相似三角形性质练习题(一)
相似三角形的性质及应用练习题1

相似三角形的性质及应用练习卷一、填空题1.已知两个相似三角形的相似比为3, 则它们的周长比为;2.若△ABC∽△A′B′C′, 且, △ABC的周长为12cm, 则△A′B′C′的周长为;3、如图1, 在△ABC中, 中线BE、CD相交于点G, 则= ;S△GED: S△GBC= ;4.如图2, 在△ABC中, ∠B=∠AED, AB=5, AD=3, CE=6, 则AE= ;5.如图3, △ABC中, M是AB的中点, N在BC上, BC=2AB, ∠BMN=∠C, 则△∽△ ,相似比为 , = ;6、如图4, 在梯形ABCD中, AD∥BC, S△ADE: S△BCE=4: 9, 则S△ABD: S△ABC= ;7、如图5, 在△ABC中, BC=12cm, 点D、F是AB的三等分点, 点E、G是AC的三等分点, 则DE+FG+BC= ;8、两个相似三角形的周长分别为5cm和16cm, 则它们的对应角的平分线的比为;9、两个三角形的面积之比为2: 3, 则它们对应角平分线的比为 , 对应边的高的比为;对应边的中线的比周长的比10、已知有两个三角形相似, 一个边长分别为2、3、4, 另一个三角形最长边长为12, 则x、y的值为;二、选择题11.下列多边形一定相似的为()A.两个矩形B.两个菱形C.两个正方形D.两个平行四边形12、在△ABC中, BC=15cm, CA=45cm, AB=63cm, 另一个和它相似的三角形的最短边是5cm, 则最长边是()A.18cmB.21cmC.24cmD.19.5cm13、如图, 在△ABC中, 高BD.CE交于点O, 下列结论错误的是()A.CO·CE=CD·CA B、OE·OC=OD·OBC.AD·AC=AE·AB D、CO·DO=BO·EO14.已知, 在△ABC 中, ∠ACB=900, CD ⊥AB 于D, 若BC=5, CD=3, 则AD 的长为( )A.2.25B.2.5C.2.75D.315.如图, 正方形ABCD 的边BC 在等腰直角三角形PQR 的底边QR 上,其余两个顶点A.D 在PQ 、PR 上, 则PA :PQ 等于( )A.1:B.1: 2C.1: 3D.2: 316.如图, D 、E 分别是△ABC 的边AB 、AC 上的点, = =3,且∠AED=∠B, 则△AED 与△ABC 的面积比是( )A 、1: 2B 、1: 3C 、1: 4D 、4: 9三、解答题17、如图, 已知在△ABC 中, CD=CE, ∠A=∠ECB, 试说明CD2=AD ·BE 。
相似三角形测试题及答案(全)

1、两个相似三角形对应边之比是1:5,那么它们的周长比是( )。 (A)
;(B)1:25;(C)1:5;(D)
。 2、如果两个相似三角形的相似比为1:4,那么它们的面积比为( )。 (A)1:16;(B)1:8;(C)1:4;(D)1:2。 3、如图,锐角三角形ABC的高CD和高BE相交于O,则与△DOB相似的三角 形个数是( )。 (A)1;(B)2;(C)3;D)5。
3、如图,△ABC中,D是AC中点,AF∥DE, =1:3,则 =( )。 (A)1:2;(B)2:3;(C)3:4;(D)1:1。 4、如图,平行四边形ABCD中,O1、O2、O3为对角线BD上三点,且BO1= O1O2=O2O3=O3D,连结AO1并延长交BC于点E,连结EO3并延长交AD于F, 则AD:FD等于( )。 (A)19:2;(B)9:1;(C)8:1;(D)7:1。 三、(本题8分) 如图,已知矩形ABCD中,AB=10cm,BC=12cm,E为DC中点,AF⊥BE于 点F,求AF长。 四、(本题8分) 如图,D、E分别是△ABC边AB和AC上的点,∠1=∠2,求证:AD·AB= AE·AC。 五、(本题8分) 如图,ABCD是平行四边形,点E在边BA延长线上,连CE交AD于点F, ∠ECA=∠D,求证:AC·BE=CE·AD。
4、如图,∠ACD=∠B,AC=6,AD=4,则AB=________。
5、如图ABCD是平行四边形,F是DA延长线上一点,连CF交BD于G,交AB 于E,则图中相似三角形(包括全等三角形在内)共有________对。 6、如图,△ABC中,BC=15cm,DE、FG均平行于BC且将△ABC面积分成 三等分,则FG=________ cm。 7、如图,AF∥BE∥CD,AF=12,BE=19,CD=28,则FE:ED的值等于 ________。 8、如图,△ABC,DE∥GF∥BC,且AD=DG=GB,则 =________。
几何推理练习题相似三角形

几何推理练习题相似三角形几何推理练习题:相似三角形几何推理是数学中的一种重要思维方式,通过观察、分析和推理几何图形的属性来解决问题。
相似三角形是几何推理中常见的一种情况,它们具有相等的夹角,并且对应边的比例相等。
本文将介绍一些相似三角形的练习题,帮助读者巩固几何推理的能力。
1. 练习题一已知△ABC中,∠A=45°,∠B=60°,AB=5 cm。
连接点A和点D,使得∠BCD=90°。
如果AD=4 cm,求BC的长度。
解析:根据题目可以得知,△ABC和△BCD为相似三角形,因为∠A=∠BCD。
根据相似三角形的性质,可以列出比例关系式:AB/BC = BC/BD代入已知数值,可得:5/BC = BC/4通过交叉相乘求解,得到:BC^2 = 20因此,BC = √20 = 2√5 cm。
