圆的标准方程学案
2021年高中数学第二章2.2.1圆的标准方程学案北师大版必修2

§2圆与圆的方程2.1圆的标准方程知识点一确定圆的条件[填一填]一个圆的圆心位置和半径一旦给定,这个圆就确定了,如图所示.[答一答]1.确定圆的标准方程需要具备的条件是什么?提示:由标准方程(x-a)2+(y-b)2=r2 知确定圆的标准方程需要确定三个参数a、b、r.其中圆心(a,b)是圆的定位条件,半径r是圆的定量条件.知识点二圆的标准方程[填一填](1)圆的定义:到定点的距离等于定长的点的集合叫作圆,定点叫作圆的圆心,定长称为圆的半径.(2)圆的标准方程:圆心为C(a,b),半径为r的圆的标准方程是(x-a)2+(y-b)2=r2.(3)当圆心是坐标原点时,有a=b=0,那么圆的方程为x2+y2=r2[答一答]2.若圆的标准方程为(x+m)2+(y+n)2=a2(a≠0),此圆的半径一定是a吗?圆心坐标是(m,n)吗?提示:圆的半径不一定是a,当a>0 时,半径是a;当a<0 时,半径是-a.圆心坐标不是(m,n),应是(-m,-n),因为(x+m)2+(y+n)2=a2 化为标准结构是[x-(-m)]2+[y-(-n)]2=|a|2.3.圆的标准方程有哪些优点?确定圆的标准方程有几个基本要素?提示:圆的标准方程的优点在于明确地指出了圆心和半径.在圆的标准方程中有两个基本要素:圆心坐标和半径,只要a,b,r三个量确定了,且r>0,则圆的标准方程就确定了,这就是说要确定圆的标准方程,必须具备三个独立的条件,注意确定a,b,r,可以根据条件利用待定系数法来解决.知识点三点与圆的位置关系[填一填]设点P到圆心的距离为d,半径为r,则点在圆内⇔d<r;点在圆上⇔d=r;点在圆外⇔d>r.[答一答]4.判断点和圆的位置关系的依据是什么?提示:判断点与圆的位置关系的依据是圆心到该点的距离和圆的半径的大小关系.1.对于圆的标准方程,我们要从其结构形式上准确地记忆.2.由圆的标准方程,可直接得到圆的圆心坐标和半径大小;反过来说,给出了圆的圆心和半径,即可直接写出圆的标准方程,这一点体现了圆的标准方程的直观性.3.确定圆的标准方程需要三个独立的条件,一般运用待定系数法求a,b,r.类型一根据方程确定圆心和半径【例1】分别写出下列方程所表示圆的圆心坐标和半径.(1)(x-2)2+(y-2)2=8;(2)(x+4)2+y2=4;(3)(x+m)2+(y-n)2=p2.【思路探究】利用圆的标准方程的几何特征解答.【解】(1)原方程可化为(x-2)2+(y-2)2=(2 2)2,∴圆心坐标为(2,2),半径r=2 2.(2)原方程可化为[x-(-4)]2+(y-0)2=22,∴圆心坐标为(-4,0),半径r=2.(3)原方程可化为[x-(-m)]2+(y-n)2=p2,∴圆心坐标为(-m,n),半径r=|p|.规律方法由圆的标准方程可直接得出圆心坐标和半径,但要注意圆的标准方程(x-a)2+(y-b)2=r2 中,a,b前的运算符号均为减号.给定圆:(x-2)2+(y+8)2=(-3)2,下列说法中正确的是(C)A.圆心坐标是(2,-8),半径长为-3B.圆心坐标是(-2,8),半径长为3C.圆心坐标是(2,-8),半径长为3D.圆心坐标是(-2,8),半径长为-3解析:对照圆的标准方程(x-a)2+(y-b)2=r2(r>0),知圆心坐标是(2,-8),半径长不可能是负数,故为3.类型二判断点与圆的位置关系【例2】已知两点P(3,8),Q(5,4),试分别判断点M(6,3),N(3,5)在以线段PQ为直径的圆上,圆内,还是圆外?【解】线段PQ的中点为C(4,6),|PQ|=5-32+4-82=2 5,∴圆的半径r=5,以线段PQ为直径的圆的标准方程为(x-4)2+(y-6)2=5.由于(6-4)2+(3-6)2=13>5,∴点M在圆外.由于(3-4)2+(5-6)2=2<5,∴点N在圆内.规律方法点与圆的位置关系及判断方法:(1)点M与圆心C的距离与半径r比较:|CM|=r⇔点M在圆上;|CM|>r⇔点M在圆外;|CM|<r⇔点M在圆内.(2)利用圆的标准方程来确定:圆的标准方程(x-a)2+(y-b)2=r2,点M(m,n).(m-a)2+(n-b)2=r2⇔点M在圆上;(m-a)2+(n-b)2>r2⇔点M在圆外;(m-a)2+(n-b)2<r2⇔点M在圆内.设圆C:(x-2)2+(y+3)2=25,试判断下列各点是在圆内、圆外、还是圆上?(1)M(-1,-7);(2)N(-3,1);(3)P( 2,2).