第八章热力学基础

合集下载

大学物理第8章:热力学基础

大学物理第8章:热力学基础
3
说明:A. 准静态过程为理想过程
弛豫时间 ( ):系统的平衡态被 破坏后再恢复到新的平衡态所需 要的时间。
气缸
B.一个热力学过程为准静态过程的必要条件为过程 所经历的时间大于驰豫时间 t 如:若气缸缸长 L 101 (m ),则 103 ~ 104 ( s ) 若活塞以每秒几十次的频率运动时, 每移动一次经 1 tt 时 t 10 ( s ) ,则满足 , C.准静态过程可以用宏观参量图给予表示
讨论: (1) n=0, 等压过程,Cp=CV+R ,过程方程: T/V=C4; (2) n=1, 等温过程,CT = , 过程方程: pV=C5; (3) n= , 等体过程, CV =iR/2 , 过程方程: p/T=C6; (4) n= , 绝热过程,CQ=0, 过程方程:
pV C1 , TV
RdT
由 pV=RT 于是得
C CV
pdV
pdV+Vdp=RdT
R pdV (1 ) Vdp 0 C CV dp R dV (1 ) 0 p C CV V

R 1 n —多方指数 C C V
21
dp dV n 0 p V
完成积分就得多方过程的过程方程:
V1
V2
i ( p2V2 p1V1 ) 2
只与始末状态有关
M i RT 2
( if
c const )
Q cM (T2 T1 )
与过程有关
特点
与过程有关
对微小过程:dQ=dE + dA
M i dQ RdT pdV 2
14
例题 8-2 如图所示,一定量气体经过程abc吸热 700J,问:经历过程abcda吸热是多少? 解 Q= E2-E1 + A i 过程abc : 700= Ec -Ea+ Aabc= ( pcVc paVa ) Aabc

