高考复习三视图专题

合集下载

高考数学一轮复习-81-空间几何体的三视图-直观图-表面积与体积课件-新人教A

高考数学一轮复习-81-空间几何体的三视图-直观图-表面积与体积课件-新人教A
设球的半径为 R,则 R2=AO22=AO2+OO22=13a2+14a2
=172a2.所以 S 球=4πR2=4π×172a2=73πa2.
(2)这个几何体是一个圆台被轴截面割出来的一半.
根据图中数据可知圆台的上底面半径为 1,下底面半径为 2,高为 3,母线长为 2,几何体的表面积是两个半圆的面 积、圆台侧面积的一半和轴截面的面积之和,故这个几何 体的表面积为 S=12π×12+12π×22+12π×(1+2)×2+12 ×(2+4)× 3=112π+3 3. 答案 (1)B (2)112π+3 3
可能是圆柱,排除选项C;又由俯视图可知,该几何体
不可能是棱柱或棱台,排除选项A,B,故选D.
(2)如图,在原图形OABC中, 应有 OD=2O′D′=2×2 2 =4 2(cm), CD=C′D′=2 cm. ∴OC= OD2+CD2 = (4 2)2+22=6(cm), ∴OA=OC, 故四边形 OABC 是菱形. 答案 (1)D (2)C
诊断自测
1.判断正误(在括号内打“√”或“×”) 精彩PPT展示
(1)有两个面平行,其余各面都是平行四边形的几何体是
棱柱.
(×)
(2)有一个面是多边形,其余各面都是三角形的几何体是
棱锥.
( ×)
(3)正方体、球、圆锥各自的三视图中,三视图均相同.
(×)
(4)圆柱的侧面展开图是矩形.
(√)
2.(2014·福建卷)某空间几何体的正视图是三角形,则该几
(2)画出坐标系 x′O′y′,作出△OAB 的 直观图 O′A′B′(如图).D′为 O′A′的中 点.易知 D′B′=12DB(D 为 OA 的中点), ∴S△O′A′B′=12× 22S△OAB= 42× 43a2= 166a2.

2021年高考数学高分套路 空间几何体三视图(解析版)

2021年高考数学高分套路  空间几何体三视图(解析版)

A. 3
【答案】B

B. 2 3
C. x1 x2
D.4
【解析】由题意可得,侧视图是个矩形,由已知,底面正三角形的边长为 2,所以其高为 3 ,即侧视图的 宽为 3 ,又三棱柱的高为 2,即侧视图的长为 2,所以三棱柱侧视图的面积为 2 3 .故选 B 2.如图,在长方体 ABCD-A1B1C1D1 中,点 P 是棱 CD 上一点,则三棱锥 P-A1B1A 的侧视图是( )
2
考向三 三视图知二选三 【例 3】 如图是一个空间几何体的正视图和俯视图,则它的侧视图为( )
【答案】 B 【解析】 由正视图和俯视图可知,该几何体是一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图 的直径可知其侧视图为 B,故选 B.
【套路总结】 三视图问题的常见类型及解题策略 (1)由几何体的直观图求三视图.注意观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表 示. (2)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结 合空间想象将三视图还原为实物图. (3)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形 状,然后再找其剩下部分三视图的可能形状.当然作为选择题,也可将选项逐项代入,再看看给出的部分 三视图是否符合. 【举一反三】 1、一个几何体的三视图中,正视图和侧视图如图所示,则俯视图不可以为( )
四.空间几何体的三视图 1.三视图是观测者从不同位置观察同一个几何体,画出的空间几何体的图形.具体包括: (1)正视图:物体前后方向投影所得到的投影图;它能反映物体的高度和长度; (2)侧视图:物体左右方向投影所得到的投影图;它能反映物体的高度和宽度; (3)俯视图:物体上下方向投影所得到的投影图;它能反映物体的长度和宽度. 2.三视图画法规则 高平齐:主视图与左视图的高要保持平齐 长对正:主视图与俯视图的长应对正 宽相等:俯视图与左视图的宽度应相等

高考数学(文)《立体几何》专题复习

高考数学(文)《立体几何》专题复习

(2)两个平面垂直的判定和性质
✓ 考法5 线面垂直的判定与性质
1.证明直线 与平面垂直 的方法
2.线面垂直 的性质与线 线垂直
(1)判定定理(常用方法): 一条直线与一个平面内的两条相交直线都垂直,则该直线
与此平面垂直.判定定理中的两条相交直线必须保证“在平面 内相交”这一条件. (2)性质: ①应用面面垂直的性质(常用方法):若两平面垂直,则在一 个平面内垂直于交线的直线必垂直于另一个平面,是证明线 面垂直的主要方法; ②(客观题常用)若两条平行直线中的一条垂直于一个平面, 则另一条也垂直于这个平面.
64
65
✓ 考法4 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法 2.空间平行关系 之间的转化
66
✓ 考法3 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法
这是立体几何中证明平行关系常用的思路,三 种平行关系的转化可结合下图记忆
2.空间平行关系 之间的转化
67
68
600分基础 考点&考法
定义 判定方法
2.等角定理
判定定理 反证法 两条异面直线所成的角
✓ 考法2 异面直线所成的角
常考形式
直接求 求其三角函数值
常用方法
作角
正弦值 余弦值 正切值
证明 求值 取舍
55
56
57
58
600分基础 考点&考法
➢ 考点46 线面、面面平行的判定与性质 ✓ 考法3 线面平行的判定与性质 ✓ 考法4 面面平行的判定与性质
1.计算有关 线段的长
2.外接球、内切 球的计算问题
观察几何体的特征 利用一些常用定理与公式 (如正弦定理、余弦定理、勾股定理、 三角函数公式等) 结合题目的已知条件求解

