数学建模 运筹学模型(一)
第二章——运筹学建模方法

1第二章、运筹学建模方法综述2定义问题和收集数据 数学建模模型求解 检验模型 准备应用模型 实施3运筹学研究小组首先要做的是研究相关系统,并使被研究的问题得到明确的说明。
包括确定合适的目标、实际的限制条件、研究领域和组织的其他领域间的相互关系、可选择的行动路线、制定决策的时间限制等。
2.1定义问题和收集数据4针对美国企业的大量调查发现,管理层趋向于采取满意利润目标和其他目标相结合的方式代替长期收益最大化。
典型地,其他目标包括维持稳定收益、增加市场份额、实现产品多样化、维持稳定价格、提高员工士气、维持企业的家族控制以及提高企业声望。
另外,存在包含与盈利动机不相吻合的社会责任的其他考虑。
2.1定义问题和收集数据5商业企业一般涉及以下五个方面所用者(股东等),追求盈利员工,期望合理工资水平上的稳定雇佣 客户,期望以合理的价格获得可靠的产品 供应商,期望声誉以及产品的合理出售价格政府以及国家,期望公正的税收和考虑国家利益6例:在为旧金山警察局所开展的运筹学研究中,建立了一个优化调度和配置巡警的计算机系统。
这个新系统每年为警察局节约1100万美元,同时增加了300万美元的交通管理收入,并且将反映时间减少了20%。
在评估该项研究的合适目标时,确定了三个基本目标:(1). 维持高水平的居民安全(2). 维持高水平的警员士气(3). 最小化运作成本7收集数据通常,研究小组会花费大量的时间收集问题的数据。
大部分数据既用于获得对问题的充分理解,又为下一阶段研究建立的数学模型提供所需的输入。
82.2 数学建模商业问题的数学模型,是描述问题实质的方程和相关数学表达式的系统。
n 个相关的可量化的决策,称为决策变量(decision variables)(x 1, x 2, …x n )绩效(如收益)的合理度量被表示成这些决策变量的数学函数(例如,P =3x 1+2x 2+…+5x n ),这个函数称为目标函数(objective function)9 任何对决策变量值的约束也能够被数学表示,通常是通过等式或不等式(例如:x 1+3x 1x 2+2x 2≤10),这些用于限制的数学表达式称为约束(constraints)。
《数学建模(一)》课程教学大纲

《数学建模(一)》课程教学大纲课程名称:数学模型Mathematical Modeling课程编码:07241506 课程类型:专业必修课或选修课课程性质:数学应用课适用范围:适合于修过高等数学的任何专业学时数:36 先修课程:高等数学考核方式:考查或考试制定单位:数学与信息科学学院制定日期:2008年4月执笔者:冯永平一、教学大纲说明(一)课程的地位、作用和任务随着科学技术和计算机的迅速发展,数学向各个领域的广泛渗透已日趋明显,数学不仅在传统的物理学、电子学和工程技术领域继续发挥着重要的作用,而且在经济、人文、体育等社会科学领域也成为必不可少的解决问题的工具。
因此,设立数学建模课程是课程的主要目的是:提高学生的数学素质和应用数学知识解决实际问题的能力,大力培养应用型人才。
本课程是沟通实际问题与数学工具之间联系的必不可少的桥梁。
将数学方法应用到任何实际问题中去,主要是通过机理分析,根据客观事物的性质分析因果关系,在适当的假设条件下,利用合适的数学工具得到描述其特征的数学模型。
学习本课程的大部分内容只需要大学的微积分、线性代数、概率论等基本数学知识。
教材选用的是高教出版社出版,姜启源主编的《数学模型》等教材。
(二)教学目的及要求逐步培养学生利用数学工具解决实际问题的能力。
能够将实际问题“翻译”为数学语言,并予以求解,然后再解释实际现象,甚至应用于实际。
培养学生的综合能力,包括创造、数学、计算机应用、应变、写作、自学、领导等能力以及团队精神和献身精神等。
最终提高学生的数学素质和应用数学知识解决实际问题的能力。
掌握:应用数学解决实际问题。
理解:各种模型适用范围、条件和运用。
了解:数学建模的综合能力。
(三)课程教学方法与手段本课程的教学采用讲授、讨论、多媒体和实验等方法。
教师讲授约占75%,10%为讨论课,15%为实验课。
讲授时可用多媒体或黑板,讨论课内容由教师提出,实验课主要是数学软件的上机实践。
(四)课程教学与其它课程的联系数学模型涉及到微积分、线性代数、微分方程、概率统计和运筹学等,因此在高等数学教学时应注意包含这些内容,否则要在讲授本课程时补上。
人员值班分配数学建模,运筹学

三、问题ห้องสมุดไป่ตู้析
分析该问题,可以得出该问题是一个线性规划问题,求解需雇佣的最少员 工人数,所以应该,建立目标函数以及对应的约束条件。根据每班的人数列出 目标函数,根据六个时间段所需要的最少员工数建立约束条件。检查值班的负 责人都有不能值班的时间段,但可以保证每个值班时间段都有人去检查。可以 用 0,1 算法求每个负责人所检查的时间段。
一、问题描述
(1)每日每部门至少需要下列数量的员工: 部门 a1 a2 a3 a4 a5 a6 (1) 时间 08 时—10 时 10 时—12 时 12 时—14 时 14 时—16 时 16 时—18 时 18 时—20 时 最少员工数 60 70 60 50 20 30
每班员工,连续工作 2 小时,为满足每班所需要的员工数,最少 需雇佣多少员工?
