高考复习三视图专题
高考数学一轮复习-81-空间几何体的三视图-直观图-表面积与体积课件-新人教A

=172a2.所以 S 球=4πR2=4π×172a2=73πa2.
(2)这个几何体是一个圆台被轴截面割出来的一半.
根据图中数据可知圆台的上底面半径为 1,下底面半径为 2,高为 3,母线长为 2,几何体的表面积是两个半圆的面 积、圆台侧面积的一半和轴截面的面积之和,故这个几何 体的表面积为 S=12π×12+12π×22+12π×(1+2)×2+12 ×(2+4)× 3=112π+3 3. 答案 (1)B (2)112π+3 3
可能是圆柱,排除选项C;又由俯视图可知,该几何体
不可能是棱柱或棱台,排除选项A,B,故选D.
(2)如图,在原图形OABC中, 应有 OD=2O′D′=2×2 2 =4 2(cm), CD=C′D′=2 cm. ∴OC= OD2+CD2 = (4 2)2+22=6(cm), ∴OA=OC, 故四边形 OABC 是菱形. 答案 (1)D (2)C
诊断自测
1.判断正误(在括号内打“√”或“×”) 精彩PPT展示
(1)有两个面平行,其余各面都是平行四边形的几何体是
棱柱.
(×)
(2)有一个面是多边形,其余各面都是三角形的几何体是
棱锥.
( ×)
(3)正方体、球、圆锥各自的三视图中,三视图均相同.
(×)
(4)圆柱的侧面展开图是矩形.
(√)
2.(2014·福建卷)某空间几何体的正视图是三角形,则该几
(2)画出坐标系 x′O′y′,作出△OAB 的 直观图 O′A′B′(如图).D′为 O′A′的中 点.易知 D′B′=12DB(D 为 OA 的中点), ∴S△O′A′B′=12× 22S△OAB= 42× 43a2= 166a2.
2021年高考数学高分套路 空间几何体三视图(解析版)

A. 3
【答案】B
B. 2 3
C. x1 x2
D.4
【解析】由题意可得,侧视图是个矩形,由已知,底面正三角形的边长为 2,所以其高为 3 ,即侧视图的 宽为 3 ,又三棱柱的高为 2,即侧视图的长为 2,所以三棱柱侧视图的面积为 2 3 .故选 B 2.如图,在长方体 ABCD-A1B1C1D1 中,点 P 是棱 CD 上一点,则三棱锥 P-A1B1A 的侧视图是( )
2
考向三 三视图知二选三 【例 3】 如图是一个空间几何体的正视图和俯视图,则它的侧视图为( )
【答案】 B 【解析】 由正视图和俯视图可知,该几何体是一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图 的直径可知其侧视图为 B,故选 B.
【套路总结】 三视图问题的常见类型及解题策略 (1)由几何体的直观图求三视图.注意观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表 示. (2)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结 合空间想象将三视图还原为实物图. (3)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形 状,然后再找其剩下部分三视图的可能形状.当然作为选择题,也可将选项逐项代入,再看看给出的部分 三视图是否符合. 【举一反三】 1、一个几何体的三视图中,正视图和侧视图如图所示,则俯视图不可以为( )
四.空间几何体的三视图 1.三视图是观测者从不同位置观察同一个几何体,画出的空间几何体的图形.具体包括: (1)正视图:物体前后方向投影所得到的投影图;它能反映物体的高度和长度; (2)侧视图:物体左右方向投影所得到的投影图;它能反映物体的高度和宽度; (3)俯视图:物体上下方向投影所得到的投影图;它能反映物体的长度和宽度. 2.三视图画法规则 高平齐:主视图与左视图的高要保持平齐 长对正:主视图与俯视图的长应对正 宽相等:俯视图与左视图的宽度应相等
高考数学(文)《立体几何》专题复习

(2)两个平面垂直的判定和性质
✓ 考法5 线面垂直的判定与性质
1.证明直线 与平面垂直 的方法
2.线面垂直 的性质与线 线垂直
(1)判定定理(常用方法): 一条直线与一个平面内的两条相交直线都垂直,则该直线
与此平面垂直.判定定理中的两条相交直线必须保证“在平面 内相交”这一条件. (2)性质: ①应用面面垂直的性质(常用方法):若两平面垂直,则在一 个平面内垂直于交线的直线必垂直于另一个平面,是证明线 面垂直的主要方法; ②(客观题常用)若两条平行直线中的一条垂直于一个平面, 则另一条也垂直于这个平面.