对高考三视图试题的分析与思考

对高考三视图试题的分析与思考

次 ,我正 在开会 ,有个学生 跑来报告说有 位同学鼻子 流血不
止”我当时赶紧跑去处理 。那个学生体 质 比较虚弱 , , 经常会 习 惯性 、 间接性地流鼻血 。 在 日常工作中 , 我特别嘱咐学生 , 如果班里有什么事发生 , 要及时尽快在第一时间跑 去向我报告 , 在这方 面学生配合得相 当默契 , 使我 能及 时处理事情 , 减少很 多不必要 的麻烦 。 有一 回 , 刚刚进教室 , 我 有位家长 就说我们班 昨天有位 学 生 咬了他儿子 的手 臂。我一看 , 口挺深 的 , 让他儿子来 指 伤 他 认是 哪个学生 咬的 , 而且 家长态 度有 点强硬。昨天下午 我没有 课 时安排 , 学路 队 由数 学教师 , 兼任初 一( ) 放 我 1 班班 主任 和 语文教学 , 家长凡事都 找班 主任评理 。家 长说 深怕伤 口感染 要
边上的高构成 的平 面图形 , 故选 D。

点评 : 本题是考查三视图的作法 , 属于三视图的基本题型 ,
但由几何体的正视 图 、 俯视图要求学 生确定侧 视图 , 构思独特 , 能考查学生的基本功及逻辑思维能力 、 推理能力和空间想象能
力。
图 4
图 5
图6
() 1请画出该安全标识墩的侧( 视 图; 左)
掉 , 么几 何体 变成 由球 和 圆柱组合 而 成 , 变成 了另一 道 那 就
题。

以几何体 为载体 , 考查 三视 图的 画法
《 课标 》 出 : 指 能画 出简单 空间 图形 的三视 图. 求学生 即要 在给 出简单几何体 的条 件下 , 能够根据几何体 的正视图 、 侧视 图、 俯视图的定义 , 画出其三视 图。 图时学生应注意三 视图的 画 特点 “ 主左一样高 , 主俯 一样 长, 俯左 一样 宽” 。 例 1 2 1 全 国卷 ) 在 一个 几何体的三视 图中, 图和 (0 1 正视