解:(1)∵(-1-2)2+(-7+3)2=25,∴点M在圆C上.(2)∵(-3-2)2+(1+3)2=41>25,∴点N在圆C外.(3)∵( 2-2)2+( 2+3)2=17+2 2<25,∴点P在圆C内.类型三求圆的标准方程【例3】求经过两点A(-1,4),B(3,2)且圆心在y轴上的圆的标准方程.【思路探究】用待定系数法,求出圆心(a,b)、半径r.也可用几何法.【解】解法一:∵圆心在y轴上,∴a=0.设圆的标准方程是x2+(y-b)2=r2.∵该圆经过A、B两点,∴Error!∴Error!所以圆的标准方程是x2+(y-1)2=10.2-4 1解法二:线段AB的中点为(1,3),k AB==-,3--1 2∴弦AB的垂直平分线方程为y-3=2(x-1),即y=2x+1.由Error!得(0,1)为所求圆的圆心.由两点间距离公式得圆半径r为0+12+1-42=10,∴所求圆的标准方程为x2+(y-1)2=10.规律方法求圆的标准方程就是要求圆心坐标和圆的半径,解法一是先设出圆的标准方程,而后用待定系数法求出圆心坐标和圆半径,解法二抓住圆的性质及题目的特点,求出线段AB的垂直平分线方程并与y轴的方程联立组成方程组,先得出了圆心的坐标,而后求出圆的半径.已知一个圆经过两个点A(2,-3)和B(-2,-5),且圆心在直线l:x-2y-3=0 上,求此圆的标准方程.解:解法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.由已知条件得Error!即Error!∴Error!∴所求圆的标准方程为(x+1)2+(y+2)2=10.1解法二:由A(2,-3),B(-2,-5)得AB的中点为(0,-4),k AB=,∴AB的垂直平2分线的方程为y+4=-2x,即2x+y+4=0,解方程组Error!得Error!∴圆心为(-1,-2),半径r=2+12+-3+22=10.故所求圆的标准方程为(x+1)2+(y+2)2=10.解法三:设点C是圆心,∵点C在直线l上,∴设点C(2b+3,b).又∵|CA|=|CB|,∴2b+3-22+b+32=2b+3+22+b+52,解得b=-2,∴圆心为C(-1,-2),半径r=10,故所求圆的标准方程为(x+1)2+(y+2)2=10.——规范解答系列——数形结合解决与圆有关的最值问题【例4】设点P(x,y)是圆x2+(y+4)2=4 上任意一点,求x-12+y-12的最大值.【精解详析】因为点P(x,y)是圆x2+(y+4)2=4 上的任意一点,因此x-12+y-12表示点(1,1)与该圆上点的距离,如图所示.易知点(1,1)在圆x2 +(y+4)2 =4 外,结合右图易得x-12+y-12的最大值为1-02+1+42+2=26+2.【解后反思】用数形结合的思想方法也能求出x-12+y-12的最小值为26-2.求圆外一定点A与圆C上动点P连线距离的最值方法:设|AC|=d,圆C半径为r,则|AP|max=d+r,|AP|min=d-r;求圆内一定点A与圆C上动点P连线距离的最值方法:设|AC|=d,圆C半径为r,则|AP|max=d+r,|AP|min=r-d.已知点P(x,y)在圆(x-2)2+(y+3)2=36 上,求x2+y2+2x-4y+5的取值范围.解:x2+y2+2x-4y+5=[x--1]2+y-22,其最值可视为圆上一点P(x,y)到定点A(-1,2)的距离的最值,又(-1-2)2+(2+3)2<36,所以点A在圆内,问题可转化为圆心C(2,-3)到定点A(-1,2)的距离与半径6 的和或差.又圆心到定点(-1,2)的距离为34,所以x2+y2+2x-4y+5的最大值为34+6,最小值为6-34.所以x2+y2+2x-4y+5的取值范围是[6-34,6+34].一、选择题1.点A(-2,3)与圆(x+3)2+(y-1)2=9 的位置关系是(B)A.在圆外B.在圆内C.在圆上D.不确定解析:圆心坐标为C(-3,1),半径r=3,|AC|=5<r,所以点A在圆内.二、填空题2.过A(2,-3),B(-2,-5)两点且面积最小的圆的标准方程为x2+(y+4)2=5.解析:过A,B两点且面积最小的圆就是以线段AB为直径的圆.∴圆心坐标为(0,-4),1半径r=|AB|= 5.2∴圆的标准方程为x2+(y+4)2=5.3.若点M(5 a+1,a)在圆(x-1)2+y2=26 的外部,则实数a的取值范围是(1,+∞).解析:由题意得(5 a+1-1)2+( a)2>26,即a>1.三、解答题4.已知圆的圆心M是直线2x+y-1=0 与直线x-2y+2=0 的交点,且圆过点P(-5,6).求圆的标准方程,并判断点A(2,2),B(1,8),C(6,5)是在圆上,在圆内,还是在圆外?解:解方程组Error!得Error!∴圆心M的坐标为(0,1).半径r=|MP|=52+1-62=5 2.∴圆的标准方程为x2+(y-1)2=50.∵|AM|=2-02+2-12=5<r,∴点A在圆内.∵|BM|=1-02+8-12=50=r,∴点B在圆上.∵|CM|=6-02+5-12=52>r,∴点C在圆外.∴圆的标准方程为x2+(y-1)2=50.点A在圆内,点B在圆上,点C在圆外.。