2. 练习题二已知△ABC和△ADE相似,且BC=8 cm,AC=10 cm,DE=12 cm。
如果BD=9 cm,求AE的长度。
解析:根据题目可以得知,△ABC和△ADE为相似三角形,因此可以列出比例关系式:AB/AE = BC/DE代入已知数值,可得:AB/AE = 8/12 = 2/3通过交叉相乘求解,得到:AB * 3 = AE * 2已知BD=9 cm,根据△ABD的相似比例关系,可以得到:AB/BD = AE/DE代入已知数值,可得:AB/9 = AE/12将AB的值代入上述等式,可得:(2/3) * 9 = AE/12通过简单的计算,可以得到:AE = 2 * 9 / 3 = 6 cm因此,AE的长度为6 cm。
3. 练习题三已知两个相似三角形,它们的周长比为7:4,面积比为49:16。
求这两个三角形的边长比和面积比。
解析:设两个相似三角形的边长比为a:b,面积比为c:d。
根据题目可得以下比例关系:(a+b)/(c+d) = 7/4 --(1)(a^2+b^2)/(c^2+d^2) = 49/16 --(2)将(1)式两边同乘4(c+d),可得:4(a+b) = 7(c+d)化简后得:4a + 4b = 7c + 7d --(3)将(2)式两边同乘16(c^2+d^2),可得:16(a^2+b^2) = 49(c^2+d^2)化简后得:16a^2 + 16b^2 = 49c^2 + 49d^2 --(4)由(3)式可得:4(a+b) - 7(c+d) = 0化简后得:4a + 4b - 7c - 7d = 0 --(5)由(4)式可得:16(a^2 + b^2) - 49(c^2 + d^2) = 0化简后得:16a^2 + 16b^2 - 49c^2 - 49d^2 = 0 --(6)通过求解方程组(5)和(6),可以得到a:b的值为7:4,c:d的值为49:16。
(1503)相似三角形性质专项练习30题(有答案)

相似三角形性质专项练习30题(有答案)1.如图,在矩形ABCD中,点E、F分别在边AD、DC上,△ABE∽△DEF,AB=6,AE=9,DE=2,求EF的长.2.如图,AD=2,AC=4,BC=6,∠B=36°,∠D=107°,△ABC∽△DAC(1)求AB的长;(2)求CD的长;(3)求∠BAD的大小.3.如图,△ABC与△A′B′C′相似,AD,BE是△ABC的高,A′D′,B′E′是△A′B′C′的高,求证:=.4.如图所示,已知∠ACB=∠CBD=90°,AC=b,CB=a,BD=k,若△ACB∽△CBD,写出a、b、k之间满足的关系式.5.如图,AD、BE是△ABC的两条高,A′D′、B′E′是△A′B′C′的两条高,△ABD∽△A′B′D′,∠C=∠C′,求证:=.6.已知,如图,△AOB∽△DOC,BD⊥AC,∠AOB是直角.求证:AD2+BC2=AB2+CD2.7.已知如图△ABC中,∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B,C点重合),∠ADE=45°,△ABD∽△DCE.当△ADE是等腰三角形时,求AE的长.8.如图,△ABC与△ADB相似,AD=4,CD=6,求这两个三角形的相似比.9.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若以点B′、F、C为顶点的三角形与△ABC相似,求BF的长度.10.如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q 从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,当以A、P、Q为顶点的三角形与△ABC相似时,运动时间是多少?11.如图,在平行四边形ABCD中,E为DC上的一点,AE交BD于O,△AOB∽△EOD,若DE=AB,AB=9,AO=6,求DE和AE的长.12.如图,点C、D在线段AB上,△PCD是等边三角形,且△ACP∽△PDB.(1)求∠APB的大小.(2)说明线段AC、CD、BD之间的数量关系.13.如图,在矩形ABCD中,点E、F分别在边AD、DC上,△ABE△∽△DEF,AB=6,AE=8,DE=2,求EF的长.14.如图,△ABC∽△DAB,AB=8,BC=12,求AD的长.15.如图,△ABC中,∠C=90°,AC=3cm,BC=4cm,动点P从点B出发以2cm/s的速度向点C移动,动点Q从C出发以1cm/s的速度向点A移动,如果动点P、Q同时出发,要使△CPQ与△CBA相似,所需要的时间是多少秒?16.如图,△ABC∽△FED,若∠A=50°,∠C=30°,求∠E的度数.17.如图,已知△ABC∽△AED,且∠B=∠AED,点D、E分别是边AB、AC上的点,如果AD=3,AE=6,CE=3.根据以上条件你能求出边AB的长吗?请说明理由.18.如图,在△ABC中,AB=8cm,AC=16cm,点P从点B开始沿BA边向点A以每秒2cm的速度移动,点Q从点A开始沿AC边向点C以每秒4cm的速度移动.如果P、Q分别从B、A同时出发,经过几秒钟△APQ与△ABC相似?试说明理由.19.如图,在平行四边形ABCD中,AB=4,AD=6,∠ABC=60°;点P是射线AD上的一个动点(与点A不重合),BP与AC相交于点E,设AP=x.