(总结)高数之数列极限的方法总结

合集下载

高数中求极限的16种方法

高数中求极限的16种方法

高数中求极限的16种方法——好东西首先对极限的总结如下:极限的保号性很重要,就是说在一定区间内,函数的正负与极限一致一、极限分为一般极限,还有数列极限,(区别在于数列极限发散,是一般极限的一种)二、求极限的方法如下:1 .等价无穷小的转化,(一般只能在乘除时候使用,在加减时候用必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。

全部熟记(x趋近无穷的时候还原成无穷小)2.罗比达法则(大题目有时候会有暗示,要你使用这个方法)首先他的使用有严格的使用前提,必须是 X趋近而不是N趋近!所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!必须是函数的导数要存在!必须是 0比0 无穷大比无穷大!当然还要注意分母不能为0注意:罗比达法则分为3种情况0比0,无穷比无穷的时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。

通项之后这样就能变成1中的形式了;0的0次方,1的无穷次方,无穷的0次方;对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3.泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特别注意!!!!)E的x展开,sina 展开,cos 展开,ln1+x展开,对题目简化有很好帮助4.面对无穷大比上无穷大形式的解决办法取大头原则,最大项除分子分母!!!!!!!!!!!5.无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。

面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6.夹逼定理(主要对付数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。

数列极限知识点归纳总结

数列极限知识点归纳总结

数列极限知识点归纳总结数列极限是高等数学中非常重要的一部分内容,它在微积分、数学分析和实数理论等领域有着广泛的应用。

数列极限可以用来描述数列中的数值趋于无穷大或趋于某个确定值的性质。

本文将对数列极限的概念、性质及相关定理进行归纳总结。

一、数列极限的概念数列极限是指当数列的项趋于无穷大或趋于某个确定值时,数列中的数值会有怎样的变化规律。

数列极限可以分为两种情况:当数列的项趋于无穷大时,称为正无穷大极限;当数列的项趋于某个确定值时,称为有限极限。

二、正无穷大极限正无穷大极限是指当数列的项趋于正无穷大时,数列中的数值也趋于正无穷大。

对于正无穷大极限的数列,常常使用符号∞表示。

正无穷大极限的数列具有以下特点:1. 当数列的项趋于正无穷大时,数列中的每一项都大于任意给定的正数。

2. 正无穷大极限的数列不存在有限极限,即数列中的数值不会趋于某个确定值。

三、有限极限有限极限是指当数列的项趋于某个确定值时,数列中的数值也趋于该确定值。

有限极限的数列具有以下特点:1. 当数列的项趋于某个确定值时,数列中的每一项都无限接近于该确定值。

2. 有限极限的数列不一定是递增或递减的,它可以在趋近确定值的过程中有往复波动的情况。

四、数列极限的性质数列极限具有一些重要的性质,这些性质对于研究数列的收敛性和发散性非常有帮助。

下面列举了一些常见的数列极限性质:1. 数列极限的唯一性:如果数列的极限存在,那么它是唯一的,也就是说数列的极限值不会有多个。

2. 数列极限的保序性:如果一个数列的所有项都大于(或小于)另一个数列的所有项,并且这两个数列都有极限,那么它们的极限值也满足同样的大小关系。

3. 数列极限的有界性:如果一个数列的极限存在,那么该数列是有界的,即存在一个正数M,使得数列的所有项的绝对值都不大于M。

4. 数列极限与四则运算的关系:如果两个数列都有极限,那么它们的和、差、积和商(除数不为零)也都有极限,并且极限值满足相应的运算规律。

高中数学中的数列极限求解知识点总结

高中数学中的数列极限求解知识点总结

高中数学中的数列极限求解知识点总结数列极限是高中数学中的重要内容,它是数学分析的基础,也是数学发展的重要方向之一。

掌握数列极限的求解方法和相关知识点,对于高中生提高数学学习水平具有重要的意义。

下面将对高中数学中的数列极限求解知识点进行总结与归纳。

一、数列极限的概念及性质数列极限指的是当数列中的项数趋于无穷大时,数列中的项的极限值。

数列极限的概念基于数列的收敛性,即当数列趋于某个确定的值时,其极限存在。

1.1 数列极限的定义数列{an}的极限为a,记作lim(n→∞) an = a,当且仅当对于任意给定的正数ε,总存在一个正整数N,使得当n>N时,对应的数列项an 与极限a之间的差值小于ε,即|an - a| < ε。