高中数学学案 圆的标准方程

4.1 圆的方程4.1.1 圆的标准方程学习目标核心素养1.会用定义推导圆的标准方程;掌握圆的标准方程的特点.(重点) 2.会根据已知条件求圆的标准方程.(重点、难点)3.能准确判断点与圆的位置关系.(易错点) 通过对圆的标准方程的学习,提升直观想象、逻辑推理、数学运算的数学素养.1.圆的标准方程(1)圆的定义:平面内到定点的距离等于定长的点的集合叫做圆,定点称为圆心,定长称为圆的半径.(2)确定圆的基本要素是圆心和半径,如图所示.(3)圆的标准方程:圆心为A(a,b),半径长为r的圆的标准方程是(x-a)2+(y-b)2=r2.当a=b=0时,方程为x2+y2=r2,表示以圆点O为圆心、半径为r的圆.思考:平面内确定圆的要素是什么?[提示]圆心坐标和半径.2. 点与圆的位置关系设点P到圆心的距离为d,半径为r.d与r的大小点与圆的位置d<r 点P在圆内d=r 点P在圆上d>r 点P在圆外1.圆(x-2)2+(y+3)2=2的圆心和半径分别是( )A.(-2,3),1 B.(2,-3),3C.(-2,3), 2 D.(2,-3), 2D [由圆的标准方程可得圆心为(2,-3),半径为 2.] 2.以原点为圆心,2为半径的圆的标准方程是( ) A .x 2+y 2=2B .x 2+y 2=4 C .(x -2)2+(y -2)2=8D .x 2+y 2= 2B [以原点为圆心,2为半径的圆,其标准方程为x 2+y 2=4.] 3.点P(m,5)与圆x 2+y 2=24的位置关系是( ) A .在圆外 B .在圆内 C .在圆上D .不确定A [∵m 2+25>24,∴点P 在圆外.]4.点(1,1)在圆(x +2)2+y 2=m 上,则圆的方程是________.(x +2)2+y 2=10 [因为点(1,1)在圆(x +2)2+y 2=m 上,故(1+2)2+12=m,∴m =10.即圆的方程为(x +2)2+y 2=10.]求圆的标准方程【例1】 求过点A(1,-1),B(-1,1)且圆心在直线x +y -2=0上的圆的方程.思路探究:法一:利用待定系数法,设出圆的方程,根据条件建立关于参数方程组求解;法二:利用圆心在直线上,设出圆心坐标,根据条件建立方程组求圆心坐标和半径,从而求圆的方程;法三:借助圆的几何性质,确定圆心坐标和半径,从而求方程.[解] 法一:设所求圆的标准方程为 (x -a)2+(y -b)2=r 2,由已知条件知⎩⎪⎨⎪⎧(1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,a +b -2=0,解此方程组,得⎩⎪⎨⎪⎧a =1,b =1,r 2=4.故所求圆的标准方程为(x -1)2+(y -1)2=4. 法二:设点C 为圆心,∵点C 在直线x +y -2=0上, ∴可设点C 的坐标为(a,2-a). 又∵该圆经过A,B 两点, ∴|CA|=|CB|.∴(a -1)2+(2-a +1)2=(a +1)2+(2-a -1)2, 解得a =1.∴圆心坐标为C(1,1),半径长r =|CA|=2. 故所求圆的标准方程为(x -1)2+(y -1)2=4. 法三:由已知可得线段AB 的中点坐标为(0,0), k AB =1-(-1)-1-1=-1,所以弦AB 的垂直平分线的斜率为k =1,所以AB 的垂直平分线的方程为y -0=1·(x-0), 即y =x.则圆心是直线y =x 与x +y -2=0的交点,由⎩⎪⎨⎪⎧y =x ,x +y -2=0,得⎩⎪⎨⎪⎧x =1,y =1, 即圆心为(1,1),圆的半径为(1-1)2+[1-(-1)]2=2, 故所求圆的标准方程为(x -1)2+(y -1)2=4.确定圆的方程的方法:确定圆的标准方程就是设法确定圆心C(a,b)及半径r,其求解的方法:一是待定系数法,如法一,建立关于a,b,r 的方程组,进而求得圆的方程;二是借助圆的几何性质直接求得圆心坐标和半径,如法二、法三.