2022年高考数学空间几何体的直观图与三视图知识点专项练习含答案

2022年高考数学空间几何体的直观图与三视图知识点专项练习含答案

专题28 空间几何体的直观图与三视图一、单选题(本大题共12小题,共60分)1.已知一个几何体的正视图和侧视图如图(1)所示,其俯视图用斜二测画法所画出的水平放置的直观图是一个直角边长为1的等腰直角三角形(如图(2)所示),则此几何体的体积为()A. 1B. √2C. 2D. 2√22.正方形O′A′B′C′的边长为1cm,它是水平放置的一个平面图形的直观图(如图),则原图形的周长是()A. 6cmB. 8cmC. (2+3√2)cmD. (2+2√3)cm3.一个几何体的三视图如图所示,则该几何体的表面积为()A. 3π2+1+√32B. 3π+12+√32C. 3π+1+√32D. 3π+1+√324.某几何体的三视图如图所示,则该几何体的表面积为()A. 3π+4+√3B. 3π+5+√3C. 52π+6+√3 D. 52π+4+√35.已知某几何体的一条棱长为l,该棱在正视图中的投影长为√2020,在侧视图与俯视图中的投影长为a与b,且a+b=2√1011,则l的最小值为()A. √20212B. √40422C. √2021D. 20216.已知一几何体的三视图如图所示,则该几何体的表面积为()A. √24π+72B. √24π+4 C. 1+√24π+72D. 1+√24π+47.某圆柱的正视图是如图所示的边长为2的正方形,圆柱表面上的点A,B,C,D,F在正视图中分别对应点A,B,C,E,F.其中E,F分别为AB,BC的中点,则异面直线AC与DF所成角的余弦值为()A. 13B. √23C. √33D. √638.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A. 22π3B. 28π3C. 34π3D. 40π39.如图,网络纸上小正方形的边长为1,粗实线画出的某几何体的三视图,则该几何体的体积是()A. 18πB. 21πC. 27πD. 36π10.如图所是某一容器三视图,现容中匀速注水,容器中的度h随时间变可能图象是()A. B. C. D.11.如图是一个四棱锥的三视图,则该几何体的体积为()A. 403B. 323C. 163D. 28312.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为A. 64−8√2π3B. 64−4√2π3C. 64−8π3D. 64−4π3二、单空题(本大题共4小题,共20分)13.某组合体的正视图和侧视图如图(1)所示,它的俯视图的直观图是图(2)中粗线所表示的平面图形,其中四边形O′A′B′C′为平行四边形,D′为C′B′的中点,则图(2)中平行四边形O′A′B′C′的面积为___________.14.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和附视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为_____________(写出符合求的一组答案即可).15.在棱长为1的正方体ABCD−A1B1C1D1中,点M,N分别是棱B1C1,C1D1的中点,过A,M,N三点作正方体的截面,将截面多边形向平面ADD1A1作投影,则投影图形的面积为.16.把平面图形α上的所有点在另一个平面上的射影所构成的图形β称为图形α在这个平面上的射影,如图所示,在三棱锥A−BCD中,BC⊥DC,AD⊥DC,BC⊥AB,BC= CD=4,AC=4√3,则△ADB在平面ABC上的射影的面积是________.三、解答题(本大题共2小题,共20分)13.设某几何体的三视图如图(尺寸的长度单位为cm),(1)用斜二测画法画出该几何体的直观图(不写画法);(2)求该几何体最长的棱长.14.设一正方形纸片ABCD边长为4厘米,切去阴影部分所示的四个全等的等腰三角形,剩余为一正方形纸片和四个全等的等腰三角形,沿虚线折起,恰好能做成一个正四棱锥,O为正四棱锥底面中心.,(粘接损耗不计),图中AH PQ(1)若正四棱锥的棱长都相等,请求出它的棱长并画出它的直观图示意图;(2)设等腰三角形APQ的底角为x,试把正四棱锥的侧面积表示为x的函数,并求S范围.专题28 空间几何体的直观图与三视图一、单选题(本大题共12小题,共60分)17.已知一个几何体的正视图和侧视图如图(1)所示,其俯视图用斜二测画法所画出的水平放置的直观图是一个直角边长为1的等腰直角三角形(如图(2)所示),则此几何体的体积为()A. 1B. √2C. 2D. 2√2【答案】B【解析】解:根据直观图可得该几何体的俯视图是一个直角边长分别是2和√2的直角三角形,根据三视图可知该几何体是一个三棱锥,且三棱锥的高为3,所以体积V=13×(12×2×√2)×3=√2.故选B.18.正方形O′A′B′C′的边长为1cm,它是水平放置的一个平面图形的直观图(如图),则原图形的周长是()A. 6cmB. 8cmC. (2+3√2)cmD. (2+2√3)cm【答案】B【解析】解:如图,OA=1cm,在Rt△OAB中,OB=2√2 cm,∴AB=√OA2+OB2=3cm.∴四边形OABC的周长为8cm.故选B.19.一个几何体的三视图如图所示,则该几何体的表面积为()A. 3π2+1+√32B. 3π+12+√32C. 3π+1+√32D. 3π+1+√32【答案】C【解析】解:由三视图可知几何体上部为三棱锥,下部为半球,三棱锥的底面和2个侧面均为等腰直角三角形,直角边为1,另一个侧面为边长为√2的等边三角形,半球的直径2r=√2,故r=√22.∴S表面积=12×1×1×2+√34×(√2)2+12×4π×(√22)2+π×(√22)2−12×1×1=12+√32+3π2.故选:C.20.某几何体的三视图如图所示,则该几何体的表面积为()A. 3π+4+√3B. 3π+5+√3C. 52π+6+√3 D. 52π+4+√3【答案】A【解析】解:由已知中的三视图可得:该几何体是一个半圆柱和三棱锥的组合体半圆柱的半径为1高2,所以该组合体的面积故选A.21.已知某几何体的一条棱长为l,该棱在正视图中的投影长为√2020,在侧视图与俯视图中的投影长为a与b,且a+b=2√1011,则l的最小值为()A. √20212B. √40422C. √2021D. 2021【答案】C【解析】解:如图所示:设长方体中AB=m,BD为正投影,BE为侧投影,AC为俯视图的投影.故:BD=√2020,BE=a,AC=b,设AE=x,CE=y,BC=z,则:x2+y2+z2=l2,x2+y2=b2,y2+z2=a2,x2+z2=2020,所以2(x2+y2+z2)=a2+b2+2020,故:2l2=a2+b2+2020,因为a2+b2≥(a+b)22=2022,所以2l2≥2022+2020,则l≥√2021.故l的最小值为√2021.故选C.22.已知一几何体的三视图如图所示,则该几何体的表面积为()A. √24π+72B. √24π+4 C. 1+√24π+72D. 1+√24π+4【答案】D【解析】解:几何体左边为四分之一圆锥,圆锥的半径为1,高为1,右边为三棱锥,三棱锥底面是直角边长为1和2的直角三角形,高为1,所以几何体的表面积为:+12×(2+1)×1+12×√2×√(√5)2−(√22)2,故选D.23.