1.2 数列极限的性质(1)唯一性:如果数列的极限存在,则极限值唯一。

(2)有界性:如果数列的极限存在,则数列必定有界。

(3)保序性:如果数列{an}的极限为a,且数列{bn}的极限为b,则当n足够大时,对于数列中的任意项an与bn,都有an ≤ bn。

二、常见数列极限求解方法2.1 基本数列的极限(1)常数数列的极限:对于常数数列{an} = a,其中a为常数,则该常数数列的极限为a,即lim(n→∞)a = a。

(2)等差数列的极限:对于等差数列{an} = a1 + (n - 1)d,其中a1为首项,d为公差,则当公差d≠0时,该等差数列的极限为±∞(取决于公差d的正负性),若公差d=0,则该等差数列的极限为a1。

2.2 数列极限的四则运算法则(1)加减法则:如果数列{an}的极限为a,数列{bn}的极限为b,则数列{an ± bn}的极限为a ± b。

(2)乘法法则:如果数列{an}的极限为a,数列{bn}的极限为b,则数列{an × bn}的极限为a × b。

(3)除法法则:如果数列{an}的极限为a,数列{bn}的极限为b且b≠0,则数列{an ÷ bn}的极限为a ÷ b。

高考高等数学备考指南数列极限计算

高考高等数学备考指南数列极限计算

高考高等数学备考指南数列极限计算在高考高等数学中,数列极限计算是一个重要且具有一定难度的考点。

掌握好数列极限的计算方法,对于在高考中取得优异的数学成绩至关重要。

本文将为大家详细介绍数列极限计算的相关知识和备考策略。

一、数列极限的基本概念首先,我们需要明确数列极限的定义。

对于数列{aₙ},如果当 n 无限增大时,aₙ 无限趋近于一个常数 A,那么我们就说数列{aₙ}的极限是 A,记作lim(n→∞) aₙ = A。

理解数列极限的概念是进行计算的基础。

要注意,数列极限反映的是数列的变化趋势,而不是数列的某一项的值。

二、常见数列极限的类型1、常数数列如果数列{aₙ}的每一项都等于常数 C,那么lim(n→∞) aₙ = C。

2、等差数列对于等差数列{aₙ},其通项公式为 aₙ = a₁+(n 1)d,当 d = 0 时,数列是常数列,极限为 a₁;当d ≠ 0 时,数列的极限不存在。

3、等比数列对于等比数列{aₙ},其通项公式为 aₙ = a₁qⁿ⁻¹。

当|q| < 1 时,lim(n→∞) aₙ = 0;当 q = 1 时,数列是常数列,极限为 a₁;当|q| > 1 时,数列的极限不存在。

三、数列极限的计算方法1、利用定义计算直接根据数列极限的定义,通过分析数列的变化趋势来确定极限。

但这种方法往往比较复杂,在实际解题中不常用。

2、利用四则运算法则如果lim(n→∞) aₙ = A,lim(n→∞) bₙ = B,那么:(1)lim(n→∞)(aₙ ± bₙ) = A ± B(2)lim(n→∞)(aₙ × bₙ) = A × B(3)lim(n→∞)(aₙ / bₙ) = A / B (B ≠ 0)在使用四则运算法则时,要注意先判断极限是否存在。

3、利用重要极限(1)lim(n→∞)(1 +1/n)ⁿ = e(2)lim(n→∞)(1 +x/n)ⁿ =eˣ (x 为常数)这些重要极限在解题中经常会用到,需要牢记。

大一高数知识点总结求极限

大一高数知识点总结求极限

大一高数知识点总结求极限大一的高等数学课程对于许多学生来说是一个挑战。

其中,求极限是一个重要的知识点,在解决数学问题和理解数学概念时起到关键的作用。

本文将对大一高数中与求极限相关的知识做一个总结。

一、数列极限在大一高数中,数列极限是一个基础而重要的概念。

数列极限可以通过数学定义和一些常用的极限定理来求解。

1. 数列极限的定义数列极限的定义是:对于一个数列{an},当n趋近于无穷时,如果存在一个实数A,使得对于任意给定的正数ε(无论多么小),都存在正整数N,使得当n > N时,有|an - A| < ε成立,则称数列的极限为A。

2. 常用的数列极限定理在实际计算中,可以根据一些常用的数列极限定理简化计算过程。

常用的数列极限定理包括:- 夹逼准则:当数列{an}、{bn}和{cn}满足an≤bn≤cn,且lim(n→∞)an=lim(n→∞)cn=L,那么lim(n→∞)bn=L。