(1)求AC的长;(2)如果△ABP和△BCE相似,请求出x的值;(3)当△ABE是等腰三角形时,求x的值.20.已知两个相似三角形的一对对应边长分别是35cm和14cm(1)已知他们的周长相差60cm,求这两个三角形的周长.(2)已知它们的面积相差588cm2,求这两个三角形的面积.21.如图,已知△ACE∽△BDE,∠A=117°,∠C=37°,AC=6,BD=3,AB=12,CD=18,(1)求∠B和∠D的度数;(2)求AE和DE的长.22.一个钢筋三角架三边长分别是20厘米、50厘米、60厘米,现在再做一个与其相似的钢筋三角架,而只有长为30厘米和50厘米的两根钢筋,要求以其中一根为一边,从另一根上截下两段(允许有余料)作为两边,则不同的截法有多少种?写出你的设计方案,并说明理由.23.要制作两个形状相同的三角形框架,其中一个三角形框架的三边长分别为4、5、6,另一个三角形框架的一边长为2,它的另外两边长分别可以为多少?24.如图,已知等边△ABC的边长为8,点D、P、E分别在边AB、BC、AC上,BD=3,E为AC中点,当△BPD与△PCE相似时,求BP的值.25.如图,△ABC∽△A′B′C′,相似比为k,AD、A′D′分别是边BC、B′C′上的中线,求证:.26.已知△ABC∽△DEF,△ABC和△DEF的周长分别为20cm和25cm,且BC=5cm,DF=4cm,求EF 和AC的长.27.如图,在△ABC中,AB=6cm,AC=12cm,动点M从点A出发,以1cm∕秒的速度向点B运动,动点N从点C出发,以2cm∕秒的速度向点A运动,若两点同时运动,是否存在某一时刻t,使得以点A、M、N为顶点的三角形与△ABC相似,若存在,求出t的值;若不存在,请说明理由.28.Rt△ABC中,∠A=90°,AB=8cm,AC=6cm,P、Q分别为AC,AB上的两动点,P从点C开始以1cm/s的速度向点A运动,Q从点A开始以2cm/s的速度向点B运动,当一点到达终点时,P、Q两点就同时停止运动.设运动时间为ts.(1)用t的代数式分别表示AQ和AP的长;(2)设△APQ的面积为S,①求△APQ的面积S与t的关系式;②当t=2s时,△APQ的面积S是多少?(3)当t为多少秒时,以点A、P、Q为顶点的三角形与△ABC相似?29.如图所示,∠C=90°,BC=8cm,AC:AB=3:5,点P从点B出发,沿BC向点C以2cm/s的速度移动,点Q从点C出发沿CA向点A以1cm/s的速度移动,如果P、Q分别从B、C同时出发,过多少秒时,以C、P、Q为顶点的三角形恰与△ABC相似?30.如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),△A1B1C1的三边长分别为a1、b1、c1.(1)若c=a1,求证:a=kc;(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1使得k=2?请说明理由.相似三角形专项练习30题参考答案:1.解:∵四边形ABCD是矩形,∴∠BAE=90°,∵AB=6,AE=9,∴BE===,∵△ABE∽△DEF,∴=,即=,解得EF=.2.解:(1)∵△ABC∽△DAC,∴,∴,解得:AB=3;(2)∵△ABC∽△DAC,∴,∴,解得:CD=;(3)∵△ABC∽△DAC,∴∠BAC=∠D=107°,∠CAD=∠B=36°,∵∠B=36°,∴∠BAD=∠BAC+∠CAD=107°+36°=143°3.证明:∵△ABC与∽A′B′C′,∴∠ABD=∠A′B′D′,∵AD和A′D′是高,∴∠ADB=∠A′D′B′,∴△ABD∽△A′B′D,∴=,同理可得=,∴=.4.解:∵△ACB∽△CBD,∴=,∵AC=b,CB=a,BD=k,∴=,即a2=bk.5.证明:∵△ABD∽△A′B′D′,∴∠ABC=∠A′B′C′,∠BAC=∠B′A′C′,∵AD是△ABC的高,A′D′是△A′B′C′的,∴∠ADB=∠A′D′B′=90°,∴△ABD∽△A′B′D′,∴=,同理可求△ABE∽△A′B′E′,∴=,∴=.6.解:∵BD⊥AC,∴∠AED=∠AEB=∠BEC=∠DEC=90°,∴在Rt△AED中,AD2=AE2+DE2,在Rt△AEB中,AB2=AE2+BE2,在Rt△BEC中,BC2=BE2+CE2,在Rt△CED中,CD2=CE2+DE2,∴AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+CE2+DE2,∴AD2+BC2=AB2+CD2.7.解:分三种情况:①若AD=AE时,∠DAE=90°,此时D点与点B重合,不合题意;②若AD=DE时,△ABD与△DCE的相似比为1,此时△ABD≌△DCE,于是AB=AC=1,BC=,AE=AC﹣EC=1﹣BD=1﹣(﹣1)=2﹣;③若AE=DE,此时∠DAE=∠ADE=45°,如图所示,易知AD⊥BC,DE⊥AC,且AD=DC.由等腰三角形的三线合一可知:AE=CE=AC=.综上所述,当△ADE是等腰三角形时,AE的长为2﹣或.8.解:∵△ABC与△ADB相似,∴△ABC∽△ADB,∴=,∴AB2=AC•AD=10×4=40,∴△ABC与△ADB的相似比为==.9.解:设BF=x,则CF=4﹣x,由翻折的性质得B′F=BF=x,当△B′FC∽△ABC,∴=,即=,解得x=, 即BF=.