某圆柱的正视图是如图所示的边长为2的正方形,圆柱表面上的点A,B,C,D,F在正视图中分别对应点A,B,C,E,F.其中E,F分别为AB,BC的中点,则异面直线AC与DF所成角的余弦值为()A. 13B. √23C. √33D. √63【答案】D【解析】解:如图所示,连结DE,EF,易知EF//AC,所以异面直线AC与DF所成角为∠DFE,由正视图可知,DE⊥平面ABC,所以DE⊥EF.由于AB=BC=2,所以EF=√2,又DE=1,所以DF=√3,在RtΔEFM中,cos∠DFE=√2√3=√63,故选D.24.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A. 22π3B. 28π3C. 34π3D. 40π3【答案】C【解析】解:根据几何体得三视图转换为几何体为:该几何体是由一个底面半径为2,高为3的半圆柱和一个半径为2的半球组成,故:V=12⋅π×22×3+12×43×π×23=34π3.故选C.25.如图,网络纸上小正方形的边长为1,粗实线画出的某几何体的三视图,则该几何体的体积是()A. 18πB. 21πC. 27πD. 36π【答案】A【解析】解:该几何体是一个四分之一的圆和圆锥的组合体,如图:有题意知该圆的直径为6cm,圆锥的高为3cm,则该几何体的体积为13×π×32×3+1 4×43π×33=18π,故选A.26.如图所是某一容器三视图,现容中匀速注水,容器中的度h随时间变可能图象是()A. B. C. D.【答案】B【解析】解:三视图表示的容器倒的圆锥,下细,上面,刚开始度增加的相快些.曲越竖直”,后,高度增加来越慢,图越平稳.故B.27.如图是一个四棱锥的三视图,则该几何体的体积为()A. 403B. 323C. 163D. 283【答案】A【解析】解:由三视图得到其直观图(下图所示),则体积为:13×[12(1+4)×4]×4=403,故选A .28.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为A. 64−8√2π3B. 64−4√2π3C. 64−8π3D. 64−4π3【答案】A【解析】解:这是一个有一条侧棱垂直于底面的四棱锥内部挖去了一个八分之一的球,四棱锥的底面边长和高都等于4,八分之一球的半径为2√2,,故选A .二、单空题(本大题共4小题,共20分)29. 某组合体的正视图和侧视图如图(1)所示,它的俯视图的直观图是图(2)中粗线所表示的平面图形,其中四边形O ′A ′B ′C ′为平行四边形,D ′为C ′B ′的中点,则图(2)中平行四边形O ′A ′B ′C ′的面积为___________.【答案】3√2【解析】解:由正视图和侧视图可得俯视图如下:∴|O′A′|=4,|O′C′|=32,∠A′O′C′=45°,∴S ΔA′O′C′=12|O′A′|·|O′C′|·sin∠A′O′C′ =12×4×32×√22=3√22, ∴S ▱O′A′B′C′=2S △A′O′C′=3√2, 故答案为3√2.30.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和附视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为_____________(写出符合求的一组答案即可).【答案】②⑤或③④【解析】解:由高度可知,侧视图只能为②或③,侧视图为②,如图(1)平面PAC⊥平面ABC,PA=PC=√2,BA=BC=√5,AC=2,俯视图为⑤;侧视图为③,如图(2),PA⊥平面ABC,PA=1,AC=AB=√5,BC=2,俯视图为④.故答案为②⑤或③④.31.在棱长为1的正方体ABCD−A1B1C1D1中,点M,N分别是棱B1C1,C1D1的中点,过A,M,N三点作正方体的截面,将截面多边形向平面ADD1A1作投影,则投影图形的面积为.【答案】712【解析】解:直线MN分别与直线A1D1,A1B1交于E,F两点,连接AE,AF,分别与棱DD1,BB1交于G,H两点,连接GN,MH,得到截面五边形AGNMH,向平面ADD1A1作投影,得到五边形AH1M1D1G,由点M,N分别是棱B1C1,C1D1的中点,可得D1E=D1N=12,由△D1EG∽△DAG,可得DG=2D1G=23,同理BH=2B1H=23,则AH1=2A1H1=23,A1M1=D1M1=12,则S AH1M1D1G =1−S A1H1M1−S ADG=1−12×12×13−12×1×23=712,故答案为:712.32.把平面图形α上的所有点在另一个平面上的射影所构成的图形β称为图形α在这个平面上的射影,如图所示,在三棱锥A−BCD中,BC⊥DC,AD⊥DC,BC⊥AB,BC= CD=4,AC=4√3,则△ADB在平面ABC上的射影的面积是________.【答案】8√2【解析】解:因为BC⊥DC,AD⊥DC,BC⊥AB,BC=CD=4,AC=4√3,把三棱锥A−BCD放入如图所示的棱长为4的正方体中,过点D作CE的垂线DF,垂足为F,连接AF,BF,因为BC⊥平面CE,DF⊂平面CE,故BC⊥DF又BC∩CE=C,BC,CE⊂平面ABC则DF⊥平面ABC,故△ADB在平面ABC上的射影为△AFB,因为AB=√42+42=4√2,×4×4√2=8√2,所以△AFB的面积为12即△ADB在平面ABC上的射影的面积为8√2.故答案为8√2.三、解答题(本大题共2小题,共20分)13.设某几何体的三视图如图(尺寸的长度单位为cm),(1)用斜二测画法画出该几何体的直观图(不写画法);(2)求该几何体最长的棱长.【答案】(1)答案见解析;(2)4cm.【解析】(1)(2)如下图,SE⊥面ABC,线段AC中点为D2,3,1,4,2,=1======,BD AC SE cm AE cm CE cm AC cm AD DC cm DE cm⊥,=,3BD cm在等腰ABC中,AB AC=在Rt SEA△中,SA=在Rt SEC△中,SC△中,BE==在Rt BDE∴⊥SE⊥面ABC,SE BE在Rt SEB△中,SB=<==<<,在三梭锥S-ABC中,SC AB AC SA SB AC所以最长的棱为AC ,长为4cm14.设一正方形纸片ABCD 边长为4厘米,切去阴影部分所示的四个全等的等腰三角形,剩余为一正方形纸片和四个全等的等腰三角形,沿虚线折起,恰好能做成一个正四棱锥(粘接损耗不计),图中AH PQ ⊥,O 为正四棱锥底面中心.,(1)若正四棱锥的棱长都相等,请求出它的棱长并画出它的直观图示意图;(2)设等腰三角形APQ 的底角为x ,试把正四棱锥的侧面积表示为x 的函数,并求S 范围.【答案】(1),画图见解析;(2)161tan 2tan S x x=++,()0,4.【解析】(1)由题意,设正四棱锥的棱长为a,则AH =,2a AC a +===(2)设PH b =,则tan AH b x =,由2tan 2a x a ⋅+=a =,从而22116tan 442tan 2(tan 1)APQ x S S PQ AH a x x ==⋅⋅⋅==+△,其中(tan 1),x ∈+∞,∴16(0,4)1tan 2tan S x x=∈++。

