实验17 透镜焦距的测量

合集下载

透镜焦距的测量讨论与建议

透镜焦距的测量讨论与建议

透镜焦距的测量讨论与建议透镜焦距的测量是光学实验中的一个重要内容,它可以帮助我们更好地了解透镜的性质和特点。

在进行透镜焦距的测量时,我们需要注意以下几点:1. 选择合适的光源:在进行透镜焦距的测量时,我们需要选择一个稳定的光源,以确保测量结果的准确性。

一般来说,我们可以选择白炽灯或者激光等光源。

2. 确定透镜的位置:在进行透镜焦距的测量时,我们需要确定透镜的位置,以便准确地测量焦距。

一般来说,我们可以将透镜放置在一个透镜架上,并使用一个光屏来接收透过透镜的光线。

3. 使用适当的测量仪器:在进行透镜焦距的测量时,我们需要使用适当的测量仪器,以确保测量结果的准确性。

一般来说,我们可以使用一个准直器和一个测距仪来测量透镜的焦距。

4. 注意测量误差:在进行透镜焦距的测量时,我们需要注意测量误差,以确保测量结果的准确性。

一般来说,我们可以进行多次测量,并取平均值来减小误差。

5. 考虑透镜的形状:在进行透镜焦距的测量时,我们需要考虑透镜的形状,以便选择合适的测量方法。

一般来说,我们可以使用平凸透镜或者凸凹透镜来进行测量。

6. 考虑透镜的材质:在进行透镜焦距的测量时,我们需要考虑透镜的材质,以便选择合适的测量方法。

一般来说,我们可以使用玻璃透镜或者塑料透镜来进行测量。

7. 注意测量环境:在进行透镜焦距的测量时,我们需要注意测量环境,以确保测量结果的准确性。

一般来说,我们需要在一个稳定的环境中进行测量,并避免干扰因素的影响。

8. 考虑测量精度:在进行透镜焦距的测量时,我们需要考虑测量精度,以确保测量结果的准确性。

一般来说,我们可以使用高精度的测量仪器来提高测量精度。

9. 注意数据处理:在进行透镜焦距的测量时,我们需要注意数据处理,以确保测量结果的准确性。

一般来说,我们可以使用统计学方法来处理数据,并计算出测量结果的误差范围。

10. 建议进行多次测量:为了确保测量结果的准确性,我们建议进行多次测量,并取平均值来减小误差。

透镜焦距的测量实验报告

透镜焦距的测量实验报告

透镜焦距的测量***(201*******)(清华大学工程物理系,北京)摘要利用焦距仪和已知焦距的长焦透镜测量了待测凸透镜和凹透镜焦距.分别用共轭法和焦距仪法测量了同一凸透镜焦距,分别用自准法和焦距仪法测量了同一凹透镜焦距.实验测得凸透镜焦距为15.53cm(共轭法),15.62cm(焦距仪法),凹透镜焦距为-22.61cm(自准法),-22.67cm(焦距仪法).两种方法测得的透镜焦距均符合得较好.关键词凸透镜;凹透镜;焦距;焦距仪1.概述透镜是最基本的光学元件,根据光学仪器的使用要求,常需选择不同的透镜或透镜组.透镜的焦距是反映透镜特性的基本参数之一,它决定了透镜成像的规律.为了正确地使用光学仪器,必须熟练掌握透镜成像的一般规律,学会光路的调节技术和测量焦距的方法.1.1实验目的1)加深理解薄透镜的成像规律2)学习简单光路的分析和调节技术3)学习几种测量透镜焦距的方法1.2薄透镜成像规律透镜的厚度相对透镜表面的曲率半径可以忽略时,称为薄透镜.薄透镜的近轴光线成像公式为:其中:f为焦距,p为物距q为像距,y和y,分别为物的大小和像的大小,β为放大率.1.3基本实验操作1)等高共轴的调节[1]依次放置光源、物、凸透镜和光屏在同一直线上,并让它们相互靠近,用眼睛观察判断并调节物的中心,透镜中心和光屏中央大致在一条与光具座导轨平行的直线上,各光学元件的平面相互平行并垂直于导轨.用梅花形物屏做物,用标有“+”的屏做像屏.使物与像屏间的距离大于透镜焦距的4倍,固定物屏和像屏滑块的位置.移动透镜,使物在光屏上两次成像,若所成大像和小像的中心重合在像屏“+”的中心,说明系统已处于等高共轴状态,反之则不共轴,此时应根据两次成像的具体情况做如下调节:(1) 若所成“大像”的中心不在“+”的中心, 则左右或上下调节物屏,使“大像”中心落在像屏“+”的中心.(2)移动透镜使物在像屏上成一小像, 若小像中心不在“+”的中心,则左右或上下调节透镜使小像中心落在“+”的中心.(3) 重复(1)、(2)两步骤、反复将大像和小像中心都调在像屏“+”的中心,直到所成大像和小像中心都重合在像屏“+”的中心为止.2)凹透镜的使用本实验所使用的凹透镜刻度不在凹透镜中心平面上,故实验操作时记录凹透镜位置每组至少应记录两次,分别将凹透镜双面朝同一方向,记录平均值作为本组实验的凹透镜位置.2.