61从实际问题到方程

合集下载

6.1 《从实际问题到方程》 课件 华师大版 (9)

6.1 《从实际问题到方程》 课件 华师大版 (9)
右边=-13 因为左边≠右边, 所以x=1不是方程的解.
根据题意设未知数,并列出方程(不必求解): 1. 某班原分成两个小组活动,第一组26人,第二 组22人,根据学校活动器材的数量,要将第一组人 数调整为第二组人数的一半,应从第一组调多少人 到第二组去? 2. 小明的爸爸三年前为小明存了一份 3000元的教育储 蓄 . 今年到期时取出,得到的本息和为 3243 元 . 请你 帮小明算一算这种储蓄的年利率.
等量关系: 胜的分数 + 平的分数 = 总分
如果设甲队胜了x场,则平的场数是 (10- x) 场, 那么可得到方程
3x (10 x) 22

测一测:
1、根据题意列方程:
在一卷公元前 1600年左右遗留下来的古埃及草卷 中,记载着一些数学问题,其中一个问题翻译过 1 来是:“啊哈,它的全部,它的 ,其和等于 — 19”,你能求出问题中的它吗? 7
(3)某长方形足球场的周长是 310米,长和宽之 差为25米,这个足球场的长和宽分别是多少米? 等量关系: 2(长+宽)=周长
如果设这个足球场的宽为x 米, 那么它的长 就是 ( x 25)米。 由此可得方程 2x ( x 25) 310.
x+25 足球场 x
(2)甲、乙两队开展足球对抗赛,规定每队 胜一场得3分,平一场得1分,负一场得0分, 甲队与乙队一共比赛了 10 场,甲队保持了不 败的记录,一共得了 22 分,甲队胜了几场? 平了几场?
例2 检验下面方程后面括号内所列各 数是否为这个方程的解: 2(x+2)-5(1-2x)=-13, {x=-1,1}
解:将x=-1代入方程的两边得
将x=1代入方程的两边得
左边=2(-1+2)-5[1-2×(-1)]=-13

华师版七年级下册数学第6章 一元一次方程 从实际问题到方程

华师版七年级下册数学第6章 一元一次方程  从实际问题到方程

【点拨】已知上半年每月平均用电 x 千瓦时,则下半年每月平均 用电(x-2 000)千瓦时.由题意,得 6x+6(x-2 000)=150 000.故 选 A. 易错警示:在列方程时,要注意单位的统一,本题易因没 有统一单位而错选 C.
【答案】A
6.已知下列方程后面的大括号里有一个数是方程的解,请把它 找出来:
(1)4x-2x-3=0 4,32;
解:把 x=4 代入原方程的左边,得左边=4×4-2×4-3=5. 因为右边=0,所以左边≠右边, 所以 x=4 不是原方程的解. 把 x=32代入原方程的左边,得左边=4×32-2×32-3=0. 因为右边=0,所以左边=右边. 所以 x=32是原方程的解.
(2)4x-3=2x+3 {-2,3}. 解:把 x=-2 代入原方程的左右两边,得左边=4×(-2)-3= -11,右边=2×(-2)+3=-1. 所以左边≠右边. 所以 x=-2 不是原方程的解. 把 x=3 代入原方程的左右两边,得左边=4×3-3=9,右边=2×3 +3=9.所以左边=右边. 所以 x=3 是原方程的解.
【答案】C
5.【易错题】某工厂采取节能措施后,去年下半年与上半年相比, 月平均用电量减少 2 000 千瓦时,全年用电 15 万千瓦时.若 设上半年每月平均用电 x 千瓦时,则所列方程正确的是( ) A.6x+6(x-2 000)=150 000 B.6x+6(x+2 000)=150 000 C.6x+6(x-2 000)=15 D.6x+6(x+2 000)=15
由题意可得 0<x<10 且 x 为整数,列表计算:
x
123456789
0.3x+0.5·(10-x) 4.8 4.6 4.4 4.2 4 3.8 3.6 3.4 3.2