一般地,在解决有关圆的问题时,有时利用圆的几何性质作转化较为简捷.1.求下列圆的标准方程: (1)圆心是(4,0),且过点(2,2);(2)圆心在y 轴上,半径为5,且过点(3,-4);(3)过点P(2,-1)和直线x -y =1相切,并且圆心在直线y =-2x 上. [解] (1)r 2=(2-4)2+(2-0)2=8, ∴圆的标准方程为(x -4)2+y 2=8.(2)设圆心为C(0,b),则(3-0)2+(-4-b)2=52, ∴b =0或b =-8,∴圆心为(0,0)或(0,-8),又r =5, ∴圆的标准方程为x 2+y 2=25或x 2+(y +8)2=25. (3)∵圆心在y =-2x 上,设圆心为(a,-2a), 设圆心到直线x -y -1=0的距离为r. ∴r =|a +2a -1|2,① 又圆过点P(2,-1),∴r 2=(2-a)2+(-1+2a)2,②由①②得⎩⎨⎧a =1,r =2或⎩⎨⎧a =9,r =132,∴圆的标准方程为(x -1)2+(y +2)2=2或(x -9)2+(y +18)2=338.点与圆的位置关系【例2】 已知圆心为点C(-3,-4),且经过原点,求该圆的标准方程,并判断点P 1(-1,0),P 2(1,-1),P 3(3,-4)和圆的位置关系.[解] 因为圆心是C(-3,-4),且经过原点, 所以圆的半径r =(-3-0)2+(-4-0)2=5, 所以圆的标准方程是(x +3)2+(y +4)2=25.因为|P 1C|=(-1+3)2+(0+4)2=4+16=25<5, 所以P 1(-1,0)在圆内;因为|P 2C|=(1+3)2+(-1+4)2=5, 所以P 2(1,-1)在圆上;因为|P 3C|=(3+3)2+(-4+4)2=6>5, 所以P 3(3,-4)在圆外.1.判断点与圆的位置关系的方法(1)只需计算该点与圆的圆心距离,与半径作比较即可;(2)把点的坐标代入圆的标准方程,判断式子两边的符号,并作出判断. 2.灵活运用若已知点与圆的位置关系,也可利用以上两种方法列出不等式或方程,求解参数范围.2.已知点A(1,2)不在圆C :(x -a)2+(y +a)2=2a 2的内部,求实数a 的取值范围. [解] 由题意,点A 在圆C 上或圆C 的外部, ∴(1-a)2+(2+a)2≥2a 2, ∴2a +5≥0,∴a ≥-52.∵a≠0,∴a 的取值范围为⎣⎢⎡⎭⎪⎫-52, 0∪(0,+∞).与圆有关的最值问题[探究问题]1.怎样求圆外一点到圆的最大距离和最小距离?[提示] 可采用几何法,先求出该点到圆心的距离,再加上或减去圆的半径,即可得距离的最大值和最小值.2.若点P(x, y)是圆C :(x -2)2+(y +2)2=1上的任一点,如何求点P 到直线x -y =0的距离的最大值和最小值?[提示] 可先求出圆心(2,-2)到直线x -y =0的距离,再将该距离加上或减去圆的半径1,即可得距离的最大值和最小值.【例3】 已知x 和y 满足(x +1)2+y 2=14,试求x 2+y 2的最值.思路探究:首先观察x 、y 满足的条件,其次观察所求式子的几何意义,求出其最值.[解] 由题意知x 2+y 2表示圆上的点到坐标原点距离的平方,显然当圆上的点与坐标原点的距离取最大值和最小值时,其平方也相应取得最大值和最小值.原点O(0,0)到圆心C(-1,0)的距离d =1,故圆上的点到坐标原点的最大距离为1+12=32,最小距离为1-12=12.因此x 2+y 2的最大值和最小值分别为94和14.1.本例条件不变,试求yx的取值范围.[解] 设k =y x ,变形为k =y -0x -0,此式表示圆上一点(x, y)与点(0, 0)连线的斜率,由k =y x ,可得y =kx,此直线与圆有公共点,圆心到直线的距离d≤r ,即|-k|k 2+1≤12,解得-33≤k≤33.即y x 的取值范围是⎣⎢⎡⎦⎥⎤-33,33. 2.本例条件不变,试求x +y 的最值.[解] 令y +x =b 并将其变形为y =-x +b,问题转化为斜率为-1的直线在经过圆上的点时在y 轴上的截距的最值.当直线和圆相切时在y 轴上的截距取得最大值和最小值,此时有|-1-b|2=12,解得b =±22-1,即最大值为22-1,最小值为-22-1.与圆有关的最值问题的常见类型及解法:(1)形如u =y -bx -a 形式的最值问题,可转化为过点(x, y)和(a, b)的动直线斜率的最值问题.