共轭法测量凸透镜焦距如果物屏与像屏的距离b保持不变,且b>4f,在物屏与像屏间移动凸透镜,可两次成像.当凸透镜移至O1处时,屏上得到一个倒立放大实像,当凸透镜移至O2处时,屏上得到一个倒立缩小实像,由共轭关系结合焦距的高斯公式得:实验中测得a和b,就可测出焦距f.光路如上图所示:2.1实验数据记录物屏位置P=106.61cm,·像屏位置Q=2.30cm123456O1位置(cm)87.4587.3887.6087.4887.3887.50 O2位置(cm)21.1021.1821.1821.1021.0821.16 a=|O2-O1|(cm)66.3566.2066.4266.3866.3066.34 2.2实验数据处理计算得:=66.33cm,b=104.31cm,f=15.53cm其中:∆a=0.25cm,∆b=0.20cm∆f==0.09cm故f=15.53±0.09cm.3.焦距仪测量凸透镜焦距焦距仪光路图如右图所示,由几何关系可得:,且故.3.1实验数据记录平行光管焦距f=550.000mm,玻罗版平行线距y=10.000mm123456y1’(mm) 5.725 5.708 5.700 5.712 5.720 5.720 y2’(mm) 2.860 2.876 2.869 2.889 2.882 2.865 y’=|y1’-y2’2.865 2.832 2.831 2.823 2.838 2.855 |(mm)3.2实验数据处理计算得:=2.841mm,f x==15.63cm∆y,===0.018mm[2][3]∆f x=f x×=0.11cm故f x=15.63±0.11cm4.自准法测量凹透镜焦距如右图,物屏上的箭矢AB经凸透镜L1后成虚像A,B,,图中O1F1=f1为L1的焦距.现将待测凹透镜L2置于L1与A1B1之间,此时,A,B,成为的L2虚物.若虚物A,B,正好在L2的焦平面上,则从L2出射的光将是平行光.若在L2后面垂直光轴放置一个平面反射镜,则最后必然在物屏上成实像A,,B,,.此时分别测出L2的位置及虚物的位置,则就是待测凹透镜的焦距f.[4]4.1实验数据记录物屏位置P=106.61cm,凸透镜位置O1=80.00cm12345666.0466.1066.1265.8966.0666.12凹透镜位置O2,(cm)凹透镜位置65.0065.1764.8664.9165.0665.14O2,,(cm)O2=(cm)65.5265.6465.4965.4065.5665.43虚物位置F(cm)42.7942.8642.9042.8643.0043.14 4.2实验数据处理计算得:=42.93(cm),=65.54(cm)f=-||=-22.61(cm)===0.11cm[2][3]===0.15cm[2][3]==0.18cm故f=-22.61±0.18cm5.焦距仪测量凹透镜焦距本实验的核心是使用已知焦距的长焦凸透镜与未知焦距的凹透镜构成无焦系统,此时测量无焦系统中两透镜的位置即可求得凹透镜的焦距.检验无焦系统的方式是示零法,现将另一凸透镜放置于焦距仪中,使测微目镜中可以呈现清晰的像,再将待调无焦系统置于平行光管与测微目镜之间,调节无焦系统的间距使测微目镜中再次呈现清晰的像,此时无焦系统调节完毕.装置如上图所示.5.1实验数据记录长焦凸透镜位置O1=60.00cm,长焦凸透镜焦距F=31.60cm凹透镜在左侧凹透镜在右侧12345651.6551.4651.4469.2869.5069.35凹透镜位置O2(cm)∆f=|O1-O2|(cm)8.358.548.569.289.509.35 5.2实验数据处理计算得:=8.93cmf=-(F-)=-22.67cm===0.27cm[2][3]==0.27cm故f=-22.67±0.27cm6.结论实验测得凸透镜焦距为15.53±0.09cm(共轭法),15.62±0.11cm(焦距仪法),凹透镜焦距为-22.61±0.18cm(自准法),-22.67±0.27cm(焦距仪法).两种方法测得的透镜焦距均符合得较好.参考文献[1] 徐龙海.透镜测焦实验中等高共轴的调节[J].曲阜师范大学学报(自然科学版),1995,S2:67[2] 赵玉屏. 不确定度A类分量的t因子[J].物理通报,2000,11:32-33[3] 陆申龙,曹正东. 关于不确定度A类计算值与B类计算值可靠性的讨论[J].物理实验,1998,1:17-18[4] 任占梅.自准直法测量凹透镜焦距的实验技巧[J].内江科技,2005,2:42(学习的目的是增长知识,提高能力,相信一分耕耘一分收获,努力就一定可以获得应有的回报)。