当△FB ′C ∽△ABC , ∴AB FB /'=ACFC 即,解得:x=2.∴BF 的长度为:2或.10.解:设运动了ts ,根据题意得:AP=2tcm ,CQ=3tcm ,则AQ=AC ﹣CQ=16﹣3t (cm ),当△APQ ∽△ABC 时,, 即, 解得:t=;当△APQ ∽△ACB 时,, 即,解得:t=4; 故当以A 、P 、Q 为顶点的三角形与△ABC 相似时,运动时间是:s 或4s11.解:∵△AOB ∽△EOD , ∴DE :AB=OA :OE ,∵DE=AB ,AB=9,AO=6,∴DE=×9=6,OE=OA=4,∴AE=OA+OE=6+4=10.12.解:(1)∵△PCD 是等边三角形,∴∠PCD=60°,∴∠ACP=120°,∵△ACP ∽△PDB ,∴∠APC=∠B ,∵∠A=∠A ,∴∠ACP ∽∠APB ,∴∠APB=∠ACP=120°;(2)∵△ACP ∽△PDB ,∴AC :PD=PC :BD ,∴PD•PC=AC•BD,∵△PCD是等边三角形,∴PC=PD=CD,∴CD2=AC•BD.13.解:∵四边形ABCD是矩形,∴∠BAE=90°,∵AB=6,AE=8,∴BE===10,∵△ABE∽△DEF,∴=,即=,解得EF=.14.解:∵△ABC∽△DAB,∴,∵AB=8,BC=12,∴,∴AD=.15.解:设经过t秒后两三角形相似,则可分下列两种情况进行求解,①若Rt△ABC∽Rt△QPC则,即解之得t=1.2;②若Rt△ABC∽Rt△PQC则,解之得t=;由P点在BC边上的运动速度为2cm/s,Q点在AC边上的速度为1cm/s,可求出t的取值范围应该为0<t<2,验证可知①②两种情况下所求的t均满足条件.所以可知要使△CPQ与△CBA相似,所需要的时间为1.2或秒.16.解:∵△ABC中,∠A=50°,∠C=30°,∴∠B=180°﹣50°﹣30°=100°,∵△ABC∽△FED,∴∠E=∠B=100°.17.解:∵△ABC∽△AED,且∠B=∠AED,∴.又AD=3,AE=6,CE=3,∴AB==18.18.解:设经过t秒两三角形相似,则AP=AB﹣BP=8﹣2t,AQ=4t,①AP与AB是对应边时,∵△APQ与△ABC相似,∴=,即=,解得t=2,②AP与AC是对应边时,∵△APQ与△ABC相似,∴=,即=,解得t=,综上所述,经过或2秒钟,△APQ与△ABC相似19.解:(1)过点A作AF⊥BC于F(1分)在Rt△AFB中,∠AFB=90°,∠ABF=60°∴AF=ABsin∠ABF=4sin60°=4×=,BF=ABcos∠ABF=4cos60°=4×在Rt△AFC中,∠AFC=90°∴(1分)(2)过点P作PG⊥BC于G,在Rt△BPG中,∠PGB=90°,∴(1分)如果△ABP和△BCE相似,∵∠APB=∠EBC又∵∠BAP=∠BCD>∠ECB(1分)∴∠ABP=∠ECB∴即解得(不合题意,舍去)∴x=8(1分)(3)①当AE=AB=4时∵AP∥BC,∴即,解得,②当BE=AB=4时∵AP∥BC,∴,即,解得(不合题意,舍去)③在Rt△AFC中,∠AFC=90°∵,在线段FC上截取FH=AF,∴∠FAE>∠FAH=45°∴∠BAE>45°+30°>60°=∠ABC>∠ABE∴AE≠BE.综上所述,当△ABE是等腰三角形时,或20.解:(1)∵相似三角形的对应边长分别是35cm和14cm∴这两个三角形的相似比为:5:2∴这两个三角形的周长比为:5:2∵他们的周长相差60cm∴设较大的三角形的周长为5xcm,较小的三角形的周长为2xcm∴3x=60∴x=20cm∴5x=5×20=100cm,2x=2×20=40cm∴较大的三角形的周长为100cm,较小的三角形的周长为40cm(2)∵这两个三角形的相似比为:5:2∴这两个三角形的面积比为:25:4∵他们的面积相差588cm2∴设较大的三角形的面积为25xcm2,较小的三角形的面积为4xcm2∴(25﹣4)x=588,∴x=28cm2∴25x=25×28=700cm2,4x=4×28=112cm2∴较大的三角形的面积为700cm2,较小的三角形的面积为112cm221.解:(1)∵△ACE∽△BDE,∠A=117°,∠C=37°,∴∠B=∠A=117°,∠C=∠D=37°;(2)∵△ACE∽△BDE,AC=6,BD=3,AB=12,CD=18,∴设AE=x,DE=y,则BE=12﹣x,CE=18﹣y,∴==,即==,解得x=8,y=6,∴AE=8,DE=622.解:①当把30厘米的钢筋作为最长边,把50厘米的钢筋按10厘米与25厘米两部分截,则有;②当30厘米的钢筋作为中长边,把50厘米分截出12厘米和36厘米两部分,则有.③当30cm作为最短边:则另两边都会超过50cm,此时不合题意,∴一共有两种截法.23.解:题中没有指明边长为2的边与原三角形的哪条边对应,所以应分别讨论:(1)若边长为2的边与边长为4的边相对应,则另两边为和3;(2)若边长为2的边与边长为5的边相对应,则另两边为和;(3)若边长为2的边与边长为6的边相对应,则另两边为和.故三角形框架的两边长可以是:和3或和或和.24.解:设BP=x,∵等边△ABC的边长为8,∴CP=8﹣x,∵E为AC中点,∴CE=AC=×8=4,①BD和PC是对应边时,△BDP∽△CPE,∴=,即=,整理得,x2﹣8x+12=0,解得x1=2,x2=6,即BP的长为2或6,②BD和CE是对应边时,△BDP∽△CEP,∴=,即=,解得x=,即BP=,综上所述,BP的值是2或6或.25.