(2)形如l =ax +by 形式的最值问题,可转化为动直线y =-a b x +lb截距的最值问题.(3)形如(x-a)2+(y-b)2形式的最值问题,可转化为动点(x, y)到定点(a, b)的距离的平方的最值问题.1.确定圆的方程主要方法是待定系数法,即列出关于a,b,r的方程组求a,b,r或直接求出圆心(a,b)和半径r.另依据题意适时运用圆的几何性质解题可以化繁为简,提高解题效率.2.讨论点与圆的位置关系可以从代数特征(点的坐标是否满足圆的方程)或几何特征(点到圆心的距离与半径的关系)去考虑,其中利用几何特征较为直观、简捷.3.与圆有关的最值问题,常借助于所求式的几何意义,利用数形结合的思想解题,渗透着直观形象的数学素养.1.圆心为(0,4),且过点(3,0)的圆的方程为( )A.x2+(y-4)2=25 B.x2+(y+4)2=25C.(x-4)2+y2=25 D.(x+4)2+y2=25A[由题意,圆的半径r=(0-3)2+(4-0)2=5,则圆的方程为x2+(y-4)2=25.]2.设P是圆(x-3)2+(y+1)2=4上的动点,Q是直线x=-3上的动点,则|PQ|的最小值为( ) A.6 B.4 C.3 D.2B[由题意,知 |PQ|的最小值即为圆心到直线x=-3的距离减去半径长,即|PQ|的最小值为6-2=4,故选B.]3.经过原点,圆心在x轴的负半轴上,半径为2的圆的方程是________.(x+2)2+y2=4 [由题意知,圆心是(-2,0),半径是2,所以圆的方程是(x+2)2+y2=4.]4.点(5a+1,a)在圆(x-1)2+y2=26的内部,则a的取值范围是________.[0,1)[由于点在圆的内部,所以(5a+1-1)2+(a)2<26,即26a<26,又a≥0,解得0≤a<1.] 5.△ABC的三个顶点的坐标分别为A(1,0),B(3,0),C(3,4),求△ABC的外接圆方程.[解]易知△ABC是直角三角形,∠B=90°,所以圆心是斜边AC的中点(2,2),半径是斜边长的一半,即r=5,所以外接圆的方程为(x-2)2+(y-2)2=5.。
圆的标准方程学案

圆的标准方程学案圆的标准方程学案一、教学目标1、理解圆的标准方程的意义,掌握圆的标准方程的推导过程;2、会根据圆的标准方程求出圆心坐标和半径,掌握圆的标准方程的应用;3、通过对圆的标准方程的学习,初步了解解析几何的基本思想和方法,提高数学思维能力和解决实际问题的能力。
二、教学内容1、圆的标准方程的推导2、圆的标准方程的形式及其意义3、圆的标准方程的应用三、教学过程1、引入:通过实例展示圆的结构和特点,引出圆的标准方程的概念。
2、圆的标准方程的推导:通过几何法和代数法两种方法,推导出圆的标准方程。
3、圆的标准方程的形式及其意义:介绍圆的标准方程的形式,解释各项参数的意义,明确圆心坐标和半径的求解方法。
4、圆的标准方程的应用:通过实例演示,说明圆的标准方程在解决实际问题中的应用,如求圆与直线的交点、求圆的外接正方形边长等。
四、教学步骤1、教师引导学生通过实例理解圆的结构和特点,引出圆的标准方程的概念。
2、教师介绍圆的标准方程的推导过程,通过几何法和代数法两种方法,推导出圆的标准方程。
3、教师解释圆的标准方程的形式,说明各项参数的意义,明确圆心坐标和半径的求解方法。
4、教师通过实例演示,说明圆的标准方程在解决实际问题中的应用,如求圆与直线的交点、求圆的外接正方形边长等。
五、教学重点与难点1、教学重点:掌握圆的标准方程的推导过程,理解圆的标准方程的意义,掌握圆的标准方程的应用。
2、教学难点:理解圆的标准方程的意义,掌握圆的标准方程的应用。
六、教学方法与手段1、教学方法:讲解、演示、练习、互动交流。
2、教学手段:PPT、板书、实物展示。
七、教学评估1、课堂练习:通过练习题检验学生对圆的标准方程的理解和掌握情况。
2、课后作业:布置相关题目,加强学生对圆的标准方程的掌握和应用能力。
3、课堂讨论:引导学生对圆的标准方程的应用进行讨论,提高学生对该知识的理解和应用能力。
八、教学反思1、总结课堂效果:对本次课程的教学效果进行总结,分析学生的掌握情况。
高一数学:4.1.1《圆的标准方程》学案

课巩固提高: 巩固提高: 一、选择题 1.★圆心是 C (2, −3) ,且经过原点的圆的方程为( A. ( x + 2) + ( y − 3) = 13
C. (8, −8), 10
2.★已知一圆的圆心为点 A(2, − 3 ),一条直径的两个端点分别在 x 轴和 y 轴上,则此圆的方程是( A. ( x − 2) + ( y + 3) = 13
