2 > Cl2 > Br2 > I2。 ( ) 38. 次卤酸对烯烃的加成反应符合马氏加成规则,即卤素加成在双键的取代较多 的一端 ( ) 39. 芳杂环化合物的卤取代反应的活性为:吡咯> 呋喃> 噻吩> 苯。 ( ) 40. 芳香醛可与相应的卤素反应生成相应的酰卤 ( )
卤化反应二

Nu Nu H R' R O O S O CH3
R H R' + O O S O CH3
构型翻转
(SN2)
O H3C R-OH OH S O R O S O CH3 Cl O NaI 丙酮 R-I
O O O N F N O CH2OH + NaI H3C S Cl O N O N F N O O CH2 O O S CH3 O
CH3 POCl3 80-85°, 0.5h N OH
CH3
89% N Cl
OH Ph3PBr2 CH3CN ° 60-70 , 0.5h
Br 75%
三、醚的卤置换反应
HI或KI/H3PO4, HBr
H3PO4/KI O ICH2CH2CH2CH2I
BF3, BCl3, BBr3
BBr3 CH2Cl2, 0° HO Br
C(OAc)2 C I O C C I + Ac2O
2.烯醇硅烷醚的卤化反应
O Me LDA, -78℃ Me3SiCl 1 O Me i-Pr2NMgBr Me + 97 3 OSiMe3 Me Me + OSiMe3 Me OSiMe3
动力学控制
99 OSiMe3
热力学控制
Et3N, Me3SiCl
O
5.醇和其它卤化剂的反应
N-Cl CH3-S-CH3 O
H Ar C CH2CH2OH OH
NCS / CH3SCH3
H Ar C CH2CH2OH Cl
HO NCS / CH3SCH3
Cl
OH H3C H
OH
NCS / CH3SCH3
H3C
H
HOH2CH2C
R H R' + O O S O CH3
构型翻转
(SN2)
O H3C R-OH OH S O R O S O CH3 Cl O NaI 丙酮 R-I
O O O N F N O CH2OH + NaI H3C S Cl O N O N F N O O CH2 O O S CH3 O
CH3 POCl3 80-85°, 0.5h N OH
CH3
89% N Cl
OH Ph3PBr2 CH3CN ° 60-70 , 0.5h
Br 75%
三、醚的卤置换反应
HI或KI/H3PO4, HBr
H3PO4/KI O ICH2CH2CH2CH2I
BF3, BCl3, BBr3
BBr3 CH2Cl2, 0° HO Br
C(OAc)2 C I O C C I + Ac2O
2.烯醇硅烷醚的卤化反应
O Me LDA, -78℃ Me3SiCl 1 O Me i-Pr2NMgBr Me + 97 3 OSiMe3 Me Me + OSiMe3 Me OSiMe3
动力学控制
99 OSiMe3
热力学控制
Et3N, Me3SiCl
O
5.醇和其它卤化剂的反应
N-Cl CH3-S-CH3 O
H Ar C CH2CH2OH OH
NCS / CH3SCH3
H Ar C CH2CH2OH Cl
HO NCS / CH3SCH3
Cl
OH H3C H
OH
NCS / CH3SCH3
H3C
H
HOH2CH2C
精细有机合成单元反应_02卤化反应

返回
2.5 饱和烃的取代卤化
2.5.2 一氯甲烷的氯化制多氯甲烷
以石油化工的廉价甲醇为原料,先与盐酸反应生成一氯甲烷,再 将一氯甲烷氯化成多氯甲烷。除高温气相热氯化法外,也可用液 相引发氯化法。
2.5.3 氯化石蜡
是以C10~C30的正构烷烃为原料,经取代氯化制得的产物的总称。
每种产品都是混合物,其化学式和相对分子质量都是平均值,商
Cl
Br
Cl2 , 15 ℃ 1,2- 二 氯 乙 烷 溶 剂 四 氯 化
HO
CH3 C CH3
OH
• -X(-Cl)
亲核置换 -NH2,-OH,-F,-OR,-OAr
OH
Cl
δ+
OH
OCH 3
OCH3 NH3
NH 2
2.1 概 述
(1) 氯化剂
2.1.1 卤化剂
最常用的氯化剂是氯气,价格低廉,供应量大。 液态SO2Cl2,反应温和、加料方便、计量准确,但价格太贵 在水介质中进行时,可用盐酸加双氧水、次氯酸钠和氯酸钠 (2) 溴化剂 最常用的是分子态溴,特别用于制备含溴的阻燃剂。 (3) 碘化剂