第八章热力学定律

第八章热力学定律

第八章热力学定律本章学习提要1.理解热力学第一定律,知道热力学第一定律反映了系统内能的变化和系统通过做功及传热过程与外界交换的能量之间的关系。

初步会用热力学第一定律分析理想气体的一些过程,以及生活和生产中的实际问题。

2.知道热力学第二定律的表述。

知道熵是描写系统无序程度的物理量。

热力学的两个基本定律是能量守恒定律和热力学第一定律。

热力学第二定律表述了热力学过程的不可逆性,即孤立系统自发地朝着热力学平衡方向——最大熵状态——演化。

这两个定律都是通过对自然界和生活、生产实际的观察、思考、分析、实验而得到的,这也是我们学习这两条基本定律应采取的方法。

人类的进步是与对蕴藏在物质内部能量的认识和利用密切相关的。

热力学定律为更好地设计和制造热机、更好地开发和利用能源指明了方向。

随着生产和科学实践的发展,人们逐步领悟到有效利用能源的意义,懂得遵循科学规律的重要性,从而更自觉地抵制违背科学规律的行为。

A 热力学第一定律一、学习要求理解热力学第一定律。

初步会用热力学第一定律分析理想气体的一些过程,以及生活和生产中的实际问题。

我们应聚焦于热力学第一定律的构建过程,理解它既包括内能的转换,也遵循能量守恒定律。

这一定律是通过对自然界以及生活和生产实际的深入观察、思考、分析和实验而得出的自然界中最基本、最普遍的定律之一。

通过学习热力学第一定律,我们能体会到它在科学史上的重要地位,并感受到它对技术进步和社会发展的巨大影响。

二、要点辨析1.热力学第一定律的含义和表式热力学第一定律涉及到能量的转化和能量守恒两个方面。

内能是物质内部大量微观粒子无序热运动所具有的能量形式。

一个物质系统的内能变化是由它与外部环境进行能量交换的结果,而这种能量交换可以通过两种方式实现:做功和热传递。

热力学第一定律揭示了系统内能变化(ΔU)与系统与外部环境交换的功(W)和热量(Q)之间的定量关系。

ΔU=Q+W。

2.应用热力学第一定律解题时,要注意各物理量正、负号的含义当热力学第一定律表示为ΔU=Q+W时,ΔU为正值,表示系统内能增加;负值表示系统内能减小。

工程热力学-第八章 压气机的热力过程

工程热力学-第八章 压气机的热力过程
可见压气机耗功以技术功计。
➢ 三种压缩过程耗功量
(1)可逆绝热压缩
wC,s wt,s
k 1
k
k
1
RgT1
1
p2 p1
k
(2)可逆多变压缩
wC,n wt,n
n1
n
n
1
RgT1
1
p2 p1
n
(3)可逆定温压缩
wC,T wt,T
RgT1
ln
v2 v1
RgT1 ln
wC h2s h1 Aj2T 2s m
定压线
✓实际压缩过程
不可逆绝热压缩1-2’
wC h2 h1 Aj2T2n wC wC,S h2 h2 Am2S2nm
✓压气机的绝热效率
可逆绝热压缩时压气机所需的功与不可逆绝热 压缩时所需的功之比称为压气机的绝热效率,也 称为压气机的绝热内效率:
p1 p2
压缩过程中气体终压和初压之比,称为增压比,
即:
p=
p2 p1
wC,s wC,n wC,T
T2,s T2,n T2,T
采用绝热压缩后,比体积较大,需要较大储气罐; 温度较高,不利于机器安全运行。
因此要尽量接近定温过程,所以采用水套冷却。
8-2 余隙容积的影响
一、余隙容积
当活塞运动到上死点位置时,活塞顶面与气
工程上采用压气机的定温效率来作为活塞式 压气机性能优劣的指标:
即:可逆定温压缩过程消耗的功与实际压缩
过程消耗的功之比
C ,T
wC ,T wC
9-4 叶轮式压气机的工作原理
✓ 活塞式压气机缺点:单位时间 内产气量小(转速不高,间隙 性的吸气和排气,以及余隙容 积的影响)。

大学物理 第八章 热力学基础

大学物理 第八章 热力学基础

CV
2019/5/21
P.12/42
§8.2 热力学第一定律
热力学基础
§8.2.1 热力学第一定律 本质:包括热现象在内的能量守恒和转换定律。
E2 E1 W Q (E2 E1) W E W
Q
dQ dE dW
Q
E E2 E1
W
+ 系统吸热 内能增加 系统对外界做功
系统放热 内能减少 外界对系统做功
2019/5/21
P.13/42
热力学基础
热力学第一定律适用于任何系统(气液固)的任何过 程(非准静态过程也适用),
Q E PdV
热力学第一定律的另一叙述:第一类永动机 是不可 能制成的。
第一类永动机:Q = 0, E = 0 ,A > 0的机器;
过一系列变化后又回一开始的状态,用W1表示外界对 气体做的功,W2表示气体对外界做的功,Q1表示气体 吸收的热量,Q2表示气体放出的热量,则在整个过程中 一定有( A )
A.Q1—Q2=W2—W1 ; B.Q1=Q2
C.W1=W2 ;
D.Q1>Q2
2019/5/21
P.16/42
【例8-4】如图,一个四周绝热的气缸热,力中学基间础 有 一固定的用导热材料制成的导热板C把气缸分 成 A.B 两部分,D是一绝热活塞, A中盛有 1mol He, B中盛有1mol N2, 今外界缓慢地
等压膨胀过程 V2>V1 , A>0 又T2>T1, 即E2-E1>0 ∴Q>0 。气体吸收的热量,一部分用于内能的增加,
一部分用于对外作功;
等压压缩过程 A<0 , T2<T1, 即E2-E1<0 ∴Q<0 。

第八章第二节 热力学定律及能量守恒 气体

第八章第二节 热力学定律及能量守恒 气体

发器中制冷剂汽化吸收箱体内的热量,
经过冷凝器时制冷剂_______. A.热量可以自发地从冰箱内传到冰 箱外
B.电冰箱的制冷系统能够不断地把 冰箱内的热量传到外界,是因为其消 耗了电能 C.电冰箱的工作原理不违反热力学 第一定律 D.电冰箱的工作原理违反热力学第 一定律
二、能量守恒定律 能量既不会凭空产生,也不会凭空消 失,它只能从一种形式转化为别的形 式,或者从一个物体转移到别的物体, 在转化或转移的过程中,其总量不变.
三、气体的状态参量 1.温度 (1)宏观上:表示物体的______程度. 冷热 (2)微观上:表示气体分子无规则热运
激烈 动的______程度.
C.若气体的温度随时间不断升高, 其压强也一定不断增大 D.气体温度每升高1 K所吸收的热量 与气体经历的过程有关 E.当气体温度升高时,气体的内能 一定增大
解析:选ADE.一定质量的理想气体, pV =C,p、V不变,则T不变,分 T 子平均动能不变,又理想气体分子势 能为零,故气体内能不变,A项正确; 理想气体内能不变,则温度T不变,由 pV =C知,p及V可以变化,故状态 T 可以变化, B项错误;
于所有分子动能的和,内能增加,气 体分子的平均动能增加,温度升高, 选项A正确. 二、对热力学第二定律的理解 1.在热力学第二定律的表述中,“自 发地”、“不产生其他影响”的涵义
(1)“自发地”指明了热传递等热力学 宏观现象的方向性,不需要借助外界 提供能量的帮助. (2)“不产生其他影响”的涵义是发生 的热力学宏观过程只在本系统内完成, 对周围环境不产生热力学方面的影响. 如吸热、放热、做功等.
两类永动机第一类永动机第二类永动机不消耗能量却可以源源不断地对外做功的机器从单一热源吸热全部用来对外做功而不引起其他变化的机器违背能量守恒定律不可能实现违背热力学第二定律不可能实二能量守恒定律能量既不会凭空产生也不会凭空消失它只能从一种形式转化为别的形式或者从一个物体转移到别的物体在转化或转移的过程中其总量不变