64
65
✓ 考法4 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法 2.空间平行关系 之间的转化
66
✓ 考法3 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法
这是立体几何中证明平行关系常用的思路,三 种平行关系的转化可结合下图记忆
2.空间平行关系 之间的转化
67
68
600分基础 考点&考法
定义 判定方法
2.等角定理
判定定理 反证法 两条异面直线所成的角
✓ 考法2 异面直线所成的角
常考形式
直接求 求其三角函数值
常用方法
作角
正弦值 余弦值 正切值
证明 求值 取舍
55
56
57
58
600分基础 考点&考法
➢ 考点46 线面、面面平行的判定与性质 ✓ 考法3 线面平行的判定与性质 ✓ 考法4 面面平行的判定与性质
1.计算有关 线段的长
2.外接球、内切 球的计算问题
观察几何体的特征 利用一些常用定理与公式 (如正弦定理、余弦定理、勾股定理、 三角函数公式等) 结合题目的已知条件求解
对高考三视图试题的分析与思考

次 ,我正 在开会 ,有个学生 跑来报告说有 位同学鼻子 流血不
止”我当时赶紧跑去处理 。那个学生体 质 比较虚弱 , , 经常会 习 惯性 、 间接性地流鼻血 。 在 日常工作中 , 我特别嘱咐学生 , 如果班里有什么事发生 , 要及时尽快在第一时间跑 去向我报告 , 在这方 面学生配合得相 当默契 , 使我 能及 时处理事情 , 减少很 多不必要 的麻烦 。 有一 回 , 刚刚进教室 , 我 有位家长 就说我们班 昨天有位 学 生 咬了他儿子 的手 臂。我一看 , 口挺深 的 , 让他儿子来 指 伤 他 认是 哪个学生 咬的 , 而且 家长态 度有 点强硬。昨天下午 我没有 课 时安排 , 学路 队 由数 学教师 , 兼任初 一( ) 放 我 1 班班 主任 和 语文教学 , 家长凡事都 找班 主任评理 。家 长说 深怕伤 口感染 要
边上的高构成 的平 面图形 , 故选 D。
C
点评 : 本题是考查三视图的作法 , 属于三视图的基本题型 ,
但由几何体的正视 图 、 俯视图要求学 生确定侧 视图 , 构思独特 , 能考查学生的基本功及逻辑思维能力 、 推理能力和空间想象能
力。
图 4
图 5
图6
() 1请画出该安全标识墩的侧( 视 图; 左)
掉 , 么几 何体 变成 由球 和 圆柱组合 而 成 , 变成 了另一 道 那 就
题。
、
以几何体 为载体 , 考查 三视 图的 画法
《 课标 》 出 : 指 能画 出简单 空间 图形 的三视 图. 求学生 即要 在给 出简单几何体 的条 件下 , 能够根据几何体 的正视图 、 侧视 图、 俯视图的定义 , 画出其三视 图。 图时学生应注意三 视图的 画 特点 “ 主左一样高 , 主俯 一样 长, 俯左 一样 宽” 。 例 1 2 1 全 国卷 ) 在 一个 几何体的三视 图中, 图和 (0 1 正视
2022年高考数学空间几何体的直观图与三视图知识点专项练习含答案

专题28 空间几何体的直观图与三视图一、单选题(本大题共12小题,共60分)1.已知一个几何体的正视图和侧视图如图(1)所示,其俯视图用斜二测画法所画出的水平放置的直观图是一个直角边长为1的等腰直角三角形(如图(2)所示),则此几何体的体积为()A. 1B. √2C. 2D. 2√22.正方形O′A′B′C′的边长为1cm,它是水平放置的一个平面图形的直观图(如图),则原图形的周长是()A. 6cmB. 8cmC. (2+3√2)cmD. (2+2√3)cm3.一个几何体的三视图如图所示,则该几何体的表面积为()A. 3π2+1+√32B. 3π+12+√32C. 3π+1+√32D. 3π+1+√324.某几何体的三视图如图所示,则该几何体的表面积为()A. 3π+4+√3B. 3π+5+√3C. 52π+6+√3 D. 52π+4+√35.已知某几何体的一条棱长为l,该棱在正视图中的投影长为√2020,在侧视图与俯视图中的投影长为a与b,且a+b=2√1011,则l的最小值为()A. √20212B. √40422C. √2021D. 20216.已知一几何体的三视图如图所示,则该几何体的表面积为()A. √24π+72B. √24π+4 C. 1+√24π+72D. 1+√24π+47.