- 唯一性定理:如果数列{an}与数列{bn}有相同的极限,即lim(n→∞)an=lim(n→∞)bn=L,那么可以推出lim(n→∞)(an ±bn)=2L。

- 四则运算法则:对于两个数列{an}和{bn},如果它们的极限存在,可以利用四则运算计算它们的极限。

即lim(n→∞)an ± bn = lim(n→∞)an ± lim(n→∞)bn,lim(n→∞)an · bn =lim(n→∞)an · lim(n→∞)bn,lim(n→∞)an / bn = (lim(n→∞)an) / (lim(n→∞)bn)(其中,lim(n→∞)bn ≠ 0)。

二、函数极限在大一高数中,函数极限是求极限的另一个重要方面。

函数极限的计算可以通过代入法、夹逼定理和洛必达法则等方法进行。

1. 函数极限的代入法对于一些常见的函数极限,可以通过代入法进行计算。

例如,对于以下函数极限的计算:lim(x→a)f(x),当x趋近于某个实数a时,可以通过直接将x代入f(x)的表达式中,计算得到极限值。

高等数学中求极限方法总结

高等数学中求极限方法总结

高等数学中求极限方法总结高等数学第一章在整个高等数学的学习中都占有相当重要的地位,特别是极限,原因就是后续章节本质上都是极限。

一个经典的形容就是假如高等数学是棵树木的话,那么极限就是它的根,函数就是它的皮。

树没有跟,活不下去,没有皮,只能枯萎,可见极限的重要性。

故在这里总结了10种常用的求极限的方法并举例说明。

1、利用等价无穷小的转化求极限例:求极限x x x x 1cossin lim 20→。

解:x x x x 1cossin lim 20→x x x x 1cos lim 20→=xx x 1cos lim 0→==2注:通常在乘除时候使用,但是不是说一定在加减时候不能用,但是前提是必须证明拆分后极限依然存在,要记住常用的等价无穷小,例如当0→x 时,).(0~sin ,21~sin ,~3x x x x x tgx x tgx −−。

2、罗比达法则例:求极限∫→x x tdtx 020arctan 1lim 解:∫→x x tdt x 020arctan 1lim 21211lim 2arctan lim 200=+==→→x x t x x 例:求极限⎟⎠⎞⎜⎝⎛−−→11ln 1lim 1x x x 解:x x x x x x x x ln )1(ln 1lim 11ln 1lim 11−−−=⎟⎠⎞⎜⎝⎛−−→→21111lim 1ln 11lim 2211=+=−+−=→→xx x x x x x x x …注:使用罗比达法则必须满足使用条件,要注意分母不能为零,导数存在。

罗比达法则分为三种情况(1)0比0和无穷比无穷时候直接分子分母求导;(2)0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。

通项之后这样就能变成1的形式;(3)0的0次方,1的无穷次方,无穷的0次方,对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,)3、利用2个重要极限求极限例:求极限2)11(lim 22x x x x +−∞→解:211(lim 22x x x x +−∞→2)121(lim 2x x x +−+=∞→12212222])121[(lim +−−+∞→+−+=x x x x x 12lim 22+−∞→=x x x e 2−=e 。