催化剂是废铁屑、废铁管。
(2) 苯的二氯化制对二氯苯催化剂:苯的二氯化时,如果用FeCl3作催化剂, 对/邻二氯苯的比例仅1.49 ~ 1.55︰1;Sb2S3,对/邻之比为3.3 ~ 3.6︰1; Sb2S3-I2,对/邻之比为7.5︰1;经氯氧混合气处理过的硫化铁-硅铝胶,对/ 邻之比为8.0︰1;经二氯乙酸钠等羧酸盐处理过的沸石,对位收率可达 95.7%。 (3) 甲苯的氯化制对氯甲苯:Lewis酸催化剂,对位选择性只有24% ~ 37%;
H-X + FeCl3 H+ + FeCl4-
2.5 饱和烃的取代卤化
2.5.2 一氯甲烷的氯化制多氯甲烷
以石油化工的廉价甲醇为原料,先与盐酸反应生成一氯甲烷,再 将一氯甲烷氯化成多氯甲烷。除高温气相热氯化法外,也可用液 相引发氯化法。
2.5.3 氯化石蜡
是以C10~C30的正构烷烃为原料,经取代氯化制得的产物的总称。
每种产品都是混合物,其化学式和相对分子质量都是平均值,商
Cl
Br
Cl2 , 15 ℃ 1,2- 二 氯 乙 烷 溶 剂 四 氯 化
HO
CH3 C CH3
OH
• -X(-Cl)
亲核置换 -NH2,-OH,-F,-OR,-OAr
OH
Cl
δ+
OH
OCH 3
OCH3 NH3
NH 2
2.1 概 述
(1) 氯化剂
2.1.1 卤化剂
最常用的氯化剂是氯气,价格低廉,供应量大。 液态SO2Cl2,反应温和、加料方便、计量准确,但价格太贵 在水介质中进行时,可用盐酸加双氧水、次氯酸钠和氯酸钠 (2) 溴化剂 最常用的是分子态溴,特别用于制备含溴的阻燃剂。 (3) 碘化剂
催化剂是废铁屑、废铁管。
(2) 苯的二氯化制对二氯苯催化剂:苯的二氯化时,如果用FeCl3作催化剂, 对/邻二氯苯的比例仅1.49 ~ 1.55︰1;Sb2S3,对/邻之比为3.3 ~ 3.6︰1; Sb2S3-I2,对/邻之比为7.5︰1;经氯氧混合气处理过的硫化铁-硅铝胶,对/ 邻之比为8.0︰1;经二氯乙酸钠等羧酸盐处理过的沸石,对位收率可达 95.7%。 (3) 甲苯的氯化制对氯甲苯:Lewis酸催化剂,对位选择性只有24% ~ 37%;
H-X + FeCl3 H+ + FeCl4-
第2章_卤化反应2

6
(三)烯丙位或苄位的 卤取代 反应机理
X2 h 或其他 引发剂 X O N +X O
②
C C CH +X 或
O N O O C C C + HX 或 NH O
①
O h N X 或自由基 引发剂 O
③
C C C + X2 或
O NX O O
其他引发剂:过氧化物、偶氮二异丁腈
C C C X
+ X
N CH3
Br
O
NBS
O
O
9
反应的主要影响因素
1. 取代基
CH3 CH3 2 mol Br2 hv, r. t., H2O (79%) CH2Br CH2Br
反应活性顺序:叔C—H>仲C—H>伯C—H
C3H7 CH2CH
CHCH3
NBS/CCl4 BPO
C3H7 CHCH Br
CHCH3
(58%-64%)
Br
(93%)
27
预 习: 卤置换反应 思考与练习:P33 3
28
4.溶剂
溶剂对自由基卤化反应有明显影响,能与自由基发生溶剂化的 溶剂可降低自由基的活性,故反应大多采用四氯化碳、苯、石油醚等 无水非极性惰性溶剂,以避免终止自由基反应及其他副反应的发生。 反应若是液体,也可不用溶剂。
12
二、羰基-H的卤取代
(一) 酮的α-卤取代反应 (二) 醛的α-H卤取代反应 (三) 羧酸及其衍生物的α-H的卤取代
例1.甲状腺素(Levothyroxine)的合成:
例2. 抗阿米巴病药喹碘方(Chiniofon)的合成:
26
注意选择合适的卤化试剂
NH2 Br Br2 NH2 HCl Br NBS/DMF 室温 24h NH2 Br
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果在反应中添加无机卤化物(如LiCl等), 以增加卤负离子浓度,则可提高1,2-二卤化物的 比例。如:
CH3 C H Cl
Cl2/ CH3CO2H
C2H5 C H