证明:∵△ABC∽△A′B′C′,∴===K.又∵AD、A′D′分别是边BC、B′C′上的中线,∴==.∴,∵∠B=∠B′,∴△ABD∽△A′B′D′.∴.26.解:∵相似三角形周长的比等于相似比,∴,∴,同理,∴.答:EF的长是cm,AC的长是cm.27.解:存在t=3秒或4.8秒,使以点A、M、N为顶点的三角形与△ABC相似(无此过程不扣分)设经过t秒时,△AMN与△ABC相似,此时,AM=t,CN=2t,AN=12﹣2t(0≤t≤6),(1)当MN∥BC时,△AMN∽△ABC,(1分)则,即,(3分)解得t=3;(5分)(2)当∠AMN=∠C时,△ANM∽△ABC,(6分)则,即,(8分)解得t=4.8;(10分)故所求t的值为3秒或4.8秒.(11分)28.解:(1)用t的代数式分别表示AQ=2t,AP=6﹣t;(2分)(2)设△APQ的面积为S,①△APQ的面积S与t的关系式为:S=AQ•AP=×2t×(6﹣t)=6t﹣t2,即S=6t﹣t2,②当t=2s时,△APQ的面积S=×AQ•AP=×[2×2×(6﹣2)]=8(cm2);(6分)(3)当t为多少秒时,以点A、P、Q为顶点的三角形与△ABC相似,①当=时=,∴t=2.4(s);②当=时=,∴t=(s);综上所述,当t为2.4秒或时,以点A、P、Q为顶点的三角形与△ABC相似.29.解:∵∠C=90°,BC=8cm,AC:AB=3:5,∴设AC=3xcm,AB=5xcm,则BC==4x(cm),即4x=8,解得:x=2,∴AC=6cm,AB=10cm,∴BC=8cm,设过t秒时,以C、P、Q为顶点的三角形恰与△ABC相似,则BP=2tcm,CP=BC﹣BP=8﹣2t(cm),CQ=tcm,∵∠C是公共角,∴①当,即时,△CPQ∽△CBA,解得:t=2.4,②当,即时,△CPQ∽△CAB,解得:t=,∴过2.4或秒时,以C、P、Q为顶点的三角形恰与△ABC相似.30.(1)证明:∵△ABC∽△A1B1C1,且相似比为k(k>1),∴=k,a=ka1;又∵c=a1,∴a=kc;(2)解:取a=8,b=6,c=4,同时取a1=4,b1=3,c1=2;此时=2,∴△ABC∽△A1B1C1且c=a1;(3)解:不存在这样的△ABC和△A1B1C1,理由如下:若k=2,则a=2a1,b=2b1,c=2c1;又∵b=a1,c=b1,∴a=2a1=2b=4b1=4c;∴b=2c;∴b+c=2c+c<4c,4c=a,b+c<a,而应该是b+c>a;故不存在这样的△ABC和△A1B1C1,使得k=2.。
相似三角形的性质(1)

相似三角形的性质(1)一 填空题1.两个相似三角形,相似比为5:2,其中较小三角形的面积是8,则较大三角形面积是__________2.两个相似三角形周长的和等于36cm ,对应高的比为4∶5,则这两个三角形的周长各是________3.△ABC ∽△A 1B 1C 1,,AB=4,A 1B 1=12,则它们对应边上的高的比是 ,若BC 边上的中线为1.5,则B 1C 1上的中线 A 1D 1=_______4.三角形一边长为10,平行该边的直线平分三角形面积,则这条直线夹在其它两边之间的线段长等于________5.要把一个三角形的面积扩大到原来面积的8倍,而它的形状不变,那么它的边长要增大到原来的_______倍6.梯形ABCD 中,AD//BC ,AC ,BD 交于E 点,S ΔADE ∶S ΔADC =1∶3,则S ΔADE ∶S ΔDBC =________7.ΔABC 中,DE//BC ,DE 交AB ,AC 于D 、E ,AD ∶DB=3∶2,则S 梯形BCED ∶S ΔADE =________8.边长为a 的等边三角形,被平行于一边的直线分成等积的两部分,则截得梯形一底长为a ,另一底长为_______9.将三角形的高分成四等分,过分点作底边的平行线将三角形分成四部分,则四部分面积之比为___________10.若三角形三边之比为3:5:7,与它相似的三角形的最长边为21㎝,则其余两边之和为_________11.一个四边形的边长分别是3,4,5,6,另一个与它相似的四边形最小边长为6,则另一个四边形的周长是_________12.两个相似△对应中线的比为3∶5,它们面积之差等于10cm 2,则这两个三角形面积各是_____和_______二 选择题1.两相似三角形面积的比是1:4,则它们对应边的比是( )A 1:4 B 1:2 C 2:1 D 1:22.在Rt △ABC 中,∠C=900,,∠B=300,,AD 为∠A 的平分线,DC 长为5cm ,那么BD=( )A 10cmB 5cmC 15cmD 以上都不对3.三角形的3条中位线长是3cm ,4cm ,5cm ,则这个三角形面积是( )A 12cm B 18cm C 24cm D 48cm4.在□ABCD ,AE :EB=1:2,S △AEF =6,S △CDF =( )A 12 B 15 C 245.△ABC∽△DEF,且AB :DE=1:2,则△ABC 面积与△DEF 面积之比为( )A 1:2 B 1:4 C 2:1 D 4:16.在△ABC 和△DEF 中,AB=2DE,AC =2DF,∠A=∠D ,如果△ABC 的周长是16,面积是12,那么△DEF 的周长、面积依次为( )A .8,3 B .8,6 C .4,3 D .4,67.