初中测量透镜焦距教案

初中测量透镜焦距教案

教案:初中测量透镜焦距教学目标:1. 了解透镜焦距的概念及其重要性。

2. 学习并掌握测量凸透镜焦距的方法。

3. 培养学生的实验操作能力和观察能力。

教学重点:1. 透镜焦距的概念。

2. 测量凸透镜焦距的方法。

教学难点:1. 理解透镜焦距的概念。

2. 熟练掌握测量凸透镜焦距的方法。

教学准备:1. 凸透镜。

2. 刻度尺。

3. 太阳光。

4. 实验桌。

教学过程:一、导入(5分钟)1. 向学生介绍透镜焦距的概念,引导学生理解透镜焦距的重要性。

2. 提问:同学们,你们知道如何测量凸透镜的焦距吗?二、探究凸透镜焦距的测量方法(15分钟)1. 引导学生思考并讨论如何测量凸透镜的焦距。

2. 介绍阳光聚焦法、二倍焦距法和放大镜法等测量凸透镜焦距的方法。

3. 演示阳光聚焦法、二倍焦距法和放大镜法的操作步骤。

三、实验操作(15分钟)1. 学生分组,每组一台凸透镜、一把刻度尺和一片白纸。

2. 学生按照阳光聚焦法、二倍焦距法或放大镜法中的一种方法,自行测量凸透镜的焦距。

3. 学生在实验过程中记录数据,并观察现象。

四、结果与讨论(10分钟)1. 学生汇报实验结果,其他同学倾听并评价。

2. 教师引导学生分析实验结果,总结凸透镜焦距的测量方法。

五、总结与拓展(5分钟)1. 教师总结本节课所学内容,强调凸透镜焦距的概念和测量方法。

2. 学生提问,教师解答。

3. 教师提出拓展问题,引导学生思考:凸透镜的焦距与哪些因素有关?教学反思:本节课通过引导学生思考和讨论,让学生掌握凸透镜焦距的测量方法。

实验操作环节,学生分组进行,培养学生的团队合作意识。

在结果与讨论环节,学生汇报实验结果,培养学生的表达能力和评价能力。

通过本节课的学习,学生能够理解和掌握凸透镜焦距的概念及其测量方法,为后续光学知识的学习打下基础。

平行光管测量透镜焦距实验报告

平行光管测量透镜焦距实验报告

平行光管测量透镜焦距实验报告一、实验目的与背景透镜焦距是光学中一个非常重要的参数,它决定了透镜成像的质量和清晰度。

为了更好地了解透镜焦距的测量方法和原理,我们进行了平行光管测量透镜焦距的实验。

本实验的目的是通过理论分析和实际操作,掌握平行光管测量透镜焦距的方法,提高我们对光学原理的理解和应用能力。

二、实验器材与原理1. 实验器材本次实验所用器材包括:平行光管、透镜、刻度尺、光源等。

其中,平行光管是一种用于产生平行光线的装置,透镜是用来聚焦光线的光学元件,刻度尺用于测量透镜的焦距。

2. 实验原理平行光管产生的光线是平行的,通过透镜聚焦后,形成一个清晰的像。

我们可以通过测量透镜与像之间的距离,来计算透镜的焦距。

这个距离与透镜的厚度、曲率半径等因素有关,但与透镜的材质无关。

因此,我们可以通过测量不同材质透镜的焦距,来验证这一原理。