Cl OCOCH3 33% 21%
OCOCH3 + CH3CHCHC2H5 Cl 13% 8%
CH3CHCHC2H5 + CH3CHCHC2H5 Cl 52%
LiCl
69%
(3)催化剂 当双键碳原子上连有吸电子基 时,由于双键电子云密度降低,卤素加成的活性 下降,可加入少量Lewis酸或叔胺等进行催化。
(4)温度 温度不宜太高,常控制在较低的 温度下进行。温度太高会有取代或消去等副反应 发生;温度太低,则化学反应速度慢。
2、应用实例:
用烯丙醛与溴反应,制取抗癌药-氨蝶呤钠( Aminopterin Sodium,6)的合成原料2,3-二溴丙 醛的反应:
(4)反应介质 卤化反应通常是在液相中进行,液相介质 一般分为两类:一类是水或酸性水溶液,常用的酸性水溶液 有稀盐酸、稀醋酸;另一类是氯仿或其它卤代烃等有机类溶 剂。溶剂是极性的能够提高反应活性。采用非极性溶剂,则 反应速率慢,但在有的反应中可用来提高选择性。
2、应用实例:
驱虫药-氯硝柳胺(Niclosamine)中间体(10)的合成:
Fe/FeCl3 55-60
HCl
+
HBr
1、主要影响因素:
(1)芳烃的结构 芳环上没有其它取代基时,芳环上的
六个氢原子是同等的,若芳环上先有其它取代基的,则需 考虑定位效应。芳环上连有供电子基时,有利于形成络合 体,卤取代反应易进行,主要生成邻、对位异构体;
CH3 + 2 Cl2
Fe或 FeCl3
N-卤代丁二酰胺 NCS NBS
五氯化磷 PCl5
三氯化磷 PCl3 含 磷 卤 化 试 剂 三氯氧磷 POCl3 三苯膦卤化物 Ph3PX2 Ph3P+CX3X三苯酯卤化物 (PhO)3PX2 (PhO)3 P+RX活性大,反应条件 温和,收率和纯度高 。 活性较大,副反应 少,收率高。
醇、酚羟基 、羧羟基的置换
药物合成技术
第二章 卤化反应
目标要求
1 2 3 3 4
掌握常见卤化反应的类型和常用卤化试剂及特点 掌握卤素、卤化氢对烯烃的加成反应和卤素在芳环 上的卤化反应 熟悉羰基α位氢的卤素取代反应和卤化氢与醇的置 换反应 了解卤化反应在药物合成中的应用
一、卤化反应的概念
卤化反应(Halogenations Reaction) 指向有机化合物分子中引入卤素原子的反应。按 引入卤素的不同又分为氟化、氯化、溴化和碘化四类 。卤素原子引入有机化合物分子中,会形成强极性、 易断裂的碳卤键,从而会使有机化合物的物理性质、 化学性质和生理活性都发生较大的变化。
(一)烯烃与卤素的加成
烯烃与卤素加成,首先是卤素分子接近双键中的π键而 产生极化,被极化的卤素带正电的一端作为亲电试剂向烯 烃双键中的π键进行亲电加成,生成三员环桥卤正离子后, 然后是卤负离子从环的另一面向缺电子的碳正离子做亲核 进攻,最终生成反式加成产物:
X X C X C C X
C C
X X
C C X X
+
HCl
HgCl2
CH3
C Cl Cl
CH2
CH3
C Cl
CH2 +
HCl
CH3
C Cl
CH3
溴化氢与炔烃加成和氯化氢相似。但在反应中有过 氧化物存在时,也按反马加成规律进行加成:
CH3 CH2 3 C CH + HBr
CH3 CH2
3
CH
CHBr
在药物合成中,除了用卤素、卤化氢与不饱和烃加成外, 还可用次卤酸和N-卤化酰胺这些卤化剂与烯烃类化合物加成 来合成α-卤代醇,反应机理是亲电加成。 如用次氯酸合成磷酸哌嗪、盐酸普鲁卡因、呋喃唑酮等 药物的中间体氯乙醇:
X X
+
FeX3
X
+ [FeX4]
卤正离子进攻苯环,生成碳正离子中间体:
H + X H X +
生成碳正离子中间体后,进而与四卤化铁络离子反应形成 取代产物:
H X + + [FeX4]
Cl + Br + Br2
Fe/ FeBr3 55-60
X + H [FeX4]
如Cl2和Br2分别与苯反应:
+ Cl2
Br CH2 CH CHO + Br2
C Cl4 0
CH2 Br
CH (6)
CHO
51%
(二)炔烃与卤素的加成
炔烃的C≡C键中由于有二条π键,也同样会与卤素加 成,反应活性不及烯烃,其原因是这两条π键的重叠程度比 烯烃要大,要更牢固一些。产物主要也是反式:
Br Ph C C CH3
Br2 LiBr
PhCOO
2/NaBr
CH2
CH