某圆柱的正视图是如图所示的边长为2的正方形,圆柱表面上的点A,B,C,D,F在正视图中分别对应点A,B,C,E,F.其中E,F分别为AB,BC的中点,则异面直线AC与DF所成角的余弦值为()A. 13B. √23C. √33D. √638.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A. 22π3B. 28π3C. 34π3D. 40π39.如图,网络纸上小正方形的边长为1,粗实线画出的某几何体的三视图,则该几何体的体积是()A. 18πB. 21πC. 27πD. 36π10.如图所是某一容器三视图,现容中匀速注水,容器中的度h随时间变可能图象是()A. B. C. D.11.如图是一个四棱锥的三视图,则该几何体的体积为()A. 403B. 323C. 163D. 28312.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为A. 64−8√2π3B. 64−4√2π3C. 64−8π3D. 64−4π3二、单空题(本大题共4小题,共20分)13.某组合体的正视图和侧视图如图(1)所示,它的俯视图的直观图是图(2)中粗线所表示的平面图形,其中四边形O′A′B′C′为平行四边形,D′为C′B′的中点,则图(2)中平行四边形O′A′B′C′的面积为___________.14.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和附视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为_____________(写出符合求的一组答案即可).15.在棱长为1的正方体ABCD−A1B1C1D1中,点M,N分别是棱B1C1,C1D1的中点,过A,M,N三点作正方体的截面,将截面多边形向平面ADD1A1作投影,则投影图形的面积为.16.把平面图形α上的所有点在另一个平面上的射影所构成的图形β称为图形α在这个平面上的射影,如图所示,在三棱锥A−BCD中,BC⊥DC,AD⊥DC,BC⊥AB,BC= CD=4,AC=4√3,则△ADB在平面ABC上的射影的面积是________.三、解答题(本大题共2小题,共20分)13.设某几何体的三视图如图(尺寸的长度单位为cm),(1)用斜二测画法画出该几何体的直观图(不写画法);(2)求该几何体最长的棱长.14.设一正方形纸片ABCD边长为4厘米,切去阴影部分所示的四个全等的等腰三角形,剩余为一正方形纸片和四个全等的等腰三角形,沿虚线折起,恰好能做成一个正四棱锥,O为正四棱锥底面中心.,(粘接损耗不计),图中AH PQ(1)若正四棱锥的棱长都相等,请求出它的棱长并画出它的直观图示意图;(2)设等腰三角形APQ的底角为x,试把正四棱锥的侧面积表示为x的函数,并求S范围.专题28 空间几何体的直观图与三视图一、单选题(本大题共12小题,共60分)17.已知一个几何体的正视图和侧视图如图(1)所示,其俯视图用斜二测画法所画出的水平放置的直观图是一个直角边长为1的等腰直角三角形(如图(2)所示),则此几何体的体积为()A. 1B. √2C. 2D. 2√2【答案】B【解析】解:根据直观图可得该几何体的俯视图是一个直角边长分别是2和√2的直角三角形,根据三视图可知该几何体是一个三棱锥,且三棱锥的高为3,所以体积V=13×(12×2×√2)×3=√2.故选B.18.正方形O′A′B′C′的边长为1cm,它是水平放置的一个平面图形的直观图(如图),则原图形的周长是()A. 6cmB. 8cmC. (2+3√2)cmD. (2+2√3)cm【答案】B【解析】解:如图,OA=1cm,在Rt△OAB中,OB=2√2 cm,∴AB=√OA2+OB2=3cm.∴四边形OABC的周长为8cm.故选B.19.一个几何体的三视图如图所示,则该几何体的表面积为()A. 3π2+1+√32B. 3π+12+√32C. 3π+1+√32D. 3π+1+√32【答案】C【解析】解:由三视图可知几何体上部为三棱锥,下部为半球,三棱锥的底面和2个侧面均为等腰直角三角形,直角边为1,另一个侧面为边长为√2的等边三角形,半球的直径2r=√2,故r=√22.∴S表面积=12×1×1×2+√34×(√2)2+12×4π×(√22)2+π×(√22)2−12×1×1=12+√32+3π2.故选:C.20.