高中数学数列极限的计算方法及解题技巧

高中数学数列极限的计算方法及解题技巧

高中数学数列极限的计算方法及解题技巧数列是高中数学中的重要概念,而数列的极限更是数学分析的基础。

在高中数学中,我们经常会遇到需要计算数列极限的题目。

本文将介绍数列极限的计算方法及解题技巧,并通过具体的题目进行说明,帮助高中学生和他们的父母更好地理解和应用。

一、数列极限的定义在开始讨论数列极限的计算方法之前,首先需要了解数列极限的定义。

数列极限是指当数列的项数趋于无穷大时,数列的值趋于的一个确定的值。

数列极限常用符号"lim"表示,例如lim(n→∞)an = L,表示当n趋于无穷大时,数列an的极限为L。

二、数列极限的计算方法1. 常见数列的极限计算方法常见的数列包括等差数列、等比数列、阶乘数列等。

对于这些数列,我们可以利用其特殊的性质来计算极限。

例如,对于等差数列an = a1 + (n-1)d,其中a1为首项,d为公差。

当n趋于无穷大时,数列的极限为无穷大,即lim(n→∞)an = +∞。

对于等比数列an = a1 * r^(n-1),其中a1为首项,r为公比。

当|r| > 1时,数列的极限为无穷大,即lim(n→∞)an = +∞;当|r| < 1时,数列的极限为0,即lim(n→∞)an = 0。

2. 利用数列的递推关系计算极限有些数列的递推关系可以帮助我们计算极限。

例如,对于递推数列an = an-1 + 1/n,其中a1 = 1。

我们可以通过递推关系计算数列的前几项,发现数列逐渐趋近于ln2。

因此,当n趋于无穷大时,数列的极限为ln2,即lim(n→∞)an = ln2。

三、数列极限的解题技巧1. 注意数列的特殊性质在解题过程中,我们需要注意数列的特殊性质,例如等差数列和等比数列的性质。

通过分析数列的特点,可以更好地确定数列的极限。

2. 利用数列的性质进行变形有时候,我们可以通过对数列进行变形来简化计算。

例如,对于数列an =(n+1)/(n-1),我们可以将分子和分母同除以n,得到an = (1+1/n)/(1-1/n)。

数列极限的应用教学方法总结

数列极限的应用教学方法总结

数列极限的应用教学方法总结数列极限是高中数学中的重要概念之一,不仅是数学学科的基础,同时也具有广泛的应用价值。

因此,在数列极限教学中,如何提高学生的学习兴趣、增强他们的理解能力,以及培养他们的应用能力,是教师们亟待解决的问题。

本文将总结一些数列极限教学的有效方法,旨在提供一些参考,帮助教师更好地进行数列极限的应用教学。

一、激发学生的学习兴趣激发学生的学习兴趣是数列极限教学的首要任务。

教师可以通过多种方式来实现这一目标。

首先,可以引入生活中的实际例子,将数列极限与实际问题相结合。

例如,可以通过引入车辆的加速度等实际场景,帮助学生理解数列极限的概念,并使学生能够将其应用于解决实际问题。

其次,可以运用多媒体教学工具,如动画、幻灯片等,使教学内容更加生动有趣。

通过图像和声音的结合,可以激发学生的视听感受,增强他们对数列极限的理解和兴趣。

另外,也可以采用游戏化教学方法,设计一些趣味性的数列极限相关游戏,让学生在娱乐中学习。

比如,在课堂上可以进行数列极限速算比赛,通过竞争的形式激发学生的积极性,提高他们的学习兴趣。

二、加强问题求解能力培养数列极限的应用主要体现在问题求解中,因此,培养学生的问题求解能力是数列极限教学的核心任务。

首先,可以通过引导学生进行思考和讨论的方式,培养他们的分析和推理能力。

教师可以提供一些开放性问题,引导学生进行讨论和探究,让学生由浅入深地理解数列极限,并自主独立地解决问题。

其次,可以组织一些数列极限应用的小组活动。

教师可以将学生分成小组,布置一些实际问题,要求学生通过数列极限的方法进行解决,并在小组之间进行交流和分享。

通过团队合作,可以提高学生的解决问题的能力以及与他人合作的能力。

另外,可以引导学生进行实际建模。

教师可以提供一些复杂的实际问题,要求学生将其转化为数学模型,并运用数列极限的相关知识进行求解。

通过实际建模,学生可以深入理解数列极限的应用,并培养他们的创新和应用能力。

三、拓展数列极限的应用领域数列极限的应用领域非常广泛,如物理学、经济学、生物学等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高数之数列极限的方法总结
极限是考研数学每年必考的内容,在客观题和主观题中都有可能会涉及到平均每年直接考查所占的分值在10分左右,而事实上,由于这一部分内容的基础性,每年间接考查或与其他章节结合出题的比重也很大。

极限的计算是核心考点,考题所占比重最大。

熟练掌握求解极限的方法是得高分的关键。

极限无外乎出这三个题型:
求数列极限、求函数极限、已知极限求待定参数。

熟练掌握求解极限的方法是的高分地关键,极限的运算法则必须遵从,两个极限都存在才可以进行极限的运算,如果有一个不存在就无法进行运算。

以下我们就极限的内容简单总结下。

极限的计算常用方法:
四则运算、洛必达法则、等价无穷小代换、两个重要极限、利用泰勒公式求极限、夹逼定理、利用定积分求极限、单调有界收敛定理、利用连续性求极限等方法。

四则运算、洛必达法则、等价无穷小代换、两个重要极限是常用方法,在基础阶段的学习中是重点,考生应该已经非常熟悉,进入强化复习阶段这些内容还应继续练习达到熟练的程度;在强化复习阶段考生会遇到一些较为复杂的极限计算,此时运用泰勒公式代替洛必达法则来求极限会简化计算,熟记一些常见的麦克劳林公
1。

相关文档
最新文档