CH2Cl + HBr
- 5
BrCH2CH2CH2Cl (8)
(二)卤化氢对炔烃的加成反应
卤化氢对炔烃的加成也是和烯烃一样,按照马氏规则 进行,但比烯烃要难一些。如一分子丙炔与一分子氯化氢 加成,生成一分子2-氯丙烯,继续作用,则生成2,2-二氯 丙烷:
CH3
C
CH
二、卤化反应的用途
(一)制取具有不同生理活性的含卤有机药物
如:抗菌素中的氯霉素(Chloramphenicol,1)和环丙沙星 (Ciprofloxacin,2)
O
H
O2 N C OH
NHCOCHCl2 C H CH2OH H N
F N N
COOH
(1)
(2)
又如:抗癌药中的氟尿嘧啶(Fluorouracil Tablets, 3)和它的衍生物类药 卡莫氟 (Carmofur Tablets,4)
(一)卤化氢对烯烃的加成反应 卤化氢对烯烃的加成反应和卤素与烯烃的加成反应历 程相似,也属于亲电加成反应,生成反式加成产物。
H X
H
+
X X
X C H C
H
+
C
C
C H
C H
C
若是不对称烯烃,定位符合马氏规则:
R
CH
CH2
+
H
X
R
CH X
CH2 H
在卤化氢与烯烃的加成反应中,主要影响因素 一是碳氢键的键能。因为键能越大,碳氢键的活性 则越小,越难离解出氢离子和卤离子;二是烯烃的 结构。 在烯烃的双键碳原子上若连有供电子基团, 则有利于亲电加成进行。反之,若是连有吸电子基, 双键上电子云密度下降,则不利于亲电加成反应进 行。
S
H3C O C
+ Br2
H2SO4/SO3 130 ,7.5h
S
Br
Br
N
N
(2)催化剂 在反应中加入Lewis酸,可以促进亲电试剂 的形成。 一般在卤化反应中常用的酸为金属卤化物,如:
AlCl3 , FeCl3 , FeBr3 , SbCl5 , SnCl4 , TiCl4 , ZnCl2
对于芳环上有较强的供电子基(如 -OH 和 -NH 2 等)的芳 烃,可在没有催化剂存在的条件下顺利进行。 (3)卤化剂 常用的卤化剂有卤素。其中F2的活性太大, 反应剧烈而难以控制,故实用价值不大,一般不用。其它常 用的卤化试剂还有次氯酸、次溴酸、硫化氯、硫酰氯、次氯 酸叔丁酯、、酰基次溴酸酐等。
CH3COOK
O C
O CH 2O C CH3 OH
DMF O 5
二、卤化反应的类型
(一)加成反应
E C C C C + E + E X X C C E
X C C X
E-X 代表卤化剂。X表示卤素,E表示卤化剂中与卤素相 连的原子或原子团。
(二)取代反应
C
H +
E
X
C
X + H
E
(三)置换反应
C Z + E X C X + E Z
H N F O (3) N O H F O (4) CH3 N N H O
(二)制备药物中间体
例如:利用17α –羟基黄体酮制取醋酸可的松时,在 17α –羟基黄体酮的甲基上引入碘后,反应活性增大,易 与醋酸钾反应,容易制得糖皮质激素―醋酸可的松( Cortison Acetate,5) :
O C CH 3 OH I2/CaO CH3OH/CaCl2 O O O C CH 2 I OH
CCl4 60
杂环中的五员环(呋喃、吡咯、噻吩等),环中碳的 电子密度比苯大,均为多电子杂环,亲电取代活性大于苯 ,卤代要容易进行些; 六员杂环(吡啶、吡喃、吡嗪等),环中碳的电子密 度比苯小,均为缺电子杂环,使位碳上的电子密度减小, 亲电取代活性小于苯,卤代要难进行些。
+ Br2
CH3COOH
H3 C O C
C X
C X
C
氯或溴与烯烃的加成以反向加成为主,但随着药物原 料分子的结构、卤化试剂和反应条件的不同,顺、反加成 物的比例也会有所变化。
1、主要影响因素:
(1)烯烃(药物原料分子) 当双键碳原子上含有供电 子基时,能增加中间体碳正离子的稳定性,反应容易进行 ;反之,反应不易进行。
(2)溶剂 常用四氯化碳、氯仿、二氯化碳、二硫化碳 等惰性溶剂。在这些惰性溶剂中,Br2或Cl2可与烯烃迅速 反应。当在亲核性溶剂(如水、羧酸和醇等)中进行时, 溶剂中的亲核性基团可以进攻中间体碳正离子,将得到1,2二卤化物和其它加成产物(如卤醇或其醚、酯)的混合物 。如果在反应中添加无机卤化物,以增加卤负离子浓度, 则可提高1,2-二卤化物的比例。