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )8.若⊿ABC ∽⊿A′B′C′,且BC :B′C′= AC:A′C′,若AC=3,A′C′=1.8,则△A′B′C′ 与△ABC 相似比是( ) A. 2:3 B. 3:2 C. 5:3 D. 3:59.下列各组的两个图形一定相似的是( )A 两个矩形 B 等腰梯形中位线把它分成的两个 等腰梯形 C 对应边成比例的两个多边形 D 有一个角相等的两个菱形10.如图,将放置于直角坐标系中的△AOB 绕O 点顺时针旋转90°得△A′OB′.若∠AOB=30°, ∠B=90°,AB=1,则B′点的坐标为( ) A 33()2, B 33()2, C 13()2, D 31(,)211.我国国土面积约为960万平方千米,画在比例尺为1∶1000万的地图上的面积约是( )A .960平方千米B .960平方米C .960平方分米D .960平方厘米12.如果△ABC ∽△A ′B ′C ′,相似比为k (k ≠1),则k 的值是( )A .∠A :∠A ′B .A ′B ′:ABC .∠B :∠B ′D .BC :B ′C ′三 解答题1.如图,DE ∥BC ,AD :BD=1:2,求△ADE 与△ABC 面积之比2.如图,DE//BC ,CD 和BE 相交于点O ,S △DOE :S △COB =16:25,求AD :DB3.如图,DE∥BC,SΔBDO=10cm2,SΔBDE=14cm2,求S四边形BCED及AE:EC的值4.如图,DE∥BC,SΔADE=1,SΔBDC=6,求SΔABC5.如图,在ΔABC中,AB=7,AC=8,BC=9,DE∥BC,四边形BCED的周长与ΔABC的周长比是5:6,求四边形BCED的周长及DE长6.如图,在四边形ABCD中,AD∥BC,AB⊥BC,AC⊥BD,AB=3cm,AD:BC=1:3,求S四边形ABCD7.如图,SΔDOE=1,SΔBOC=9,DE∥BC,求ΔABC的面积8.如图,平行四边形ABCD中,E是边BC上的点,AE交BD于点F,如果BE:BC=2:3,求BF:FD9.如图,△ABC中,D是AB上一点,AD:DB=3:4,E是BC上一点,若DB=DC,∠1=∠2,求S△ABC:S△DEC。
相似三角形的判定(一)-配套练习(含答案

相似三角形的判定(一)-练习一、选择题1如图,BC∥FG∥ED,若每两个三角形相似,构成一组相似三角形,那么图中相似的三角形的组数是()A. 1B. 2C. 3D. 42. 如图,AB∥CD,AE∥FD,则图中的相似三角形共有()A. 2对B. 4对C. 6对D. 8对3. 已知,在△ABC中,三条边的长分别为2,3,4,△A′B′C′的两边长分别为1,1.5,要使△ABC∽△A′B′C′,那么△A′B′C′中的第三边长应该是()A. 2B.C. 4D. 2二、填空题4. 如图,添上条件_____________ (填一个即可),则△ABC∽△ADE.三、解答题5.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4,求△CEF的周长.相似三角形的判定(一)-练习参考答案一、选择题1.C. 解:∵BC∥FG∥ED∴△ABC∽△AFG△AFG∽△ADE△ABC∽△ADE∴图中相似的三角形的组数是3组故选C2. C解:AB∥CD,AE∥FD∴图中4个三角形均相似,从4个中任选2个均相似,故有C42对相似三角形,故有6对,故选C.3.A 解:已知在△ABC中,三条边的长分别为2,3,4,△A′B′C′的两边长分别为1,1.5,可以看出,△A′B′C′的两边分别为△ABC的两边长的一半,因此要使△ABC∽△A′B′C′需各边对应比例相等,则第三边长就为4的一半即2.故选A.二、填空题4.BC∥DE或∠ABC=∠ADE或=解:∵∠A=∠A∴当BC∥DE或∠ABC=∠ADE或=时,△ABC∽△ADE.三、解答题5. 解:∵在▱ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E,∴AB∥DC,∠BAF=∠DAF,∴∠BAF=∠F,∴∠DAF=∠F,∴AD=FD,∴△ADF是等腰三角形,同理△ABE是等腰三角形,AD=DF=9;∵AB=BE=6,∴CF=3;∴在△ABG中,BG⊥AE,AB=6,BG=4,可得:AG=2,又BG⊥AE,∴AE=2AG=4,∴△ABE的周长等于16,又∵▱ABCD∴△CEF∽△BEA,相似比为1:2,∴△CEF的周长为8.。
相似三角形的性质(小练习)