2 2
B. ( x + 2) + ( y − 3) = 13
2 2
C. ( x − 2) + ( y + 3) = 52
2 2
)。
A. ( x − 2) + y = 5
2 2
B. x + ( y − 2) = 5
2 2 2
C. ( x + 2) + ( y + 2) = 5
2 2
D. x + ( y + 2) = 5
2 2 2
(
4.★★圆 ( x + 4) 2 + ( y − 2)2 = 20 与圆 x + y = 20 关于直线 y = kx + b 对称,则 k 与 b 的值分别等于 ) 。 A. k = −2 , b = 5 B. k = 2 , b = 5 C. k = 2 , b = −5 D. k = −2 , b = −5 5.★★在平面直角坐标系中,横纵坐标都是整数的点称为整点,在圆 x + y = 16 内部的所有整点中,
初中圆的方程教案

初中圆的方程教案
教学目标:
1. 了解圆的方程的概念和意义。
2. 学会用圆的标准方程和一般方程表示圆。
3. 能够熟练地运用圆的方程解决实际问题。
教学重点:
1. 圆的方程的概念和意义。
2. 圆的标准方程和一般方程的表示方法。
3. 运用圆的方程解决实际问题。
教学准备:
1. 教学课件或黑板。
2. 圆的模型或图片。
3. 练习题。
教学过程:
一、导入(5分钟)
1. 向学生介绍圆的概念,引导学生回顾圆的性质。
2. 提问:圆有什么特殊的性质?我们可以用什么方式来表示圆?
二、新课讲解(15分钟)
1. 介绍圆的方程的概念和意义。
2. 讲解圆的标准方程和一般方程的表示方法。
3. 通过示例,让学生理解圆的方程的含义和运用。
三、课堂练习(15分钟)
1. 让学生独立完成练习题,巩固对圆的方程的理解。
2. 引导学生运用圆的方程解决实际问题。
四、总结与拓展(10分钟)
1. 对本节课的内容进行总结,让学生掌握圆的方程的概念和表示方法。
2. 引导学生思考圆的方程在实际问题中的应用,激发学生的学习兴趣。
教学反思:
本节课通过导入、新课讲解、课堂练习和总结与拓展环节,让学生了解了圆的方程的概念和意义,学会了用圆的标准方程和一般方程表示圆,并能够运用圆的方程解决实际问题。
在教学过程中,要注意引导学生积极参与,通过示例和练习题让学生充分理解和掌握圆的方程的表示方法。
同时,也要注重培养学生的思维能力和实际应用能力,让学生能够将所学知识运用到实际问题中。
学案2:2.3.1 圆的标准方程

2.3.1 圆的标准方程基础梳理1.圆的标准方程:圆心为C (a ,b )、半径为r 的圆的标准方程为 . 练习1: (1)圆心在原点,半径是3的圆的标准方程为: . (2)圆心在x 轴上,半径为1,且过点(-1,1)的圆的标准方程为: . 2.点与圆的位置关系.设点P 到圆心的距离为d ,圆的半径为r ,则点与圆的位置有如下表所示的对应关系:练习2:圆(x -1)2+(y +2)2=32的圆心为 ,半径为 . ►思考应用下列几种特殊位置的圆的方程是什么?自测自评1.圆心是O(-3,4),半径为5的圆的方程为() A .(x -3)2+(y +4)2=5 B .(x -3)2+(y +4)2=25 C .(x +3)2+(y -4)2=5 D .(x +3)2+(y -4)2=25 2.点P(m ,5)与圆x 2+y 2=24的位置关系是( )A .在圆外B .在圆内C .在圆上D .不确定 3.圆的一条直径的两个端点是(2,0)、(2,-2),则此圆的方程是( ) A .(x -2)2+(y -1)2=1 B .(x -2)2+(y +1)2=1 C .(x -2)2+(y +1)2=9 D .(x +2)2+(y +1)2=1 4.圆(x -1)2+y 2=1的圆心到直线y =33x 的距离是( ) A.12 B.32 C.1 D.3 基础达标1.已知点P(a ,a +1)在圆x 2+y 2=25内部,那么a 的取值范围是( ) A .-4<a <3 B .-5<a <4 C .-5<a <5 D .-6<a <4 2.方程y =-25-x 2表示的曲线是( )A .一条射线B .一个圆C .两条射线D .半个圆 3.圆(x +2)2+y 2=5关于原点(0,0)对称的圆的方程为( )A(x -2)2+y 2=5 B .x 2+(y -2)2=5 C .(x +2)2+(y +2)2=5 D .x 2+(y +2)2=5 4.已知圆上三点A (0,4),B (3,0),C(0,0),则该圆的方程为________________. 