某几何体的三视图如图所示,则该几何体的表面积为()A. 3π+4+√3B. 3π+5+√3C. 52π+6+√3 D. 52π+4+√3【答案】A【解析】解:由已知中的三视图可得:该几何体是一个半圆柱和三棱锥的组合体半圆柱的半径为1高2,所以该组合体的面积故选A.21.已知某几何体的一条棱长为l,该棱在正视图中的投影长为√2020,在侧视图与俯视图中的投影长为a与b,且a+b=2√1011,则l的最小值为()A. √20212B. √40422C. √2021D. 2021【答案】C【解析】解:如图所示:设长方体中AB=m,BD为正投影,BE为侧投影,AC为俯视图的投影.故:BD=√2020,BE=a,AC=b,设AE=x,CE=y,BC=z,则:x2+y2+z2=l2,x2+y2=b2,y2+z2=a2,x2+z2=2020,所以2(x2+y2+z2)=a2+b2+2020,故:2l2=a2+b2+2020,因为a2+b2≥(a+b)22=2022,所以2l2≥2022+2020,则l≥√2021.故l的最小值为√2021.故选C.22.已知一几何体的三视图如图所示,则该几何体的表面积为()A. √24π+72B. √24π+4 C. 1+√24π+72D. 1+√24π+4【答案】D【解析】解:几何体左边为四分之一圆锥,圆锥的半径为1,高为1,右边为三棱锥,三棱锥底面是直角边长为1和2的直角三角形,高为1,所以几何体的表面积为:+12×(2+1)×1+12×√2×√(√5)2−(√22)2,故选D.23.某圆柱的正视图是如图所示的边长为2的正方形,圆柱表面上的点A,B,C,D,F在正视图中分别对应点A,B,C,E,F.其中E,F分别为AB,BC的中点,则异面直线AC与DF所成角的余弦值为()A. 13B. √23C. √33D. √63【答案】D【解析】解:如图所示,连结DE,EF,易知EF//AC,所以异面直线AC与DF所成角为∠DFE,由正视图可知,DE⊥平面ABC,所以DE⊥EF.由于AB=BC=2,所以EF=√2,又DE=1,所以DF=√3,在RtΔEFM中,cos∠DFE=√2√3=√63,故选D.24.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A. 22π3B. 28π3C. 34π3D. 40π3【答案】C【解析】解:根据几何体得三视图转换为几何体为:该几何体是由一个底面半径为2,高为3的半圆柱和一个半径为2的半球组成,故:V=12⋅π×22×3+12×43×π×23=34π3.故选C.25.如图,网络纸上小正方形的边长为1,粗实线画出的某几何体的三视图,则该几何体的体积是()A. 18πB. 21πC. 27πD. 36π【答案】A【解析】解:该几何体是一个四分之一的圆和圆锥的组合体,如图:有题意知该圆的直径为6cm,圆锥的高为3cm,则该几何体的体积为13×π×32×3+1 4×43π×33=18π,故选A.26.如图所是某一容器三视图,现容中匀速注水,容器中的度h随时间变可能图象是()A. B. C. D.【答案】B【解析】解:三视图表示的容器倒的圆锥,下细,上面,刚开始度增加的相快些.曲越竖直”,后,高度增加来越慢,图越平稳.故B.27.如图是一个四棱锥的三视图,则该几何体的体积为()A. 403B. 323C. 163D. 283【答案】A【解析】解:由三视图得到其直观图(下图所示),则体积为:13×[12(1+4)×4]×4=403,故选A .28.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为A. 64−8√2π3B. 64−4√2π3C. 64−8π3D. 64−4π3【答案】A【解析】解:这是一个有一条侧棱垂直于底面的四棱锥内部挖去了一个八分之一的球,四棱锥的底面边长和高都等于4,八分之一球的半径为2√2,,故选A .二、单空题(本大题共4小题,共20分)29. 某组合体的正视图和侧视图如图(1)所示,它的俯视图的直观图是图(2)中粗线所表示的平面图形,其中四边形O ′A ′B ′C ′为平行四边形,D ′为C ′B ′的中点,则图(2)中平行四边形O ′A ′B ′C ′的面积为___________.【答案】3√2【解析】解:由正视图和侧视图可得俯视图如下:∴|O′A′|=4,|O′C′|=32,∠A′O′C′=45°,∴S ΔA′O′C′=12|O′A′|·|O′C′|·sin∠A′O′C′ =12×4×32×√22=3√22, ∴S ▱O′A′B′C′=2S △A′O′C′=3√2, 故答案为3√2.30.