三、实验步骤与结果1. 实验步骤(1) 将平行光管固定在支架上,调整角度使光线垂直射向地面。

(2) 将透镜插入平行光管中,调整透镜的位置,使其与光线汇聚成一个清晰的像。

(3) 使用刻度尺测量透镜与像之间的距离,记录下来。

(4) 更换不同材质的透镜,重复上述操作,记录各次测量结果。

2. 实验结果经过多次实验,我们得到了不同材质透镜的焦距数据。

具体结果如下:透镜A(塑料):焦距为10cm;透镜B(玻璃):焦距为12cm;透镜C(金属):焦距为15cm。

四、结论分析通过本次实验,我们验证了平行光管测量透镜焦距的方法。

实验结果表明,不同材质的透镜在聚焦光线时产生的像的大小和清晰度相同,但焦距有所不同。

这说明了透镜焦距与材质之间没有直接关系,而是由透镜的曲率半径等因素决定的。

这一结论有助于我们更深入地理解光学原理,并为实际应用提供参考。

透镜焦距的测定实验报告

透镜焦距的测定实验报告

透镜焦距的测定实验报告
目录
1. 实验目的
1.1 实验原理
1.1.1 凸透镜焦距的定义
1.1.2 透镜成像规律
1.2 实验器材
1.3 实验步骤
1.4 实验结果分析
1.4.1 计算透镜焦距的方法
1.4.2 灵敏度分析
1.5 实验结论
1. 实验目的
本实验旨在通过测量透镜的焦距,掌握凸透镜的成像规律,加深对光学成像知识的理解。

1.1 实验原理
1.1.1 凸透镜焦距的定义
在光学中,透镜的焦距是指透镜将平行光线聚焦到焦点的距离,通常用f表示。

1.1.2 透镜成像规律
凸透镜的成像规律包括物体到透镜的距离、像到透镜的距离、物体高度与像高度的关系等。

1.2 实验器材
本次实验所用器材包括凸透镜、光源、物体等。

1.3 实验步骤
1. 将凸透镜放置在光源前方,调整物体到透镜的距离;
2. 观察在屏幕上形成的透镜成像,测量物体到透镜的距离和像到透镜的距离;
3. 重复测量多组数据,计算平均焦距。

1.4 实验结果分析
1.4.1 计算透镜焦距的方法
通过测量物体到透镜的距离和像到透镜的距离,可以利用透镜成像规律计算透镜的焦距。

1.4.2 灵敏度分析
实验过程中,适当调整物体到透镜的距离可以提高焦距的测量精度。

1.5 实验结论
通过本实验的测量和计算,得到了凸透镜的焦距值,并掌握了凸透镜的成像规律,加深了对光学成像知识的理解。

透镜焦距的测量

透镜焦距的测量

透镜焦距的测量
透镜焦距的测量可以采取以下方法:
1. 焦距公式法:根据透镜成像公式1/f = 1/v - 1/u,其中f为透
镜焦距,v为物距,u为像距。

测量物体与透镜之间的距离和
像与透镜之间的距离,并代入公式计算焦距。

2. 平面镜法:将光线垂直入射于透镜上,透过透镜后会形成一条射线,用平面镜反射这条射线,使其再次经过透镜,将平面镜向透镜移动,当成像发生最大偏移时,此时的像距就是透镜的焦距。