5.过点A (1,2)的直线l 将圆(x -2)2+y 2=4分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率k =________.6.圆x 2+y 2=4上的点到点A (3,4)的距离的最大值是________,最小值是________. 巩固提升7.一辆卡车宽1.6 m ,要经过一个半径为3.6 m 的半圆形隧道,则这辆卡车的平顶车篷篷顶距地面高度不得超过( )A .1.4 mB .3.5 mC .3.6 mD .2.0 m 8.已知点P 是圆C :(x -3)2+(y -4)2=1上的任意一点,点A (-1,0)、B (1,0), 试求|P A |2+|P B |2的最大值和最小值.9.已知集合A ={(x ,y )|x =3a +1,y =4a },集合B ={(x ,y )|(x -2)2+y 2<25a 2},且A ∩B ≠∅,求实数a 的取值范围.参考答案基础梳理1.(x-a)2+(y-b)2=r2练习1:x2+y2=9(2)(x+1)2+y2=1练习2:(1,-2),3.►思考应用下列几种特殊位置的圆的方程是什么?自测自评1.【答案】D【解析】直接代入圆的标准方程可得.2.【答案】A【解析】:m2+52=25+m2≥25>24,点在圆外.3.【答案】B【解析】∵所求圆的圆心为(2,-1),半径r=(2-2)2+(0+2)22=1,∴圆的方程为(x-2)2+(y+1)2=1. 4.【答案】A【解析】圆心C(1,0),再利用点到直线的距离公式得d =12.基础达标 1.【答案】A【解析】由a 2+(a +1)2<25可得2a 2+2a -24<0,解得-4<a <3. 2.【答案】D【解析】当y ≤0时,平方得x 2+y 2=25,表示下半圆. 3.【答案】A【解析】(x +2)2+y 2=5的圆心为(-2,0),圆心关于原点的对称点为(2,0),即为对称圆的圆心,所以关于原点的对称圆的方程为(x -2)2+y 2=5. 4.【解析】利用待定系数法或利用几何性质求解. 【答案】⎝⎛⎭⎫x -322+(y -2)2=2545.【解析】由图形可知点A (1,2)在圆(x -2)2+y 2=4的内部,圆心为O(2,0),要使得劣弧所对的圆心角最小,只能是直线l ⊥O A ,所以k =-1k OA =-1-2=22. 【答案】226.【答案】7 3 巩固提升 7.【答案】B【解析】下图所示为隧道与卡车的横截面,以半圆的直径为x 轴,圆心为原点建立直角坐标系,则半圆的方程为x 2+y 2=3.62(y ≥0),点A 的坐标为(0.8,h),设M(0.8,y )在半圆上,则y = 3.62-0.82≈3.5,∴h≤y =3.5(m ).8 .【解析】设P(x ,y ),则有P 是圆上任一点,|P A |2+|P B |2=(x +1)2+y 2+(x -1)2+y 2=2x 2+2y 2+2=2(x 2+y 2)2+2 =2[(x -0)2+(y -0)2]2+2=2|OP|2+2. 则O 在圆C 外.由题意得|OP|的最大值是|OC|+r =5+1=6,最小值是|OC|-r =5-1=4. 所以|P A |2+|P B |2的最大值是2×62+2=74,最小值是2×42+2=34.9.【解析】集合A 表示点M(3a +1,4a ),集合B 表示圆N :(x -2)2+y 2=25a 2的内部部分. A ∩B ≠∅表示点M(3a +1,4a )在圆N 内部,∴(3a +1-2)2+(4a )2<25a 2,解得a >16,∴a 的取值范围是⎩⎨⎧a ⎪⎪⎭⎬⎫a>16.。
圆的标准方程学案

1
(3) 数学建构 2 2 2 圆的标准方程:(x-a) + (y-b) =r 以 C(a,b)为圆心,r 为半径. 2 2 2 方法迁移:由一般到特殊:当圆心在坐标原点时,圆的方程是 x + y =r 单位圆:半径为 1 的圆 (4) 【练习强化】 1. 写出下列圆的圆心坐标和半径。 圆心坐标 半径
A.一条射线 B.一个圆 C.两条射线 D.半个圆 2 2 5.已知 BC 是圆 x +y =25 的动弦,且|BC|=6,则 BC 中点的轨迹方程是(
6
A.x2+y2=4 C.x2+y2=16 6. 若 圆 为 7.求过点 与圆 . ,且圆心
B.x2+y2=9 D.x+y=4 关于原点对称,则圆 的标准方程