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和附视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为_____________(写出符合求的一组答案即可).【答案】②⑤或③④【解析】解:由高度可知,侧视图只能为②或③,侧视图为②,如图(1)平面PAC⊥平面ABC,PA=PC=√2,BA=BC=√5,AC=2,俯视图为⑤;侧视图为③,如图(2),PA⊥平面ABC,PA=1,AC=AB=√5,BC=2,俯视图为④.故答案为②⑤或③④.31.在棱长为1的正方体ABCD−A1B1C1D1中,点M,N分别是棱B1C1,C1D1的中点,过A,M,N三点作正方体的截面,将截面多边形向平面ADD1A1作投影,则投影图形的面积为.【答案】712【解析】解:直线MN分别与直线A1D1,A1B1交于E,F两点,连接AE,AF,分别与棱DD1,BB1交于G,H两点,连接GN,MH,得到截面五边形AGNMH,向平面ADD1A1作投影,得到五边形AH1M1D1G,由点M,N分别是棱B1C1,C1D1的中点,可得D1E=D1N=12,由△D1EG∽△DAG,可得DG=2D1G=23,同理BH=2B1H=23,则AH1=2A1H1=23,A1M1=D1M1=12,则S AH1M1D1G =1−S A1H1M1−S ADG=1−12×12×13−12×1×23=712,故答案为:712.32.把平面图形α上的所有点在另一个平面上的射影所构成的图形β称为图形α在这个平面上的射影,如图所示,在三棱锥A−BCD中,BC⊥DC,AD⊥DC,BC⊥AB,BC= CD=4,AC=4√3,则△ADB在平面ABC上的射影的面积是________.【答案】8√2【解析】解:因为BC⊥DC,AD⊥DC,BC⊥AB,BC=CD=4,AC=4√3,把三棱锥A−BCD放入如图所示的棱长为4的正方体中,过点D作CE的垂线DF,垂足为F,连接AF,BF,因为BC⊥平面CE,DF⊂平面CE,故BC⊥DF又BC∩CE=C,BC,CE⊂平面ABC则DF⊥平面ABC,故△ADB在平面ABC上的射影为△AFB,因为AB=√42+42=4√2,×4×4√2=8√2,所以△AFB的面积为12即△ADB在平面ABC上的射影的面积为8√2.故答案为8√2.三、解答题(本大题共2小题,共20分)13.设某几何体的三视图如图(尺寸的长度单位为cm),(1)用斜二测画法画出该几何体的直观图(不写画法);(2)求该几何体最长的棱长.【答案】(1)答案见解析;(2)4cm.【解析】(1)(2)如下图,SE⊥面ABC,线段AC中点为D2,3,1,4,2,=1======,BD AC SE cm AE cm CE cm AC cm AD DC cm DE cm⊥,=,3BD cm在等腰ABC中,AB AC=在Rt SEA△中,SA=在Rt SEC△中,SC△中,BE==在Rt BDE∴⊥SE⊥面ABC,SE BE在Rt SEB△中,SB=<==<<,在三梭锥S-ABC中,SC AB AC SA SB AC所以最长的棱为AC ,长为4cm14.设一正方形纸片ABCD 边长为4厘米,切去阴影部分所示的四个全等的等腰三角形,剩余为一正方形纸片和四个全等的等腰三角形,沿虚线折起,恰好能做成一个正四棱锥(粘接损耗不计),图中AH PQ ⊥,O 为正四棱锥底面中心.,(1)若正四棱锥的棱长都相等,请求出它的棱长并画出它的直观图示意图;(2)设等腰三角形APQ 的底角为x ,试把正四棱锥的侧面积表示为x 的函数,并求S 范围.【答案】(1),画图见解析;(2)161tan 2tan S x x=++,()0,4.【解析】(1)由题意,设正四棱锥的棱长为a,则AH =,2a AC a +===(2)设PH b =,则tan AH b x =,由2tan 2a x a ⋅+=a =,从而22116tan 442tan 2(tan 1)APQ x S S PQ AH a x x ==⋅⋅⋅==+△,其中(tan 1),x ∈+∞,∴16(0,4)1tan 2tan S x x=∈++。
高考命题交汇点的新宠---三视图与直观图

故本题应选 D .