8-3理想气体的等体过程和等压过程 摩尔热容

8-3理想气体的等体过程和等压过程 摩尔热容

Cp,m 5 R 2 7 R 2
γ
5 = 1.67 3 7 = 1.40 5 4 = 1.33 3
5
多原子分子
6
3R
4R
P217表 P217表8-2列出了部分理想气体的有关理论值. 列出了部分理想气体的有关理论值.
8-3 理想气体的等体过程和等压过程 摩尔热容
第八章 热力学基础
i +2 i i 摩尔热容: 二 摩尔热容: CV ,m = R Cp,m = R + R γ = i 2 2
1 dE p dV 1.理想气体定压摩尔热容: Cp,m = 理想气体定压摩尔热容 理想气体定压摩尔热容: + ν dT ν dT p

i E = νRT 2
PV =νRT

i 理想气体定压摩尔热容。 定压摩尔热容 Cp,m = R + R -理想气体定压摩尔热容。 2
2.理想气体定体摩尔热容: 理想气体定体摩尔热容: 理想气体定体摩尔热容 ∵
第八章 热力学基础
理想气体等体过程: 四 理想气体等体过程:
dQV =νCV ,mdT = dE
m QV = CV ,m (T2 −T1) = E2 − E1 = ∆E M
等 体 升 压
p1
p
p2
2 ( p ,V , T ) 2 2 1 V
( p1 ,V , T1 )
等 体 降 压
p2
p1
p
1 ( p1 ,V , T1 )
第八章 热力学基础
理想气体等体过程: 二 理想气体等体过程:
dW = 0
dQV =νCV ,mdT = dE
m 或 Q = CV ,m (T2 −T1) = ∆E V M

第8章热力学习题解答

第8章热力学习题解答

第8章 热力学基础8.1基本要求1.理解准静态过程、功、热量的概念,并掌握功的计算方法。

2.掌握热力学第一定律及其在理想气体各等值过程中的应用。

3.掌握理想气体定体和定压摩尔热容及比热容比的概念及计算方法。

4.理解绝热过程,能熟练地分析、计算理想气体在此过程的功、热量和内能的增量。

5.理解循环过程的基本特征,理解热机循环和致冷循环的物理意义,理解热机效率的计算方法。

掌握卡诺循环及其特点,能熟练地分析、计算卡诺循环的效率。

6.理解热力学第二定律的两种表述及其等效性,了解可逆过程、不可逆过程及卡诺定理。

7.理解热力学第二定律的本质,了解熵的概念和熵增加原理。

8.2基本概念1 准静态过程系统经历的每一个中间状态都无限地接近平衡态的状态变化过程。

2 功热力学系统与外界交换能量的一种方式,准静态过程中系统对外界做的功为21V V V W pdV pdV ==⎰⎰3 热量传热过程中传递的能量,热力学系统与外界交换能量的另一种方式。