18 时—20 时
95% 88% 90% 81% 91% 94%
a1 a2 a3 a4 a5 a6
如何分配部门值班情况,才能让工作效率最大?
二、问题假设
1.每名值班员工都正常工作,没有请假现象,查班负责人也是不缺勤。 2.不存在大的人员变动。 3.每名部门员工都可以连续工作 2 小时。 4.假设各个部门工作效率是一样的,如何安排值班分配。 5.假设各个部门之间工作效率不同,如何安排才能使效率得到最大。
四、模型建立
(1)根据题意判断出该问题属于求解最优化问题,需要确定目标函数和约束条 件,具体模型如下: Z 为需要雇佣的最少员工数量,Xi 为第 i 次加入值班的人数(i=1~6)。
min Z x 1 x 2 x 3 x 4 x 5 x 6 x 1 x 6 60 x 1 x 2 70 x 2 x 3 60 t x 3 x 4 50 x x 20 5 4 x 5 x 6 30 x i 0,i 1, 2, , 6
1、线性规划(数学建模)

⎧2 x1 + x2 ≤ 10 ⎪x + x ≤ 8 ⎪ 1 2 s.t.(约束条件) ⎨ ⎪ x2 ≤ 7 ⎪ ⎩ x1 , x2 ≥ 0
(2)
(1)式被称为问题的目标函数, (2)中的几个不等式 这里变量 x1 , x 2 称之为决策变量, 是问题的约束条件,记为 s.t.(即 subject to)。由于上面的目标函数及约束条件均为线性 函数,故被称为线性规划问题。 总之, 线性规划问题是在一组线性约束条件的限制下, 求一线性目标函数最大或最 小的问题。 在解决实际问题时, 把问题归结成一个线性规划数学模型是很重要的一步, 但往往 也是困难的一步,模型建立得是否恰当,直接影响到求解。而选适当的决策变量,是我 们建立有效模型的关键之一。 1.2 线性规划的 Matlab 标准形式 线性规划的目标函数可以是求最大值, 也可以是求最小值, 约束条件的不等号可以 是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab 中规定线性 规划的标准形式为
max z = 2 x1 + 3x2 − 5 x3 s.t. x1 + x2 + x3 = 7 2 x1 − 5 x2 + x3 ≥ 10 x1 + 3 x2 + x3 ≤ 12 x1 , x2 , x3 ≥ 0
-3-
解 (i)编写 M 文件 c=[2;3;-5]; a=[-2,5,-1;1,3,1]; b=[-10;12]; aeq=[1,1,1]; beq=7; x=linprog(-c,a,b,aeq,beq,zeros(3,1)) value=c'*x (ii)将M文件存盘,并命名为example1.m。 (iii)在Matlab指令窗运行example1即可得所求结果。 例3 求解线性规划问题
基于运输问题的数学建模

数学建模一周论文论文题目:基于运输问题的数学模型姓名1:学号:姓名2:学号:姓名3:学号:专业:班级:指导教师:2011年12 月29 日(十五)、已知某运输问题的产销平衡表与单位运价表如下表所示(1)求最优调拨方案;(2)如产地的产量变为130,又B地区需要的115单位必须满足,试重新确定最优调拨方案。
一论文摘要一般的运输问题就是要解决把某种产品从若干个产地调运到若干个销地,在每个产地的供应量与每个销地的需求量已知,并知道各地之间的运输单价的前提下,如何确定一个使得总的运输费用最小的方案的问题。
本论文运用线性规划的数学模型来解决此运输问题中总费用最小的问题。
引入x变量作为决策变量,建立目标函数,列出约束条件,借助MATLAB软件进行模型求解运算,得出其中的最优解,使得把某种产品从3个产地调运到5个销地的总费用最小。
针对模型我们探讨将某产品从3个产地调运到5个销地的最优调拨方案,通过运输问题模,得到模型Z=1011x+1512x+2013x+2014x+4015x+2021x+4022x+1523x+3024x minx+3031x+3532x+4033x+5534x+2535x+3025Z=并用管理运筹学软件软件得出最优解为:min关键词:运输模型最优化线性规划二.问题的重述和分析A(i=1,2,3)和五个销地j B(j=1,2,3,4,5),已知产地i A的产量有三个产地is和销地j B的销量j d,和将物品从产地i运到销地j的单位运价ij c,请问:i将物品从产地运往销地的最优调拨方案。