高考命题交汇点的新宠---三视图与直观图

高考命题交汇点的新宠---三视图与直观图

故本题应选 D .
【 点评 】 本题考 查形 式新颖 ,可 以考
二 、 给 出 三 视 图 ( 部 分 ) 考 查 直 截去一个角所得多面体的直观图 ,其余是 或 。 ( ) 正 视 图 下 面 ,按 照 画 三 视 图 的 1在
单位 :c . m) 查对 三视 图画法规则的掌握情况以及对 常 观 图 ( 其 他 视 图 ) 的 画 法 ,并 求几 何 体 它 的正 视 图和 左 视 图 ( 或

( A)2 / 、
( C)4

( )2 / B 、
( D)2v5 、 /

主 视 图
左 视 图

俯 视 图
图3
解 :( ) 1 由三视图可知 ,该几何体 由


给 出 几何 体 ,识 别 三视 图
A m B
正方体 和四棱柱组成 ,如 图 4所示.
图2
见简单几何体的感知、领 悟能力和 空间想 的 表 面 积 和体 积
象 能力 .
例 3 一 个 几 何 体 按 比例 绘 制 的 三 视 要 求 画 出该 多 面 体 的俯 视 图 ; [ 0 1年 第 4期 ] 础 教 育 论 坛 21 基
() 2 按照给出的尺寸 ,求该多面体的
因为 、丁 /
() 方体 1正 () 2 圆锥
=口 ,Vq+ m一=b ,
正方体 的体积 为 1 =l 1 : X
所 以 (2 ) b 一1 =6 a —1 +( ) .
所 以 +b 8 .
四 柱 体 为 #一1 1 , 棱 的 积 ×x:
二 二
算 问题并汇在一起进行考查 ,如面积 、体