4 摩尔热容当一个系统温度升高(或降低)dT 时,吸收(或放出)的热量如果为dQ ,则系统的热容定义为:dQ C dT= 5 定体摩尔热容若1mol 的理想气体在等体过程中温度改变dT 时所传递的热量为V dQ ,则定体摩尔热容为:,2V V m dQ i C R dT ==,等体过程中内能的增量可表示为:21,21()V m E E C T T ν-=- 6 定压摩尔热容若1mol 的理想气体在等压过程中温度改变dT 时传递的热量为p dQ ,则气体的定压摩尔热容为:,pp m dQ C dT =,与定体摩尔热容的关系为,,p m V m C C R =+,等压过程所吸收的热量可表示为:,21()p p m Q C T T ν=-7 比热容比定压摩尔热容,p m C 与定体摩尔热容,V m C 的比值,用γ表示,,2p m V m C i C iγ+== 8 循环过程 系统经过一系列的状态变化过程以后又回到原来状态的过程,循环过程的重要特征是内能的增量0E ∆=9 正循环及热机的效率过程进行的方向在p V -图上按顺时针方向进行的循环过程叫正循环,工质作正循环的热机效率为:1221111Q Q Q W Q Q Q η-===- 10 逆循环及致冷机的效率 过程进行的方向在p V -图上按逆时针方向进行的循环过程叫逆循环,工质作逆循环的致冷机效率为:2212Q Q e W Q Q ==- 11 可逆和不可逆过程 系统逆过程能重复正过程的每一状态且不引起外界任何变化的状态变化过程称为可逆过程,一切与热现象有关的实际宏观过程都是不可逆的,可逆过程是从实际过程中抽象出来的一种理想过程。

第八章 热力学第一定律1

第八章 热力学第一定律1

i2 2 , i i 1
R 1 T1 T2 p1V1 p2V2 A 1 1
V 1 p1V1 1 1 1 V2

气体的摩尔定压热容为:
C p ,m 1 dQ 1 dE p dV dT p dT p dT p
i E RT , pV RT 2
C p,m
i RR 2
Qp C p,m T2 T1 C p,mT
QV CV ,m T2 T1 CV ,mT
热力学第一定律为: dQV dE 理想气体内能:
i E RT 2
i E RT CV , m T 2
i E RT CV , m T 2
p
2 ( p ,V , T ) 2 2 1
V
( p1 ,V , T1 )
p p1
p2
V T 1 ( p1, 1, )
p p1
2
V2
1 ( p1, 1, ) V T
( p2 , 2 ,T ) V
A
V1
p2
( p2 , 2 ,T ) V
A
V1
2
V2
o
V
o
V
QT
E
A
QT
E
A
等温膨胀,从外界吸热,等温压缩,气体对外界放热
例题8.1
气体等温过程:vmol的理想气体在保持温度T不变 的情况下,体积从V1经过准静态过程变化到V2。求 这一等温过程中气体对外做的功和它从外界吸收的 热。 解: pV=vRT 代入(9)式:
间为1s。内燃机的压缩时间0.01s。均可视这一过程为准静 态过程 • 3 准静态过程的表示方法:p-V图(p-T图、V-T图) a 曲线上的每一个点都是一个 准静态过程 b 非平衡态不能用一定的状态 参量描述,即不能表示为状态 图中的一条线!
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

pV E dA
M RT
M
CvT
dE
Vdp pdV
pdV
M
M
Cv
RdT dT
R Vdp pdV pdV
Cv
CVVdp (CV R) pdV
P I
等温过程
II
绝热过程
V
C p pdV Vdp dp dV
CV
pV
pV const
ln
p
lnV
const
刚性多原子分子气体 i 6
5 1.67
3
7 1.40
5
8 1.33
6
§8-3 热力学第一定律用于理想气体
一 等容过程
dQv dA
dE dA
pdV
0
dQv
dE
Qv
E2
E1
M
Cv T
P II
A=0 IV
结论:等容过程中,系统吸收的热量完全用来增加热力学系 统的内能
二 等温过程
pV
const
V T 1
const
p T 1 const
讨论:同一初始状态气体的等温过程与绝热过程的比较
绝热过程p-V曲线的斜率
pV
const
(
dp dV
)Q
pA VA
等温过程p-V曲线的斜率
pV
const
(
dp dV
)T
pA VA
同一初始状态气体的绝热过程与等温过程相比,变化相同体 积时,绝热过程压强下降更快。原因是绝热过程对外做功, 依靠的是系统的内能的减小,而压强减小既由于气体动量的 减小,又由于气体密度的减小。等温过程对外做功,气体分 子的动量依靠对外吸收热量保持不变,压强的减小原因仅由 于气体分子密度的减小。
考虑到 dA pdV RdT
E M i RT
2
理想气体的定容摩尔热容量
CP
dQP dT
i R 2
R CV
R
6.比热容比(绝热系数)
CP i 2
CV
i
例:求单原子分子气体、刚性双原子分子气体、刚性多原子 分子气体的绝热系数