A,2A,3A三个产地的总产量为50+100+150=300单位;1B,我们知道,1B,3B,4B,5B五个销地的总销量为25+115+60+30+70=300单位,总2A,2A,3A的产量全产量等于总销量,这是一个产销平衡的运输问题。
把产地1B,2B,3B,4B,5B,正好满足这三个销地的需要。
先将安排的部分配给销地1运输量列如下表中:三.模型的假设与符号说明1.模型的假设①每一个产地都有一个固定的供应量,所有的供应量都必须配送到各个销地;②每一个销地都有一个固定的需求量,整个需求量都必须由产地满足;③从任何一个产地到任何一个销地的物品运输成本和所运输的数量成线性比例关系;④这个成本就等于运输的单位成本乘以运输的数量。
数学建模--运输问题

运输问题摘要本文主要研究的是货物运输的最短路径问题,利用图论中的Floyd算法、Kruskal算法,以及整数规划的方法建立相关问题的模型,通过matlab,lingo 编程求解出最终结果。
关于问题一,是一个两客户间最短路程的问题,因此本文利用Floyd算法对其进行分析。
考虑到计算的方便性,首先,我们将两客户之间的距离输入到网络权矩阵中;然后,逐步分析出两客户间的最短距离;最后,利用Matlab软件对其进行编程求解,运行得到结果:2-3-8-9-10总路程为85公里。
关于问题二,运输公司分别要对10个客户供货,必须访问每个客户,实际上是一个旅行商问题。
首先,不考虑送货员返回提货点的情形,本文利用最小生成树问题中的Kruskal算法,结合题中所给的邻接矩阵,很快可以得到回路的最短路线:1-5-7-6-3-4-8-9-10-2;然后利用问题一的Floyd算法编程,能求得从客户2到客户1(提货点)的最短路线是:2-1,路程为50公里。
即最短路线为:1-5-7-6-3-4-8-9-10-2-1。
但考虑到最小生成树法局限于顶点数较少的情形,不宜进一步推广,因此本文建立以路程最短为目标函数的整数规划模型;最后,利用LINGO软件对其进行编程求解,求解出的回路与Kruskal算法求出的回路一致。
关于问题三,是在每个客户所需固定货物量的情况下,使得行程之和最短。
这样只要找出两条尽可能短的回路,并保证每条线路客户总需求量在50个单位以内即可。
因此我们在问题二模型的基础上进行改进,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,对于模型求解出来的结果,本文利用Kruskal算法结合题中所给的邻接矩阵进行优化。
得到优化结果为:第一辆车:1-5-2-3-4-8-9-1,第二辆车:1-7-6-9-10-1,总路程为280公里。
关于问题四,在问题一的基础上我们首先用Matlab软件编程确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理想的运输方案。
数学建模:第五章 运筹与优化模型
max c j x j
n
s.t aij x j bi
j 1
n
j 1
i 1.2 m
xj 0
j 1.2 n
8
二、整数规划模型
n min f c j x j j 1 n aij x j bi j 1 x j 0
对于线性规划:
22
二、货机装运
问题 某架货机有三个货舱:前仓、中仓、后仓。三个 货舱所能装载的货物的最大重量和体积都有限制,如表 3所示。并且,为了保持飞机的平衡,三个货舱中实际 装载货物的重量必须与其最大容许重量成比例。
重量限制 (吨)
前仓 中仓 后仓 10 16 8 6800 8700 5300
体积限制 (米3)
5
解:设x ij 表示 Ai (i=1.2)煤厂提供给 B j (j=1.2.3)居民区的煤量; f表示总运输费 此问题归结为:
min f 10 x11 5 x12 6 x13
s.t
x11 x12 x13 60 x21 x22 x23 100 x11 x21 50
s.t gi ( X ) 0
hi ( X ) 0
(1)
(2)
(3)
i 1,2,, m .