高考数学复习考点知识与题型专题讲解52---空间几何体的直观图与三视图

1 / 27
1.斜二测画法 斜二测画法的主要步骤如下: (1)建立直角坐标系. 在已知水平放置的平面图形中取互相垂直的 Ox, Oy ,建立直 角坐标系. (2)画出斜坐标系. 在画直观图的纸上(平面上)画出对应图形. 在已知图形平行于 x 轴的线段, 在直观图中画成平行于 O ' x ',O ' y ', 使 ∠x 'O ' y ' = 45o (或135o ), 它们确 定的平面表示水平平面. (3)画出对应图形. 在已知图形平行于 x 轴的线段, 在直观图中画成平行于 x ' 轴 的线段, 且长度保持不变; 在已知图形平行于 y 轴的线段, 在直观图中画成平行于 y ' 轴, 且长度变为原来的一般. 可简化为 “横不变, 纵减半”. (4)擦去辅助线. 图画好后, 要擦去 x ' 轴、 y ' 轴及为画图添加的辅助线(虚线). 被挡住的棱画虚线. 注: 直观图和平面图形的面积比为 2 : 4 . 2.平行投影与中心投影 平行投影的投影线是互相平行的, 中心投影的投影线相交于一点. 二、空间几何体的三视图 1.三视图的概念 将几何体由前至后、由左至右、由上至下分别作正投影得到的三个投影图依次叫做 该几何体的正(主)视图、左(侧)视图、俯视图, 统称三视图. 它们依次反应了几何体 的高度与长度、高度与宽度、长度与宽度. 2.作、看三视图的三原则 (1)位置原则:
2 / 27
度量原则长对正、高平齐、宽相等即正俯同长、正侧同高、俯侧同宽 虚实原则轮廓线、现则实、隐则虚 俯视图 几何体上下方向投影所得到的投影图反映几何体的长度和宽度 口诀 正侧同高正府同长府侧同宽或长对正、高平齐、宽相等 三、常见几何体的直观图与三视图 常见几何体的直观图与三视图如表 8-3 所示.

高考有方法——三视图解题超级策略

高考有方法——三视图解题超级策略一、三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.留意正视图、侧视图和俯视图的视察方向,留意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先依据已知的一部分三视图,还原、推想直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形态.要熟识柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.二、还原三视图的常用方法1、方体升点法;2、方体去点法(方体切割法);3、三线交汇得顶点法方法一方体升点法例1:(2015·北京)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B. 2 C. 3 D.2答案 C解析依据三视图,可知该几何体的直观图为如图所示的四棱锥V-ABCD,其中VB⊥平面ABCD,且底面ABCD 是边长为1的正方形,VB=1.所以四棱锥中最长棱为VD.连接BD,易知BD=2,在Rt△VBD中,VD=VB2+BD2= 3.跟踪训练1.如图所示为三棱锥的三视图,求三棱锥的表面积或体积.跟踪训练2.如图所示为三棱锥的三视图,求三棱锥的表面积或体积.跟踪训练3.如图所示为三棱锥的三视图,求三棱锥的表面积或体积.方法二方体去点法例2:如图所示为三棱锥的三视图,主视图、俯视图是直角边长为2 的等腰直角三角形,求三棱锥的表面积或体积.跟踪训练4.如图所示为三棱锥的三视图,主视图、侧视图是直角边长为4,宽为3 的直角三角形,求三棱锥的表面积或体积.跟踪训练5.如图所示为三棱锥的三视图,三视图是直角边长为4 等腰直角三角形,虚线为中线,求三棱锥的表面积或体积.方法三三线交汇得顶点法例3:如图,网格纸上小正方形的边长为4,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度是()A.62B.6 C.42D.4正确答案是B.解:由三视图可知,原几何体的长、宽、高均为4,所以我们可用一个正方体作为载体对三视图进行还原.先画出一个正方体,如图(1):第一步,依据正视图,在正方体中画出正视图上的四个顶点的原象所在的线段,这里我们用红线表示.如图(2),即正视图的四个顶点必定是由图中红线上的点投影而成的.其次步,侧视图有三个顶点,画出它们的原象所在的线段,用蓝线表示,如图(3).第三步,俯视图有三个顶点,画出它们的原象所在的线段,用绿线表示,如图(4).最终一步,三种颜色线的公共点(只有两种颜色线的交点不行)即为原几何体的顶点,连接各顶点即为原几何体,如图(5).至此,易知哪条棱是最长棱,求出即可跟踪训练6.首先在正方体框架中描出主视图,并将轮廓的边界点平行延长,如图.类似地,将俯视图和侧视图也如法炮制.这样就可以找到三个方向的交叉点.由这些交叉点,不难得到直观图.练习1、练习2、练习1答案:练习2答案:跟踪训练7.如图所示为四棱锥的三视图,主视图是直角边长为4 等腰直角三角形,侧视图是边长为4 的正方形,求四棱锥的表面积或体积.跟踪训练8. 如图所示为四棱锥的三视图,主视图是边长为4 的正方形,侧视图是直角边长为4 等腰直角三角形,求四棱锥的表面积或体积.跟踪训练9.如图所示为四棱锥的三视图,主视图是长为4,高为5 的长方形,侧视图的长为3 的长方形,俯视图为直角三角形,求四棱锥的表面积或体积.三视图练习1、若某几何体的三视图如图所示,则此几何体的表面积是_____________.4042+2、某几何体的三视图如图所示,则该几何体的体积为_____________.3、如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体外接球的表面积为( )DA 、8πB 、252π C 、12π D 、414π4、如图是一个四面体的三视图,这三个视图均是腰长为2的等腰直角三角形,正视图和俯视图中的虚线是三角形的中线,则四面体的体积为( )A A 、23 B 、43 C 、83D 、24244131211侧视图俯视图正视图侧视图正视图CDBP A5325、一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( )D (A )81 (B )71 (C )61 (D )516、如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) C A. 1727 B. 59C. 1027D. 137、一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )A(A) (B) (C)8、如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(B ) ()A 6 ()B 9 ()C 12 ()D 18O yxz (0,1,1)(0,0,0)(1,0,1)(1,1,0)DD 1C 1B 119、在一个几何体的三视图中,正视图和俯视图如左图所示,则相应的侧视图可以为( )D10、某几何体的三视图如图所示,则该几何体的体积为_____________.11、已知某几何体的三视图如图所示,则其体积为_____________.20或1612、若某几何体的三视图如图所示,则这个几何体中最长的棱长等于_____________.13、某几何体的三视图如图所示,则该几何体的体积为_____________.14、某几何体的三视图如图所示,则该几何体的体积为_____________.11142122222224442PBAC338332315、圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( B ) (A )1 (B )2 (C )4 (D )816、如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( C )A .62B .42C .6D .417.某几何体的三视图如图所示,则该几何体的体积为( A ) A .168π+ B .88π+ C .1616π+ D .816π+俯视图正视图r2r2rrCAP。

专题16 三视图-备战2022年高考数学(理)母题题源解密(全国乙卷)(解析版)