3. 物齐截法:从透镜前方不同距离处,依次放置两个小物体,当两个物体的像恰好重合时,离透镜最近的物体距离就是透镜的焦距。

4. 背景法:在透镜前放置一条标尺,调整透镜距离标尺的距离,使标尺上某一值的数字清晰可见,调整透镜的位置,使背景清晰,此时透镜到标尺的距离即为透镜的焦距。

需要注意的是,以上方法在测量时都应考虑到透镜的形状和光线的入射角度等因素,尽可能减小误差。

实验透镜焦距的测量

实验十七 透镜焦距的测量实验目的:用物距像距法、共轭法求焦距、自准直法求焦距、由辅助透镜成像法求凹透镜焦距四种方法测透镜焦距实验原理:1、物距像距法:如图所示设凸透镜 的焦距为f ,物距为P ,对应像距为'P ,则透镜成像的高斯公式为f p p 111'=-, 得到:''p p pp f -=2、共轭法求焦距:取物与屏之间的距离L 大于四倍焦距4f ,此后固定物与屏的位置,移动透镜,则必能在屏上两次成像,如图所示,透镜位于I 时,得到放大像;位于II 时得到缩小像,透镜在两次成像之间的位移为d ,根据透镜公式,对于位置I 而言,()'21p d L p ---=,'2'1p d p +=则:()Lp d p d L f )('2'2+--=对于位置II 而言,'2'22)(p p L p =--=,像距则: Lp p L f '2'2)(-=解得:2'2dL p -=,故:L d L f 422-=3、自准直法求焦距:如图所示,当光源P 作为物 放在 透镜L 的第一焦平面内时,由P 发出的光经透镜后将成为平行光,如果在透镜后面放一与透镜光轴垂直的平面反射镜M ,则平行光经M 反射后将沿原来的路径反方向进行,并成像于P 点,P 与L 之间的距离,就是透镜的焦距f 。

4、由辅助透镜测凹透镜的焦距:对于凹透镜,因 为实物不能得到实像,所以不能用白屏接取像的方法求得焦距,可以利用辅助透镜成像的方法求得焦距。

物P 经凸透镜'P ,在'P 和1L 间放上待测凹透镜L ,就L 而言,虚像'P 又成像于''P ,根据公式得,2'111f p p =- 因此,''2p p pp f -=只要测得p, 'p 的绝对值,就可得凹透镜得焦距。

光学实验



sin
i'
1min
sin A 1 ( 1 )2 cos A 1
n
n

sin
i'
1min

sin
A
n2 1 cos A
n
( cos
A

sin
i'
1min
)2
1
sin A
实验内容: 1.调整分光计 (1)目镜的调整:十字叉丝和亮十字清晰 (2)望远镜的调焦 (3)调整望远镜的光轴垂直于旋转光轴 (4)将分划十字线调成水平和垂直 (5)平行光管的调焦 (6)调整平行光管的光轴垂直于旋转主轴 (7)将平行光管狭缝调成垂直
1.狭缝与棱脊严格平行,狭缝足够小,才能调出 明暗相间的干涉图样。
2.测微目镜鼓轮在运转测量过程中只能一个方向 ,不能回转,因为齿纹有空程差;且测微目镜的 一条十字叉丝应与条纹或虚光源像平行。
光学实验---用掠入射测折射率
实验目的 1.了解分光计的结构,学习分光计的调整方法。 2.学习使用分光计测量玻璃三棱镜顶角。 3.了解掠入射原理,并用掠入射测量三棱镜的折
狭 缝
测微目镜
D
D>4f
用测微目镜测得大像两虚光源S1、S2的间距l ,
以及小像两虚光源S1、S2的间距l 。
a
b
狭 缝
测微目镜
b
a
大像 l l
D
小像 l l
ab
ba
l
ll
鼓轮上有100个等分格,旋转一圈,通过丝杆带动显微镜指针平移1 mm,因 此每一个等分格相当于0.01mm,再估读一位,最小读数为0.001mm。
三垂直——望远镜轴线垂直中心转轴;载物平台垂 直中心转轴;平行光管轴线垂直中心转轴

光学基础实验--透镜焦距测量不确定度

光学基础实验数据表
一、凸透镜(C 透镜)焦距的测量
1.“物距—像距”法
的不确定度
像距v 的
不确定度
焦距f 的 不确定度
2. 自准法
透镜位置的不确定度
焦距f 的不确定度
注:在进行不确定度计算时,认为测量结果分布满足t 型分布;不考虑物屏和像屏的仪器误差,也不考虑透镜的仪器误差,只计入测量位置的不确定带来的误差。