j 1,2,, l .
X D
其中X ( x1 , x2 ,, xn )T , D R n为可行集
f(X)为目标函数,(2)、(3)为约束条件, (2)为不等式约束,(3)为等式约束; 若只有(1)称为无约束问题。
max f x1 x2 15 x1 12 x2 85 如 5 x1 11 x , x 0 1 2 x1 , x2 为整数
运筹学 运输问题例题数学建模
运筹学运输问题例题数学建模运筹学是一门研究如何在有限的资源和多种约束条件下,寻求最优或近似最优解的科学。
运输问题是运筹学中的一个重要分支,它主要研究如何把某种商品从若干个产地运至若干个销地,使总的运费或总的运输时间最小。
本文将介绍运输问题的数学建模方法,以及用表上作业法求解运输问题的步骤和技巧。
同时,本文还将给出几个典型的运输问题的例题,帮助读者理解和掌握运输问题的求解过程。
运输问题的数学建模运输问题可以用以下的数学模型来描述:设有m 个产地(或供应地),分别记为A 1,A 2,…,A m ,每个产地i 的产量(或供应量)为a i ;有n 个销地(或需求地),分别记为B 1,B 2,…,B n ,每个销地j 的需求量为b j ;从产地i 到销地j 的单位运费(或单位运输时间)为c ij ;用x ij 表示从产地i 到销地j 的运量,则运输问题可以归结为以下的线性规划问题:其中,目标函数表示总的运费或总的运输时间,约束条件表示每个产地的供应量必须等于其产量,每个销地的需求量必须等于其销量,以及每条运输路线的运量不能为负数。
在实际问题中,可能出现以下几种情况:产销平衡:即∑m i =1a i =∑n j =1b j ,也就是说总的供应量等于总的需求量。
这种情况下,上述数学模型可以直接应用。
产大于销:即∑m i =1a i >∑n j =1b j ,也就是说总的供应量大于总的需求量。
这种情况下,可以增加一个虚拟的销地,其需求量等于供需差额,且其与各个产地的单位运费为零。
这样就可以把问题转化为一个产销平衡的问题。
产小于销:即∑m i =1a i <∑n j =1b j ,也就是说总的供应量小于总的需求量。
这种情况下,可以增加一个虚拟的产地,其产量等于供需差额,且其与各个销地的单位运费为零。
这样也可以把问题转化为一个产销平衡的问题。
弹性需求:即某些销地对商品的需求量不是固定不变的,而是随着商品价格或其他因素而变化。
数学建模常用模型及代码
数学建模常用模型及代码
一.规划模型
1.线性规划
线性规划与非线性规划问题一般都是求最大值和最小值,都是利用最小的有限资源来求最大利益等,一般都利用lingo工具进行求解。
点击进入传送门
2.整数规划
求解方式类似于线性规划,但是其决策变量x1,x2等限定都是整数的最优化问题。
传送门
3. 0-1规划
决策变量只能为0或者为1的一类特殊的整数规划。
n个人指派n项工作的问题。
传送门
4.非线性规划
目标函数或者存在约束条件函数是决策变量的非线性函数的最优化问题。
传送门
5.多目标规划
研究多于一个的目标函数在给定区域上的最优化。
把求一个单目标,在此单目标最优的情况下将其作为约束条件再求另外一个目标。
传送门
6.动态规划
运筹学的一个分支。
求解决策过程最优化的过程。
传送门
二. 层次分析法
是一种将定性和定量相结合的,系统化的,层次化的分析方法,主要有机理分析法和统计分析法。
传送门
三.主成分分析
指标之间的相关性比较高,不利于建立指标遵循的独立性原则,指标之间应该互相独立,彼此之间不存在联系。
传送门。
16738-数学建模-运筹学PPT完整版胡运权
线性规划问题的数学模型
Page 18
3. 线性规划数学模型的一般形式
目标函数: max (min) z c1 x1 c2 x2 cn xn
a11 x1 a12 x2 a1n xn ( ) b1