专题16 三视图【母题来源】2021年高考乙卷【母题题文】以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).【答案】③④(答案不唯一)【试题解析】选择侧视图为③,俯视图为④,如图所示,长方体1111ABCD A BC D -中,12,1AB BC BB ===,,E F分别为棱11,BC BC的中点,则正视图①,侧视图③,俯视图④对应的几何体为三棱锥E ADF.故答案为:③④.三视图问题解决的关键之处是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系.【命题意图】1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测法画出它们的直观图.3.会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.4.会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).5.了解球、棱柱、棱锥、台的表面积和体积的计算公式.【命题方向】空间几何体的结构是每年高考的热点之一,主要涉及空间几何体的表面积与体积的计算、三视图等内容.命题形式以选择题或填空题为主,要求考生要有较强的空间想象能力和计算能力,广泛应用转化与化归思想【得分要点】1.三视图问题的常见类型及解题策略(1)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.(2)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线,不能看到的部分用虚线表示.(3)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.2.已知几何体的三视图求其表面积,一般是先根据三视图判断空间几何体的形状,再根据题目所给数据与几何体的表面积公式,求其表面积.3.多面体的表面积是各个面的面积之和,组合体的表面积应注意重合部分的处理,以确保不重复、不遗漏.4.求多面体的侧面积时,应对每一个侧面分别求解后再相加;求旋转体的侧面积时,一般要将旋转体展开为平面图形后再求面积.5.求柱体、锥体、台体体积的一般方法(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.(2)若所给定的几何体的体积不能直接利用公式得出,则常用等体积法、割补法等方法进行求解.①等体积法:一个几何体无论怎样转化,其体积总是不变的.如果一个几何体的底面面积和高较难求解时,我们可以采用等体积法进行求解.等体积法也称等积转化或等积变形,它是通过选择合适的底面来求几何体体积的一种方法,多用来解决有关锥体的体积,特别是三棱锥的体积.②割补法:运用割补法处理不规则的空间几何体或不易求解的空间几何体的体积计算问题,关键是能根据几何体中的线面关系合理选择截面进行切割或者补成规则的几何体.要弄清切割后或补形后的几何体的体积是否与原几何体的体积之间有明显的确定关系,如果是由几个规则的几何体堆积而成的,其体积就等于这几个规则的几何体的体积之和;如果是由一个规则的几何体挖去几个规则的几何体而形成的,其体积就等于这个规则的几何体的体积减去被挖去的几个几何体的体积.因此,从一定意义上说,用割补法求几何体的体积,就是求体积的“加、减”法.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.6.求解空间几何体表面积和体积的最值问题有两个思路(1)根据几何体的结构特征和体积、表面积的计算公式,将体积或表面积的最值转化为平面图形中的有关最值,根据平面图形的有关结论直接进行判断;(2)利用基本不等式或是建立关于表面积和体积的函数关系式,然后利用函数的方法或者利用导数方法解决.7.三视图的概念①光线从几何体的前面向后面正投影,得到的投影图叫做几何体的正视图;②光线从几何体的左面向右面正投影,得到的投影图叫做几何体的侧视图;③光线从几何体的上面向下面正投影,得到的投影图叫做几何体的俯视图.几何体的正视图、侧视图和俯视图统称为几何体的三视图.如图.8.三视图的画法规则(1)正视图与俯视图的长度一致,即“长对正”;(2)侧视图和正视图的高度一致,即“高平齐”;(3)俯视图与侧视图的宽度一致,即“宽相等”.注意:能看见的轮廓线用实线表示;不能看见的轮廓线用虚线表示.9.常见几何体的三视图一、单选题1.(2021·全国高三其他模拟(理))若空间某几何体的三视图如图所示,则该几何体外接球的表面积是()A.16-B.C.24πD.6+【答案】C【分析】根据三视图,可在长方体中利用构造法还原几何体,利用长方体的对角线计算外接球的直径,进而计算表面积.【详解】据三视图分析知,该几何体是由长方体截得如下图所示几何体ABCDE ,=即为外接球的直径,外接球的表面积4624S ππ=⨯=.故选C .2.(2021·全国高三其他模拟(理))某几何体的三视图如图所示,则该几何体的表面积为()A .48+B .24+C .48+D .24+【答案】C【分析】由三视图画出几何体的直观图,然后结合已知的数据求解即可【详解】由三视图可知该几何体为如图所示的四棱锥,所以该几何体的表面积为11142646548222⨯⨯+⨯+⨯⨯⨯=+故选:C.3.(2021·四川成都市·成都七中高一月考)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:3cm)是()A.43B.73C.53D.83【答案】B【分析】由几何体的三视图可知该几何体由一个长方体和一个三棱锥组成,分别求出体积即可.【详解】如图,由几何体的三视图可知该几何体由一个长方体和一个三棱锥组成,1122V =⨯⨯=长方体,111112323V =⨯⨯⨯⨯=三棱锥, 故体积17233V =+=, 故选:B.4.(2021·北京高考真题)某四面体的三视图如图所示,该四面体的表面积为( )A B .4 C .3D .2【答案】A【分析】根据三视图可得如图所示的几何体(三棱锥),根据三视图中的数据可计算该几何体的表面积.【详解】根据三视图可得如图所示的几何体-正三棱锥O ABC -,其侧面为等腰直角三角形,底面等边三角形,由三视图可得该正三棱锥的侧棱长为1,故其表面积为213112⨯⨯⨯= 故选:A.5.(2021·河南高三其他模拟(理))某个由四棱柱和三棱柱组成的组合体的三视图如图所示,则该组合体的表面积为( )A .20+B .22+C .18+D .223【答案】A【分析】 作出几何体的直观图,结合三视图中的数据可求得几何体的表面积.【详解】该组合体的直观图如图所示,其中下底面是边长为2的正方形,所以该组合体的表面积(2421224120S =⨯⨯+⨯++⨯=+故选:A.6.(2021·宜宾市翠屏区天立学校高三其他模拟(文))我国古代《九章算术》将上、下两面为平行矩形的六面体称为刍童.如图是一个刍童的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和4,高为2,则该刍童的表面积为()A.B.40C.16+D.16+【答案】D【分析】根据三视图,还原几何体的直观图可得,该几何体的表面由两个全等的矩形,与四个全等的等腰梯形组成,根据三视图所给数据,求出矩形与梯形的面积,求和即可.【详解】由三视图可知,该刍童的直观图是如图所示的六面体1111A B C D ABCD -,图中正方体棱长为4, 1111,,,,,,,B C D A B C A D 分别是所在正方体棱的四等分点,其表面由两个全等的矩形,与四个全等的等腰梯形组成,矩形面积为248⨯=,梯形的上下底分别为2,4,梯形的高为FG =()1242⨯+=,所以该刍童的表面积为284⨯+⨯=16+ 故选:D.【点睛】观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.7.(2019·吉林高三其他模拟(理))某几何体的三视图如图所示,则该几何体的表面积为( )A .94πB .66π+C .962π+ D .362π+ 【答案】B【分析】【详解】解:根据几何体的三视图转换为直观图为:该几何体为底面半径为1,高为3的圆柱的34. 故:233213212136644S πππ=⨯⋅⋅⋅+⨯⋅⋅+⨯⨯=+表.故选:B .8.(2019·吉林高三其他模拟(文))某几何体的三视图如图所示,则该几何体的体积为()A .94π B .66π+ C .3π D .34π【答案】A【分析】【详解】根据几何体的三视图转换为直观图为:该几何体为底面半径为1,高为3的圆柱体的34. 故239V 1344ππ=⨯⋅⋅=. 故选:A .9.(2021·浙江杭州市·杭州高级中学高三其他模拟)某空间几何体的三视图如图所示,则该几何体的体积为( )A .83B .163C .8D .16【答案】B【分析】根据三视图知该几何体是三棱锥且一个侧面与底面垂直,再根据椎体的体积公式,即可求出该几何体的体积.【详解】由三视图可知,该几何体为如图所示的三棱锥,其高为2,底面三角形的高为该几何体的体积为11162323⨯⨯=. 故选:B【点睛】 方法点睛:由三视图还原几何体,要弄清楚几何体的特征,把三视图中的数据、图形特点准确地转化为对应几何体中的线段长度、图形特点,再进行计算.10.(2019·安徽高三其他模拟(理))一个几何体的三视图及其尺寸如图所示,则该几何体的表面积为()A .16B .8C .8D .8【答案】D【分析】首先把三视图转换为几何体的直观图,进一步求出几何体的表面积.【详解】根据几何体的三视图转换为直观图为:该几何体为底面为边长为2的正方形,高为2的四棱锥体,几何体的直观图如图所示:故:A BCDE BCDE ABE ABC ACD ADE S S S S S S -=++++11222822=⨯⨯+⨯⨯=+故选:D .【点睛】本题考查的知识要点:三视图和几何体的直观图之间的转换,几何体的表面积公式的应用,主要考查运算能力和数学思维能力.11.(2021·浙江高二期末)某几何体的三视图如图,正视图和侧视图是两个全等的半圆,俯视图中圆的半径为1,则该几何体的体积为( )A .43πB .23πC .4πD .2π【分析】由三视图可知,该几何体是半径为1的半球,即可求出体积.【详解】由三视图可知,该几何体是半径为1的半球,如图, 则该几何体的体积为31421233ππ⨯⨯=. 故选:B.12.(2021·浙江金华市·高三三模)若某多面体的三视图(单位∶cm )如图所示,则此多面体的体积是( )A 3B .38cm 3 C 3 D .34cm 3【答案】D【分析】根据三视图可得该几何体为一个四棱锥,如图,即可求出体积.【详解】根据三视图还原几何体,可得该几何体为一个四棱锥,且顶点可都为一个正方体的顶点,如图粗线所示, 此多面体可看作半个正方体去掉一个三棱锥, 则此多面体的体积是334c 11222323m 2⨯-⨯⨯⨯=.13.(2020·安徽高三其他模拟)某三棱锥的三视图如图所示,该三棱锥表面上的点M、N、P、Q在三视图上对应的点分别为A、B、C、D,且A、B、C、D均在网格线上,图中网格上的小正方形的边长为1,则几何体MNPQ 的体积为()A.14B.13C.12D.23【答案】C 【分析】根据三视图可得如图三棱锥MNPQ,确定,P N位置,可得1324N MPQ F MEQV V--=⨯,即可得解.【详解】由三视图得,几何体MNPQ是一个三棱锥,且N是QF的中点,QP=34 EQ,如图,所以13331114248832 N MPQ F MEQ Q MEFV V V---=⨯==⨯⨯⨯=.故选:C.14.(2021·全国高三其他模拟(理))如图所示是某几何体的三视图,图中的四边形都是边长为a的正方形,侧视图和俯视图中的两条虚线都互相垂直,已知几何体的体积为203,则a=()A.3B C.2D【答案】C【分析】首先把三视图转换为几何体的直观图,进一步利用割补法的应用求出几何体的体积.【详解】根据几何体的三视图转换为直观图为:该几何体为一个棱长为a的正方体挖去一个底面为边长为a的长方形,高为2a 的四棱锥构成的几何体P ABCD -; 如图所示:故33215326a a V a a =-⨯-==203, 解得a =2,故选:C.二、填空题15.(2021·四川省绵阳南山中学高三其他模拟(理))一个空间几何体的主视图,侧视图是周长为8,一个内角为60︒的菱形,俯视图是圆及其圆心(如图),那么这个几何体的表面积为__________.【答案】4π【分析】由三视图还原几何体,该几何体由两个有公共底面且全等的圆锥构成,圆锥的底面直径为2,母线长度为2,可得答案.【详解】由三视图可知,该几何体由两个有公共底面且全等的圆锥构成,由主视图,侧视图是周长为8,一个内角为60︒的菱形可得,这两个圆锥的底面半径为2,母线长为2, 所以每个圆锥的底面圆的周长为2π 每个圆锥的侧面积为:12222ππ⨯⨯= 所以该几何体的表面积为224ππ⨯=故答案为:4π16.(2021·河南商丘市·高三月考(理))某三棱锥的三视图如图所示,则该三棱锥的最短棱长为___________.【分析】根据三视图还原几何体,然后计算即可.【详解】BC BD Array由图可知该三棱锥的最短棱为底面三角形的直角边即,。