3. 共轭法
二、凹透镜(D透镜)焦距的测量
注:此表中的物位置是指凸透镜第一次成像的位置;表中像位置是指凹透镜成的像的位置。

2. 自准法
三、景深的测量(用C透镜)
光阑孔径与景深的关系:
四、透镜像差的观测(用C透镜)
1. 观测透镜的色差
红色像的位置:X1 = 蓝色像的位置:X2 =
透镜对红光与蓝光的色差:︱X2- X1︳=
2. 观测透镜的球差
中心孔像的位置:X1 = 边缘环像的位置:X2 =
透镜的球差:︱X2- X1︱=。

透镜焦距的测量实验报告

透镜焦距的测量实验报告
一、实验目的
本次实验的目的是测量一个透镜的焦距,并了解其原理。

二、实验原理
透镜是一种经过曲面加工的光学组件,利用折射原理,可以改变光线的方向,使远视
物体变近。

由于光线在透镜中发生反射和折射,会使其生成一个透镜的图像L1 ,透镜的
焦距可以通过计算其到远物体的距离d1和到其图像之间的距离f表示:f=1/[1/d1-
1/L1] 。

三、实验仪器与设备
实验中所用仪器与设备有双程管物镜,光源灯,螺旋枕头,普通墙壁,实验桌,卷尺
和距离传感器。

四、实验操作
1. 使用双程管物镜并将其安装在螺旋枕头上,将其调节到合适位置。

2. 让光源灯在双程管物镜前照射,当光源灯靠近双程管物镜时,可以看到光线从双
程管物镜作用后可以形成一个物镜图像。

3. 将双程管物镜远离光源,调节到最合适位置,以产生物镜图像。

4. 把距离传感器安装在普通墙壁上,对准远物体。

5. 拿着卷尺,测量物镜图像的距离“L1 ”,并用距离传感器测量远物体的距离
“d1 ”。

六、实验结果
根据上述测量,透镜图像距离L1 = 30 cm,远物体距离d1 = 60 cm,根据上述公式:f=1/[1/d1-1/L1] ,计算得到:焦距f=20 cm。

本实验对某一透镜的焦距进行了测量,得出结论:这一透镜的焦距为20 cm。

从而验证,只要知道近物体和远物体的距离,可以方便的根据公式计算出透镜的焦距。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验十七 透镜焦距的测量
实验目的:用物距像距法、共轭法求焦距、自准直法求焦距、由辅助透镜成像法求凹
透镜焦距四种方法测透镜焦距
实验原理:1、物距像距法:如图所示设凸透镜 的焦距为
f ,物距为P ,对应像
距为'
P ,则透镜成像的高斯公式为
f
p p 111'=-, 得到:'
'
p p pp f -=
2、共轭法求焦距:取物与屏之间的距离L 大于四倍焦距4f ,此后固定物与
屏的位置,移动透镜,则必能在屏上两次成像,如图所示,透镜位于I 时,得到放大像;位于II 时得到缩小像,透镜在两次成像之间的位移为d ,根据透镜公式,对于位置I 而言,
()
'
2
1p d L p ---=, '
2
'1p d p += 则:()L
p d p d L f )('2
'2
+--=
对于位置II 而言,
'
2
'22)(p p L p =--=,像距 则: L
p p L f '
2
'2)(-=
解得:2'
2
d L p -=,故:L
d L f 42
2-=
3、自准直法求焦距:如图所示,当光源P 作为物 放
在 透镜L 的第一焦平面内时,由P 发出的光经透镜后将成为平行光,如果在透镜后面放一与透镜光轴垂直的平面反射镜M ,则平行光经M 反射后将沿原来的路径反方向进行,并成像于P 点,P 与L 之间的距离,就是透镜的焦距f 。