CP i 2
CV
i
单原子分子气体
i3
刚性双原子分子气体 i 5
吸收的热量
CV
dQV dT
例:理想气体的定容摩尔热容量
由热力学第一定律 dQ E dA
考虑到 dA pdV 0
E M i RT
2
理想气体的定容摩尔热容量
CV
dQV dT
iR 2
5.定压摩尔热容量
等压情形下,一摩尔物质升高单位温度所吸收的热量
Cp
dQp dT
例:理想气体的定压摩尔热容量
由热力学第一定律 dQ E dA
E M i RT
2
说明:理想气体的内能只与温度有关,只是热力学系统状态 参量的函数
§8-2 热容量
一 相关概念
1.热容量:热力学系统温度升高单位温度所吸收的热量 C dQ dT
2.摩尔热容量:一摩尔物质升高单位温度所吸收的热量
3.比热容:单位物质升高单位温度所吸收的热量
4.定容摩尔热容量 等容情形下,一摩尔物质升高单位温度所
dQ E dA 说明:A.热力学第一定律是引入态函数——内能的理论基础 B.热力学第一定律表明:第一永动机是不可实现的
三 热力学平衡态的态函数——内能,理想气体的内能
1.内能的定义:热力学系统内部,分子的动能、分子间势能、 热力学系统所处外场的相互作用能的总和
2.理想气体的内能 E Ek U
的深刻含义以及宏观测量对微观测量的依赖关系 三 本篇内容结构
第七章 统计物理初步 第构
一 热力学第一定律 从一个平衡态转化到另一个平衡态时,能量所满足的规律 §8.1
§8-1 热力学第一定律
一 热力学过程的相关概念 热力学过程:从一个热力学平衡态转化到另一个热力学平衡
E
dQT dE dA
M
CV T
dE
0
dQv
dA
dQv
pdV pdV
QT
M
V2 pdV
V1
RT
QT
M V2
V1
RT V
dV
QT
M
RT lnV2 V1

QT
M
RT
ln P1 P2
P
结论:等温过程中吸收的热量完全用来对
I
外做功,而不用来增加热力学系统的内能 II
V
三 等压过程
dQp dE dA dA pdV pV M RT
2.热量 当系统与外界有热传递时 Q cm(T2 T1 ) 其中,C为比热容
说明:A.热量是一过程量,而不是状态量(表示方法:dQ) B.热量的正负号规定:系统吸收热量为正,放出热量为负 C.热量与作功是热力学系统能量发生改变的两种不同方式 3.热力学第一定律——实验定律 大量实验表明:确定的两热力学平衡状态所经历的中间过程 的功和热量的总和是一定的
第二篇 热力学•统计物理
篇序
一 热学的研究对象
• 研究热运动的规律及其对物质宏观性质的影响 • 研究物质热运动与其它运动形态之间的转化规律 二 研究方法 1.统计物理研究方法 从物质的微观结构出发,依据每个粒子所遵循的力学规律, 用统计的方法研究宏观物体的热力学性质 优点:深入热现象的本质对其作出理论解释,能够解释决定 宏观物理量的微观决定因素,物理过程与物理意义清晰
所经历的时间大于驰豫时间 C.准静态过程可以用宏观参量图给予表示 二 热力学过程中的能量转化
1功 对无摩擦准静态过程 dA p(s dl) pdV
说明:热力学系统中对功正负符号的规定:体积膨胀时,系 统对外作正功,体积缩小时,系统对外作负功
如果热力学系统经历非准静态过程,而外界压强恒定,上面 表述式仍然适用
dV
M
R p
dT
dA
M
RdT
dQ p
M
(Cv
R)dT
状态函数 E
M
CvdT

dQ p
M
C pdT
Qp
M
C p (T2
T1 )
四 绝热过程
1.绝热过程的功
dQv dE dQ 0 M
E CvT
dA
dA
dE
M
dE CvdT
A
M
Cv (T2
T1 )
2.绝热过程的状态方程
缺点:定量统计,需要理想近似物理模型,因而常带有近似 色彩,与实验结果有一定误差 2.热力学研究方法 由观察和实验总结出热力学定律;用严密的逻辑推理方法研 究宏观物体的热力学性质 优点:热力学根据热现象给出普遍、可靠的结果,可用来验
证微观理论的正确性 缺点:常带有经验或半经验性质,不能从本质上阐述热现象
态所经历的热力学过程的总合 驰豫时间:从一个热力学平衡态转化到另一个热力学平衡态
所需要的时间 非准静态过程:从一个热力学平衡态转化到另一个热力学平
衡态所经历的中间状态是非平衡态过程 准静态过程:从一个热力学平衡态转化到另一个热力学平衡
态所经历的中间状态为平衡态
说明:A.准静态过程为理想过程 B.一个热力学过程为准静态过程的必要条件为两平衡态转化
相关文档
最新文档