约束条件: am1 x1 am2 x2 amn xn ( ) bm
x1 0 xn 0
a11 a1m
B
(
p1
pm
)
am1
amm
称 B中每个列向量Pj ( j = 1 2 … … m) 为基向量。与基向量Pj
对应的变量xj 为基变量。除基变量以外的变量为非基变量。
线性规划问题的数学模型
Page 29
基解:某一确定的基B,令非基变量等于零,由约束条件
方程②解出基变量,称这组解为基解。在基解中变量取非0
(5) 目标函数是最小值,为了化为求最大值,令z′=-z,得到max z′=-z,即当z达到最小值时z′达到最大值,反之亦然;
线性规划问题的数学模型
标准形式如下:
max Z
2 x1
x2
3(
x
3
x3)
0x4
0x5
5 x1
x2
(
x
3
x3)
x4
7
x1 x2 ( 5x1 x2
x3 2(
x
3
x3) x3)
真实系统
数据准备
系统分析 问题描述
模型建立 与修改
模型求解 与检验
结果分析与 实施
本课程授课方式与考核
讲授为主,结合习题作业
学科总成绩
平时成绩 (40%)
期末成绩 (60%)
课堂考勤 (50%)
平时作业 (50%)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运筹学模型(一)
本章重点:
线性规划基础模型、目标规划模型、运输模型及其应用、图论模型、最小树问题、最短路问题
复习要求:
1.进一步理解基本建模过程,掌握类比法、图示法以及问题分析、合理假设的内涵.
2.进一步理解数学模型的作用与特点.
本章复习重点是线性规划基础模型、运输问题模型和目标规划模型.具体说来,要求大家会建立简单的线性规划模型,把实际问题转化为线性规划模型的方法要掌握,当然比较简单.运输问题模型主要要求善于将非线性规划模型转化为运输规化模型,这种转化后求解相当简单.你至少把一个很实际的问题转化为用表格形式写出的模型,至于求解是另外一回事,一般不要求.目标模型一般是比较简单的线性规模模型在提出新的要求之后转化为目标规划模型.另外,关于图论模型的问题涉及到最短路问题,具体说来用双标号法来求解一个最短路模型.这之前恐怕要善于将一个实际问题转化为图论模型.还有一个最小数的问题,该如何把一个网络中的最小数找到.另外在个别场合可能会涉及一笔划问题.
1.营养配餐问题的数学模型
或更简洁地表为
其中的常数C j 表示第j 种食品的市场价格,a ij 表示第j 种食品含第i 种营养的数量,b i 表示人或动物对第i 种营养的最低需求量.
2.合理配料问题的数学模型
有m 种资源B 1,B 2,…,B m ,可用于生产n 种代号为A 1,A 2,…,A n 的产品.单位产品A j 需用资源B i 的数量为a ij ,获利为C j 单位,第i 种资源可供给总量为b i 个单位.问如何安排生产,使总利润达到最大?
设生产第j 种产品x j 个单位(j =1,2,…,n ),则有
或更简单地写为
3.运输问题模型
运输问题也是一种线性规划问题,只是决策变量设置为双下标变量.假如问题具有m 个产地和n 个销地,第i 个产地用A i 表示,其产量为a i (i =1,2,…,m ),第j 个销地用B j 表示,其销量为b j (j =1,2,…,n ),从A i 运往B j 的运价为c ij , 而∑∑===m i n j j
i b a
11表示产销平衡.那么产销平衡运输问题的一般模型可以写成为
4.目标规划模型
某工厂生产代号为Ⅰ、Ⅱ的两种产品,这两种产品都要经甲、乙两个车间加工,并经检验与销售两部门处理.已知甲、乙两车间每月可用生产工时分别为120小时和150小时,每小时费用分别为80元和20元,其它数据如下表
表4-1
工厂领导希望给出一个可行性生产方案,使生产销售及检验等方面都能达标.