__________ __________ ___________ __________ __________ ___________
总结: 特别地,当 (a, b) (0,0) 时,圆的方程变为___________ 2. 根据下列条件,写出圆的标准方程。 (1) 圆心在 A(2,1) ,半径长为 4; __________________________
5
(6) 总结: 1.圆的标准方程 圆心和半径 圆心为(a,b)半径为 r 圆心为(0,0)半径为 r 2.特殊位置的圆的方程 圆心在原点 圆心在 X 轴上 圆心在 Y 轴上 圆心在 X 轴上且过原点 圆心在 Y 轴上且过原点 与 X 轴相切 与 Y 轴相切 与两坐标轴相切 3.点与圆的位置关系 设点 P(x0,y0)到圆心(a,b)的距离为 d,圆的半径为 r,则点与圆的位置关系如下: 位置关系 d 与 r 的关系 代数表示 点 P(x0,y0)到圆的最短距离 ,最大距离为 . 点在圆外 点在圆上 点在圆内 圆的标准方程
高中数学圆方程教案

高中数学圆方程教案
教学目标:
1. 掌握圆的一般方程和标准方程;
2. 理解不同参数对圆的位置、形状的影响;
3. 能够根据已知条件求解圆的方程。
教学内容:
1. 圆的一般方程和标准方程的表达;
2. 圆的圆心、半径和方程之间的关系;
3. 圆的位置、形状与参数之间的关系。
教学流程:
一、导入
教师引入圆的概念,讲解圆的定义及基本性质,激发学生对圆的兴趣。
二、讲解
1. 圆的一般方程和标准方程的表达形式;
2. 圆的圆心坐标和半径与圆的方程之间的关系;
3. 不同参数对圆的位置、形状的影响。
三、练习与实践
1. 给出不同圆的半径和圆心坐标,让学生求解圆的方程;
2. 给出圆的方程,让学生画出对应的圆图形。
四、总结与延伸
教师总结本节课的重点知识,并提出延伸思考题,拓展学生对圆方程的理解。
五、作业布置
布置相关练习题目,并要求学生结合实际情况解决问题。
教学反馈:
教师根据学生的表现和作业情况,及时给予反馈与指导,以便学生及时纠正错误,提高学习效果。
教学资源:
1. 教科书《高中数学》;
2. PPT课件;
3. 相关练习题目。
教学评估:
通过课堂练习、作业表现以及考试成绩等多方面评估学生掌握情况,及时调整教学内容和方法,帮助学生提高学习效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学必修2 圆与方程 班级________ 姓名_________
圆的标准方程 【课标要求】 回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程。
【学习目标】
1.能在平面直角坐标系中,探索并掌握圆的标准方程。
2.能根据圆的标准方程写出圆心和半径,会根据条件求圆的方程。
【学习重、难点】
重点:圆的标准方程的求法及其应用。
难点:会根据不同的已知条件,利用待定系数法求圆的标准方程,以及选择恰当的坐标系解决
与圆有关的实际问题。
【问题探究】 请认真阅读教材P118—P119例1以前的内容,完成下列问题: 1.在直角坐标系中,当_________与_________确定后,圆就唯一确定了。
因此,确定圆的最基本
的要素是_____________
2.在直角坐标系中,设),(y x M 是圆心为),(b a A ,半径为r 的圆上任意一点,你能根据圆的定
义推到出圆的标准方程吗? 3.(1)圆的标准方程有哪些特征?
(2)圆心在原点,半径为r 的圆的标准方程为_______________
4.(1)若点),(00y x M 在圆2
22r y x =+内,则满足条件____________
(2)若点),(00y x M 在圆2
22r y x =+外,则满足条件____________
同理,(3)若点),(00y x M 在圆2
22)()(r b y a x =-+-内,则满足条件____________
(4)若点),(00y x M 在圆2
22)()(r b y a x =-+-外,则满足条件____________
【例题剖析】 例1:完成教材P119例1
例2:完成教材P119例2 思考:(1)你能说说本题的解题思路吗?
(2)你能根据三角形外心的定义给出其他解法吗?
例3:完成教材P120例3 思考:(1)你能用类似例2的方法解答本题么?
(2)比较例2和例3,你能说说求任意ABC ∆外接圆方程的方法有几种? 试比较各自的优越性。
【自主测评】
独立完成教材P120练习1,3,4(两种方法) 【作业布置】
习题4.1A 组3,4,5, 【本节收获】
通过本节的学习,你有哪些收获?还有什么疑问?。