相似三角形的性质(小练习)1、⑴已知ABC ∆∽'''C B A ∆的相似比为32:,则它们对应中线的比为_______;⑵已知两个相似三角形对应高的比是14:,则它们的对应角平分线的比是_______; ⑶已知ABC ∆∽'''C B A ∆,AD 、''D A 分别是ABC ∆和'''C B A ∆的角平分线,且23=''D A AD ,9=AB ,则_______''=B A⑷ ABC ∆∽DEF ∆且3=BC ,6=EF ,DE 边上的中线为10 ,求AB 边上的中线为2、已知△ABC ∽△A ’B ’C ’,对应边的中线之比为32,△A ’B ’C ’的周长为24cm ,面积为18c ㎡,则''ABA B =_____,△ABC 的周长等于____cm ,△ABC 的面积为_____c ㎡. 3、△ABC ∽△A ’B ’C ’,相似比为3:4,且两个三角形的面积之差为28cm 2,则△ABC 的面积为______cm 2, △A ’B ’C ’的面积为_____cm 2.4、如图,梯形ABCD 中,AD//BC,AC/BD 交于点O ,S △AOD =4,S △BOC =9,则ADBC=_______, S △AOB =_____,S 梯形ABCD =________.5、如图,△ABC 中,DE//BC,且AD:BD=4:3,则DE:BC=_______,AEDBCEDS S ∆=______.6、已知点D 和E 在△ABC 的边AB 和AC 上,DE//BC,DE:BC=1:3,四边形DBCE 的面积为16,则△ABC 的面积为7、.已知DE // BC , CD 与 BE 相交于点 O ,并且S △DOE :S △COB =4:9则 AE : AC =( ).COEDCBAC( A ) 4:9 ( B ) 16: 81 ( C ) 2: 3 (D) l : 28、竿高1.5米,影长1米,同一时刻,某塔影长20米,则塔高是_________米.10,16,12,,ABC AB ACBC P D BC AC BP APD B CD ∆====∠=∠例题1 在中,点和分别在和上,求的长.10、已知,如图,在△ABC 中,AB=AC ,点E 、F 在边BC 上,∠EAF=∠B, 求证:BF ·CE=AB 211.如图,△ABC 中,AD ⊥BC 于D ,FGHI 为矩形,95=GH FG ,BC=36cm ,AD=12cm , 求矩形FGHI 的周长.PDCBA9、12.如图△ABC中,DE//FG//BC,且AD=DF=BF.求S△ADE:S四边形DFGE:S四边形FBCG。
相似三角形练习题及答案

相似三角形练习题及答案在初中数学中,相似三角形是一个很重要的概念。
相似三角形具有相同的形状,但是尺寸不同。
理解相似三角形的性质对于解决几何问题和计算三角形的边长和角度非常有帮助。
下面是一些相似三角形的练习题,帮助你巩固对该概念的理解,并附有答案供参考。
练习题一:已知△ABC和△DEF相似,且AB = 6cm,AC = 8cm,BC = 12cm。
若DE = 9cm,求DF和EF的长度。
练习题二:△ABC和△PQR中,∠B = ∠Q,AB = 5cm,BC = 8cm,PQ = 6cm,若AC = 10cm,求PR的长度。
练习题三:已知△ABC和△DEF相似,DE = 4.5cm,EF = 6cm,BC = 12cm,若AC = 8cm,求△ABC和△DEF的周长比。
练习题四:在△ABC中,∠B = 90°,AB = 9cm,BC = 12cm。
点D是BC的中点,于BC上作DE ⊥ BC,DE = 3cm。
求△ADE和△ABC的周长比。
练习题五:已知△ABC和△DEF相似,AB = 10cm,BC = 12cm,AC = 15cm,EF = 6cm,若△DEF的面积为18平方厘米,求△ABC的面积。
答案及解析如下:练习题一:由相似三角形的性质可知,相似三角形的边长之比相等。
设DF = x,EF = y。
根据题意可写出比例:AB/DE = AC/EF = BC/DF代入已知值,得到:6/9 = 8/y = 12/x解得:x = 16cm,y = 12cm因此,DF = 16cm,EF = 12cm。
练习题二:由相似三角形的性质可知,相似三角形的边长之比相等。
设PR = x。
根据题意可写出比例:AB/PQ = AC/PR = BC/QR代入已知值,得到:5/6 = 10/x = 8/(6 + x)解得:x = 15cm因此,PR = 15cm。
练习题三:由相似三角形的性质可知,相似三角形的边长之比相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似三角形性质练习题
一、选择题;
1、两个相似三角形的相似比为2:3,则这两个三角形的周长比等于( ) A 、2:3 B 、2:3 C 、4:9 D 、不确定
2两个相似多边形的一组对分别是3cm 和4.5cm ,如果它们的面积之和是78cm 2, 那么较大的多边形的面积是 cm 2 ( ) (A)44.8 (B)42 (C)52 (D)54
3、两个相似多边形的面积比是16∶81,其中较小多边形周长为24 cm,则较大多边形周长为( ) A.52 cm B.54 cm C.66 cm D.74 cm 已知:如图1,DE ∥BC ,AD: DB=1:2,则下列结论不正确的是( ) A 、
1
2
DE BC = B 、
19ADE ABC ∆=∆的面积的面积 C 、13ADE ABC ∆=∆的周长的周长 D 、
18
ADE ∆=的面积四边形BCED 的面积
4、如果两个相似三角形对应角平分线的比为16:25,那么它们的面积比为( ) A .4:5 B .16:25 C .196:225 D .256:625
如果两个等腰直角三角形斜边的比是1∶2,那么它们的面积的比是( ) A .1∶1 B .1∶2 C .1∶2
D .1∶4
5.若ABC △的周长为20cm ,点D E F ,,分别是ABC △三边的中点, 则DEF △的周长为( )
A.5cm
B.10cm
C.15cm
D.