【 点评 】 本题考 查形 式新颖 ,可 以考
二 、 给 出 三 视 图 ( 部 分 ) 考 查 直 截去一个角所得多面体的直观图 ,其余是 或 。 ( ) 正 视 图 下 面 ,按 照 画 三 视 图 的 1在
单位 :c . m) 查对 三视 图画法规则的掌握情况以及对 常 观 图 ( 其 他 视 图 ) 的 画 法 ,并 求几 何 体 它 的正 视 图和 左 视 图 ( 或
一
( A)2 / 、
( C)4
D
( )2 / B 、
( D)2v5 、 /
C
主 视 图
左 视 图
甄
俯 视 图
图3
解 :( ) 1 由三视图可知 ,该几何体 由
C
、
给 出 几何 体 ,识 别 三视 图
A m B
正方体 和四棱柱组成 ,如 图 4所示.
图2
见简单几何体的感知、领 悟能力和 空间想 的 表 面 积 和体 积
象 能力 .
例 3 一 个 几 何 体 按 比例 绘 制 的 三 视 要 求 画 出该 多 面 体 的俯 视 图 ; [ 0 1年 第 4期 ] 础 教 育 论 坛 21 基
() 2 按照给出的尺寸 ,求该多面体的
因为 、丁 /
() 方体 1正 () 2 圆锥
=口 ,Vq+ m一=b ,
正方体 的体积 为 1 =l 1 : X
所 以 (2 ) b 一1 =6 a —1 +( ) .
所 以 +b 8 .
四 柱 体 为 #一1 1 , 棱 的 积 ×x:
二 二
算 问题并汇在一起进行考查 ,如面积 、体
2023年高考数学(文科)一轮复习课件——空间几何体的结构、三视图和直观图

考点二 空间几何体的三视图
例1 (1)(2021·全国乙卷)以图①为正视图,在图②③④⑤中选两个分别作为侧视 图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次 为__③__④__(_或__②__⑤__,__答__案__不__唯__一__)_____(写出符合要求的一组答案即可).
_平__行__且__相__等___
相交于_一__点___,但 不一定相等
延长线交于___一__点_
_平__行__四__边__形___
_三__角__形___
__梯__形__
索引
(2)旋转体的结构特征
名称
圆柱
圆锥
圆台
图形
互相平行且相等,
母线
__垂__直__于底面
相交于__一__点__
轴截面 侧面展开图
索引
2.(易错题)在如图所示的几何体中,是棱柱的为___③__⑤___(填写所有正确的序号). 解析 由棱柱的定义可判断③⑤属于棱柱.
索引
3.如图,长方体ABCD-A′B′C′D′被截去一部分,其中EH∥A′D′.剩下的几何体
是( C )
A.棱台
B.四棱柱
C.五棱柱
D.六棱柱
解析 由几何体的结构特征,剩下的几何体为五棱柱.
索引
训练1 (1)如图,网格纸的各小格都是正方形,粗实线画
出的是一个几何体的三视图,则这个几何体是( B )
A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱 解析 由题知,该几何体的三视图为一个三角形、两个四边形,经分析可 知该几何体为三棱柱.
索引
(2)(2022·成都检测)一个几何体的三视图如图所示,
索引
解析 根据“长对正、高平齐、宽相等”及图中数据,可知图②③只能是侧 视图,图④⑤只能是俯视图,则组成某个三棱锥的三视图,所选侧视图和俯 视图的编号依次是③④或②⑤.若是③④,则三棱锥如图1所示;若是②⑤, 则三棱锥如图2所示.