问题分析与模型假设
经与工厂总经理交谈,确定下列几条:
p 1: 检验和销售费每月不超过4600元;
p 2: 每月售出产品I 不少于50件;
p 3: 两车间的生产工时充分利用(重要性权系数按两车间每小时费用比确定);
p 4:甲车间加班不超过20小时;
p 5:每月售出产品Ⅱ不少于80件;
p 6:两车间加班总时数要有控制(对权系数分配参照第三优先级).
模型建立
设x 1,x 2分别为产品Ⅰ和Ⅱ的月产量,先建立一般约束条件组,依题设
4600305021≤+x x 检验销售费用
802≥x 120221≤+x x 设d 1表检验销售费偏差,则希望+1d 达最小,有
,11+d p 相应的目标约束为
+--++1121305d d x x = 4600; 2d 表产品I 售量偏差,则希望-2d 达最小,有,2
2-d p 相应的目标约束 以d 3、d 4表两车间生产工时偏差,则由于充分利用,故希望--43
,d d 达最小,考虑到费用比例为80:20=4:1,有)4(433--+d d p .相应的目标约束应为
12023321=-+++-d d x x 和+--++44213d d x x =150,
以d 5表甲车间加班偏差,则有
,54+d p 相应目标约束为 20553=-++-+d d d ,
以d 6表产品Ⅱ售量偏差,则希望-6d 达最小,有相应约束为
80662=-++-d d x .
最后优先级p 6可利用+++43
d d 表示,考虑到权系数,有),4(436+++d d p 其目标约束由于利用超生产工时,已在工时限制中体现,于是得到该问题的目标规划模型为
5.最小树问题
一个图中若有几个顶点及其边的交替序列形成闭回路,我们就说这个图有圈;若图中所有连顶点间都有边相接,就称该图是连通的;若两个顶点间有不止一条边连接,则称该图具有多重边. 一个图被称为是树.
意味着该图是连通的无圈的简单图.
在具有相同顶点的树中,总赋权数最小的树称为最小树.
最小树的求法有两种,一种称为“避圈法”,一种是“破圈法”,两法各具优缺点,它们具有共同的特征——去掉图中的圈并且每次都是去掉圈中边权较大的边.
6.最短路问题的数学模型
最短路问题一般描述如下:在一个图(或者说网络)中,给定一个始点v s 和一个终点v t ,求v s 到v t 的一条路,使路长最短(即路的各边权数之和最小).
狄克斯屈()双标号法
该法亦称双标号法,适用于所有权数均为非负(即一切0≥ij w w ij 表示顶点v i 与v j 的边的权数)的网络,能够求出网络的任一点v s 到其它各点的最短路,为目前求这类网络最短路的最好算法.
该法在施行中,对每一个点v j 都要赋予一个标号,并分为固定标号P (v j )和临时标号T (v j )两种,其含义如下: P (v j )——从始点v s 到v j 的最短路长;
T (v j )——从始点v s 到v j 的最短路长上界.
一个点v j 的标号只能是上述两种标号之一.若为T 标号,则需视情况修改,而一旦成为P 标号,就固定不变了.
售出量
两车间总工时
开始先给始点v s 标上P 标号0,然后检查点v s ,对其一切关联边(v s , v j )的终点v j ,给出v j 的T 标号w ij ;再在网络的已有T 标号中选取最小者,把它改为P 标号.以后每次都检查刚得到P 标号那点,按一定规则修改其一切关联边终点的T 标号,再在网络的所有T 标号中选取最小者并把它改为P 标号.这样,每次都把一个T 标号点改为P 标号点,因为网络中总共有n 个结点,故最多只需n -1次就能把终点v t 改为P 标号.这意味着已求得了v s 到v t 的最短路.
狄克斯屈标号法的计算步骤如下:
1°令S ={v s }为固定标号点集,}{\s v V S =为临时标号点集,再令0)(=i v P ,S v t ∈;
2°检查点v i ,对其一切关联边(v i , v j )的终点S v j
∈,计算并令 3°从一切S v j ∈中选取并令
选取相应的弧(v i , v r ).再令
4°若∅=S ,则停止,)(j v P 即v s 到v j 的最短路长,特别)(t v P 即v s 到v t 的最短路长,而已选出的弧即给出v s 到各点的
最短路;否则令i r
v v ⇒,返2°. 注意:若只要求v s 到某一点v t 的最短路,而没要求v s 到其他各点的最短路,则上述步骤4°可改为
4°若r = t 则结束,)(r v P 即为所求最短路长;否则令i r v v ⇒,返2°.。