20
cm 3
6、两个相似三角形的面积比为1:4,那么它们的对应中线的比为( ) A .1:2 B. 2:1 C.2:1 D. 1:2
7、在一张由复印机复印出来的纸上,一个多边形图案的一条边由原来的1cm 变成2cm ,那么这次复印出来的多边形图案面积是原来的( ) A .1倍 B .2倍 C .3倍 D .4倍
8、如图,已知DE ∥BC ,CD 和BE 相交于点O ,DOE S ∆∶COB S ∆=4∶9,
则AE ∶EC 为( )
A 、2∶1
B 、2∶3
C 、4∶9
D 、5∶4
9、如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为
CD ,AB ∥CD ,AB =2m ,CD =5m ,点P 到CD 的距离是3m ,则P 到
AB 的距离是( )
A.56m
B.67m
C.65m
D.103
m 二、填空题;
1、已知△ABC ∽△A′B′C′,BD 和B′D′是它们的对应中线,且C A AC ''=23,B′D′=4,
则BD 的长为 .
2、已知△ABC ∽△A′B′C′,AD 和A′D′是它们的对应角平分线,且AD=8 cm, A′D′=3 cm.,则△ABC 与△A′B′C′对应高的比为
3、如果两个相似三角形的相似比为1:4,则这两个三角形的对应的高的比为_______,对应角分线的比为____
两个相似三角形面积的比为9∶16,其中小三角形的周长为36cm ,则另一个三角形的周长为
4、若△ABC ∽△A′B′C′,AB=4,BC=5,AC=6,△A′B′C′的最大边长为15,那
么它们的相似比是________,△A′B′C′的周长是________.
5、若两个相似三角形的最大边长为35cm 和14cm ,它们的周长差为60cm ,则教大三角形的周长是
6、两个相似三角形面积之差为9cm 2,对应的中线的比是2∶3,这两个三角形的面积分别是 。
7、把一个三角形放大成和它相似的三角形,如边长扩大为原来的10倍,那么,面积扩大为原来的 倍;如面积扩大为原来的10倍,那边长扩大为原来的 倍 8、两个相似三角形的一对对应边长分别是24cm 和12cm .
(1)若它们的周长和是120cm ,则这两个三角形的周长分别为 和 ; (2)若它们的面积差是420cm 2,则这两个三角形的面积分别为 和 . 三、解答题:
1、在比例尺为1:500的地图上,测得一个三角形地块ABC 的周长为12cm,面积为6 cm2,求这个地块的实际周长和面积。
2、如图,若△ADE∽△ABC,DE和AB相交于点D,和AC相交于点E,DE=2,BC=5,
S△ABC=20,求S△ADE.
3、已知△ABC∽△DEF,BG、EH分别是△ABC和△DEF的角平分线,BC=6cm, EF=4cm,BG=4.8cm.求EH的长。
4、如图,平行四边形ABCD中,E是BC上一点,AE交
BD于点F,已知BE∶EC=3∶1,S△FBE=18,求S△FDA.
5、如图,平行四边形ABCD中,AE∶EB=1∶2,求△AEF与△CDF的周长的比.
如果S
△AEF =6cm2,求S
△CDF
.
6、如图,△ABC是一块锐角三角形余料,其中BC=12 cm,高AD=8 cm,现在要
把它裁剪成一个正方形材料备用,使正方形的一边在BC上,其余两个顶点分别
在AB、AC上,问这个正方形材料的边长是多少?
7、如图,△ABC中,BC=30,高AD=18,作矩形PQRS,使得P、S分别落在AB、AC边上,Q、R落在BC边上.
(1)求证:△APS ∽△ABC;
(2)如果矩形PQRS是正方形,求它的边长;
(3)如果AP∶PB=1∶2,求矩形PQRS的面积.
8、如图、把三角形ABC沿AB边平移到三角形A ’B’C’的位置,它们的重叠部分(阴影部分)的面积是三角形ABC面积的一半。
若AB= ,求此三角形平移的距离AA’
22。