高考数学复习考点知识与题型专题讲解52---空间几何体的直观图与三视图

1.斜二测画法 斜二测画法的主要步骤如下: (1)建立直角坐标系. 在已知水平放置的平面图形中取互相垂直的 Ox, Oy ,建立直 角坐标系. (2)画出斜坐标系. 在画直观图的纸上(平面上)画出对应图形. 在已知图形平行于 x 轴的线段, 在直观图中画成平行于 O ' x ',O ' y ', 使 ∠x 'O ' y ' = 45o (或135o ), 它们确 定的平面表示水平平面. (3)画出对应图形. 在已知图形平行于 x 轴的线段, 在直观图中画成平行于 x ' 轴 的线段, 且长度保持不变; 在已知图形平行于 y 轴的线段, 在直观图中画成平行于 y ' 轴, 且长度变为原来的一般. 可简化为 “横不变, 纵减半”. (4)擦去辅助线. 图画好后, 要擦去 x ' 轴、 y ' 轴及为画图添加的辅助线(虚线). 被挡住的棱画虚线. 注: 直观图和平面图形的面积比为 2 : 4 . 2.平行投影与中心投影 平行投影的投影线是互相平行的, 中心投影的投影线相交于一点. 二、空间几何体的三视图 1.三视图的概念 将几何体由前至后、由左至右、由上至下分别作正投影得到的三个投影图依次叫做 该几何体的正(主)视图、左(侧)视图、俯视图, 统称三视图. 它们依次反应了几何体 的高度与长度、高度与宽度、长度与宽度. 2.作、看三视图的三原则 (1)位置原则:
2 / 27
度量原则长对正、高平齐、宽相等即正俯同长、正侧同高、俯侧同宽 虚实原则轮廓线、现则实、隐则虚 俯视图 几何体上下方向投影所得到的投影图反映几何体的长度和宽度 口诀 正侧同高正府同长府侧同宽或长对正、高平齐、宽相等 三、常见几何体的直观图与三视图 常见几何体的直观图与三视图如表 8-3 所示.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考复习:三视图专题
1.如图1是一个空间几何体的三视图,则该几何体的侧面积...
为 A
.
3
B
.C .8 D .12
2.若一个正三棱柱的三视图如下图所示,
则这个正三棱柱的体积为_______.
3.如图,一个空间几何体的正视图、侧视图、俯
视图均为全等的等腰直角三角形,如果直角三角形
的直
角
边长都为
1,那么这个几何体的表面积为
A .61
B .
2
3 C .32
4+
.322+
4.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个
几何体的体积是 ( )
左视
N
M
A
B
C D
B 1
C 1
A .383cm
B .343
cm C .323
cm D .313
cm
5.已知某几何体的三视图如右,根据图中标出的尺寸 (单
位:cm ),可得这个几何体的体积是( )
A .34
3
cm B .383
cm C .32cm D .34cm
6.如图是一正方体被过棱的中点M 、N 和顶点A 、D 、1C 截去两个角后所得的几何体,则该几何体的主视图(或称正视图)为( )
7.如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,12,A A AC ==
1,5BC AB ==,则此三棱柱的侧(左)视图的面积为
A . 2
B . 4
C .
45
5
D .25 8.如图1,将一个正三棱柱截去一个三棱锥,得到几
何体
DEF BC -,则该几何体的正视图(或称主视图)是
A .
B .
C .
D .
9.一个长方体被一个平面截去一部分后所剩几何体的正视图和俯视图
如图所示,则该几何体的侧视图可以为
A.B.C.D.10.一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积是()
A.1
B.2
C.3
D.4
11.一个圆锥的正(主)视图及其尺寸如图2
圆锥底面的平面将此圆锥截成体积之比为1
部分,则截面的面积为
A.1
4
π B.π
C.9
4
π D.4π
12.一个几何体的三视图如图所示,则该几何体的体积为
A.
3
2
a
B.
3
6
a
C.
3
12
a
D.
3
18
a
13.如图所示,一个空间几何体的主视图和俯视图都是边长为1的正方形,侧视图是一个直径为1的圆,那么这个几何体的表面积为()
A.π4 B.π3
C.π2 D.π
2
3
14.已知某几何体的三视图如右图所示,则该几何体的体积是
A.1
6
B.
1
3
C.1
2
D2
15.一个简单几何体的正视图、侧视图如图所示,则其俯
视图不可能为
....
①长方形;②正方形;③圆;④椭圆.其中正确的是
A.①②B.②③
C.③④D.①④
16. 如图,是一个几何体的正视图、侧视图、俯视图,
且正视图、侧视图都是矩形,则该几何体的体积是.
17. 一个空间几何体的三视图及部分数据如上图所示,则这个几
何体的体积是 ( )
A.3 B.5
2
C.2 D.
3
2
18.已知一个空间几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是
A .4 cm 3
B .5 cm 3
C .6 cm 3
D .7 cm 3
19.如图为一个几何体的三视图,正视图和侧视图均为 矩形,俯视图中曲线部分为半圆,尺寸如图,则该几 何体的全面积为
A.3236++π
B.2422++π B.
C.3258++π
D.2432++π
20.如图是某几何体的三视图,其中正视图是腰长为2的
等腰三角形,俯视图是半径为1的半圆,则该几何体
的体积是 .。