4、由辅助透镜测凹透镜的焦距:对于凹透镜,因 为实物不能得到实像,所以不能用白屏接取像的方法求
得焦距,可以利用辅助透镜成像的方法求得焦距。

物P 经凸透镜'
P ,在'
P 和1L 间放上待测凹透镜L ,就L 而言,虚像'
P 又成像于'
'P ,根据公式得,
2
'111f p p =- 因此,'
'
2p p pp f -=
只要测得p, 'p 的绝对值,就可得凹透镜得焦距。

实验仪器:光具座,凸透镜,凹透镜,平面镜,屏,小灯狭缝,滤光片
实验步骤:1、光具座上各元件共轴的调节,要求:(1)所有元件的光轴重合,(2)
公共的光轴与光具座的导轨严格平行。

方法:(1)粗调:把透镜,物,
屏用光具夹夹好后,先将他们靠拢,调节高低,左右,使光源,物,透镜,屏的平面互相平行且垂直于导轨;(2)细调;依靠成像规律进行细调,如果物的中心偏离透镜的光轴,那么在移动透镜的过程,像的位置会改变,即大像和小像的中心不重合,这是要根据便宜的方向判断物中心究竟是偏左还是偏右,偏上还是偏下,然后加以调整。

2、用白炽灯照亮狭缝,在狭缝处插入滤光片,一透光狭缝作为物,将狭缝
及白屏放置在光具座上,相隔一定距离,然后在它的中间放入待测凸透镜,移动透镜,使屏上得到清晰的狭缝像,记录各光具所在位置,计算物距,像距,算出焦距f.。

重复三次,求平均值。

3、将狭缝光源与屏固定在间距大于4f 的位置,测出它们之间的距离,将
待测凸透镜放在光源于白屏之间,移动凸透镜,是屏上得到清晰的狭缝像,记录透镜位置,移动透镜至另一位置,使屏上又得到清晰的狭缝像,记录透镜位置,由两个位置算出距离d 并由(3)求出f ,重复三次,求平均值。

4、讲光具座上的器件放好,移动凸透镜L 和改变平面反射镜M 的方位,
使在狭缝平面上形成一个余下缝大小相同,得清晰像,测出狭缝平面到透镜的距离f ,即得到透镜的焦距,重复六次,求平均值。

5、先用辅助凸透镜1L 把狭缝P 成像于'
P 处的屏上,记录P 的位置,然后
将待测凹透镜L 置于1L 与P 之间的适当位置,并将屏向外移至'
'P ,使屏上重新得到清晰的像,分别测出'
'P 与'
P 至L 的距离,这两个距离对L 来说,分别代表,物距p 和像距''p ,由公式(4)算出2f ,改变透镜的位置,重复三次,求平均值。

数据处理:
物距像距法测焦距数据处理结果:由表1得到,
mm f f f f 47.953
74
.9523.8345.1073321=++=++=
扩展不确定度:mm U f 131=
所以:由物距像距法测得的焦距为:
mm f )1395(±=
共轭法测焦距数据处理结果:由表2得到,
mm f f f f 19.1243
3
21=++=
扩展不确定度:mm U f 162
=
所以:由共轭法测得的焦距为:
mm f )16124(±=
自准直法测焦距数据处理过程:
mm f f f f 33.1023
3
21=++=
A 类分量:5
6)
(6
1
2
⨯-=
∑f f u A 将表2数据代入得到,mm u A 95.0=
B 类分量:mm u B 58.03
=∆=

扩展不确定度:mm u u U B A 2.222
2=+=
所以:共轭法测得的焦距为:mm f )2.23.102(±=
由辅助透镜成像法测焦距数据处理结果:mm f f f f 04.203
3
21=++=
扩展不确定度:mm U 9=
所以:由辅助透镜成像法测得的焦距为:
mm f )920(±=
讨论与分析:1、记录数据时,必须注意个物理量所适用的符号规则,规定:光线自
左向右进行距离自参考点(薄透镜光心)量起,像作为负,向右为正,即距离与光线进行方向一致是为正,反之为负,运算时已知量需添加正负符号,未知量则根据求得的结果中的正负号判断其物理意义。

2、共轴调节要认真细致,在凭眼睛直接观察粗调的基础上,还要注意
观察成大像成小像时中心位置是否变化。

3、各光学元件的表面要保持清洁干燥,使用时不许直接触碰光学元件
表面。

相关文档
最新文档