高考三视图知识点

高考三视图知识点高考是每个学生都将面临的一次重要考试。

其中,物理学科对于很多学生来说可能是一个难点。

而在物理学中,三视图是一个重要的知识点,需要学生掌握和理解。

本文将重点介绍高考物理中的三视图知识点,从不同角度深入讨论,帮助学生更好地理解和应对考试。

一、什么是三视图?三视图是指一个物体在不同方向上的投影图。

通常来说,我们可以通过正视图、左视图和俯视图来理解一个物体的形状和结构。

正视图是指从物体正前方看的投影图,左视图是指从物体左侧看的投影图,俯视图是指从物体上方看的投影图。

二、三视图的应用三视图在日常生活和工程设计中有着广泛的应用。

在建筑设计中,工程师需要通过三视图来理解和描述建筑物的形状和结构,从而进行合理的设计和施工。

在机械加工中,工人需要通过三视图来理解和操作机械设备,保证产品的准确加工。

在电子电路设计中,工程师需要通过三视图来理解和布局电路板的组成部分,确保电子设备的正常工作。

三、如何绘制三视图?绘制三视图需要一定的技巧和方法。

首先,我们需要确定物体的主视图,即选择一个合适的方向作为正面。

然后,根据物体的形状和尺寸,我们可以绘制正视图和左视图。

在绘制正视图时,需要注意保持比例和准确度,确保投影图能够准确地反映物体的形状和结构。

在绘制左视图时,需要将物体按照一定角度倾斜,以获得合适的投影图。

最后,通过观察和分析正视图和左视图,我们可以绘制出俯视图,从不同角度全面地了解物体。

四、三视图与三维几何的关系三视图是三维几何的重要组成部分,可以通过观察三视图来判断物体的形状和结构。

在三维几何中,我们通过描述物体的点、线和面来构建物体的形态。

而三视图则通过将这些点、线和面在不同方向上投影到二维平面上来描述物体。

因此,三视图可以看作是三维几何与二维平面之间的桥梁,帮助我们理解和描述三维物体。

五、常见的三视图题型在高考物理中,三视图经常出现在选择题和计算题中。

例如,考生可能会遇到给定一个物体的正视图和俯视图,需要根据给定信息绘制出左视图的题目。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考复习:三视图专题
1.如图1是一个空间几何体的三视图,则该几何体的侧面积...
为 A .
43
3
B .43
C .8
D .12
2.若一个正三棱柱的三视图如下图所示,
则这个正三棱柱的体积为_______.
3.如图,一个空间几何体的正视图、侧视图、俯视图均为全等的等腰直角三角形,如果直角三角形的直角边长都为1,那么这个几何体的表面积为
A .61
B .2
3
C .
332+.332+
4.已知某个几何体的三视图如下,根据图中标出
的尺寸(单位:cm ),可得这个几何体的体积是 ( )
A .383
cm B .3
43cm C .323cm D .313
cm
主视图
俯视图
2
32 左视图
正视图
俯视图
侧视图
D
C
B
A
N
M
A B
C
D
B
1
C
1 5.已知某几何体的三视图如右,根据图中标出的尺寸(单位:
cm),可得这个几何体的体积是()
A.3
4
3
cm B.3
8
3
cm C.3
2cm D.3
4cm
6.如图是一正方体被过棱的中点M、N和顶点A、D、
1
C截去两个角后所得的几何体,则该几何体的主视图(或称正视图)为()
7.如图,在三棱柱
111
ABC A B C
-中,
1
AA⊥平面ABC,
1
2,
A A AC
==
1,5
BC AB
==,则此三棱柱的侧(左)视图的面积为
A.2 B.4 C.
45
D.25
8.如图1,将一个正三棱柱截去一个三棱锥,得到几何体
DEF
BC-,则该几何体的正视图(或称主视图)是
A. B. C. D.
9.一个长方体被一个平面截去一部分后所剩几何体的正视图和俯视图
如图所示,则该几何体的侧视图可以为
A.B.C.D.
正视图
俯视图
第9题图
正视图
俯视图
2
2
侧视图
2
1
1
2 第5题图
第7题图
10.一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积是()
A.1
B.2
C.3
D.4
11.一个圆锥的正(主)视图及其尺寸如图2所示.若一个平行于圆锥底面的平面将此圆锥截成体积之比为1﹕7的上、下两
部分,则截面的面积为
A.1
4
π B.π
C.9
4
π D.4π
12.一个几何体的三视图如图所示,则该几何体的体积为
A.
3
2
a
B.
3
6
a
C.
3
12
a
D.
3
18
a
13.如图所示,一个空间几何体的主视图和俯视图都是边长为1的正方形,侧视图是一个直径为1的圆,那么这个几何体的表面积为()
A.π4 B.π3
C.π2 D.π
2
3
14.已知某几何体的三视图如右图所示,则该几何体的体积是
A.1
6
B.
1
3
C.1
2
D.
2
2
4
6
图2
1
1
1
主视图侧视图
1
1
2
俯视图
15.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为
....
①长方形;②正方形;③圆;④椭圆.其中正确的是
A.①②B.②③
C.③④D.①④
16. 如图,是一个几何体的正视图、侧视图、俯视图,
且正视图、侧视图都是矩形,则该几何体的体积是.
17. 一个空间几何体的三视图及部分数据如上图所示,则这个几何体的体积是()
A.3B.
5
2C.2D.
3
2
18.已知一个空间几何体的三视图如图所示,根据图
中标出的尺寸(单位:cm),可得这个几何体的体积是
A.4 cm3B.5 cm3C.6 cm3D.7 cm3
19.如图为一个几何体的三视图,正视图和侧视图均为
矩形,俯视图中曲线部分为半圆,尺寸如图,则该几
何体的全面积为
A.3
2
3
6+
+π B.2
4
2
2+

B.C.3
2
5
8+
+π D.2
4
3
2+

20.如图是某几何体的三视图,其中正视图是腰长为2的
等腰三角形,俯视图是半径为1的半圆,则该几何体
的体积是.
正视图
俯视图
侧视图。

相关文档
最新文档