6.1_华师大从实际问题到方程

6.1_华师大从实际问题到方程

2.全班同学去划船,如果减少一条船,每条 船正好坐9个同学;如果增加一条船,每条 船正好坐6个同学.问这个班有多少个同学? (只列方程不求解) 解:设这个班有x个同学 x 根据题意列方程,得:9 1
x 1 6
小结
1、什么是等式?什么是方程? 2、根据题意列出方程的一般步骤?
(1)弄清题意和其中的数量关系,用字母表示适当 的未知数。 (2)找出题目中有关数量的相等关系。 (3)对这个等量关系中涉及的量,列出所需的表达 式,根据等量关系,得到方程。
2 n 1
是同类项, ∴m-1=2,n-1=2.解得m=3,n=3. ∴x=3.把x=3分别代入方程的左边和右边, 得左边=2×3-6=0=右边, mn ∴x ,即x=3是方程2x-6=0的解。
2
思维训练:
1.甲.乙两个运输队,甲队32人, 乙队28人,若乙队调走x人到甲队, 则甲队人数是乙队人数的2倍,其 中x应满足的条件是( ) B A 2(32+x)=28-x C 32=2(28-x) B D 32+x=2(28-x) 3×32=28-x
请大家把下面的句子用方程的形式表示 出来:
4 (1)某数的 与1的和是2; 5 (2)某数的4倍等于某数的3倍
2 (3)某数与8的差的 等于0。 3
与7的差;
(1)弄清题意和其中的数量关系, 用字母表示适当的未知数。 (2)找出题目中有关数量的相等关系。 (3)对这个等量关系中涉及的量, 列出所需的表达式,根据等量关系, 得到方程。
右边= - 123
左边=右边
∴ y= - 10 是方程的解
当y= 10时,左边=11 y – 13= 97 右边= 147
左边≠右边
∴ y= 10不 是方程的解

从实际问题到方程

从实际问题到方程

§6.1 从实际问题到方程科目:七年级数学备课人:王淑轶【教学目标】1.能判断一个数是不是某个方程的解,掌握用尝试检验方法求方程的解的思想方法;2.会列一元一次方程解决一些简单的应用题;3.初步认识方程与现实问题的联系,感受数学的应用价值,激发数学学习兴趣。

【教学重点】能判断一个数是不是某个方程的解,会列一元一次方程解决一些简单的应用题。

【教学难点】会列一元一次方程解决一些简单的应用题。

【教学过程】一、复习回顾,导入新课1.列方程解下面的应用题:一本笔记本1.2元。

小红有6元钱,那么她最多能买到多少本这样的笔记本呢?解:设小红能买到x本笔记本,根据题意得:1.2x=6解得:x=5答:小红能买到5本这样的笔记本。

2.结合上题的解答,说说列方程解应用题的一般步骤是什么?有哪些应当注意的问题?二、自主探索1.阅读课本1页“第6章导图”内容,试分别用算术法和方程法解答:一队师生共328人,乘车外出旅游,已有校车可乘64人,如果租用客车,每辆可乘44人,那么还要租多少辆客车?算术法:方程法:(328-64)÷44 解:设需要租用x辆客车,根据题意得:=264÷44 44x+64=328=6(辆) 解得: x =6答:还要租用6辆客车。

答:还要租用6辆客车。

2.阅读课本2页~3页“问题2”内容,完成下列问题:(1)小敏同学得出答案使用的是什么方法?他的答案正确吗?小敏同学是用“尝试、检验”的方法找出方程的解的。

他的答案是正确的。

(2)你能列方程解答张老师的这道题吗?试一试。

三、合作交流1.你用方程法得到的答案和小敏的答案一样吗?你有什么发现?2.讨论:如果未知数可能取到的数值较多,或者不一定是整数,该从何试起?如果试验根本无法入手又该怎么办呢?四、实践应用1.课本3页“习题6.1”第1~3题。

2.补充练习:(1)检验下列方程后面括号内所列各数是否为相应方程的解。

(a)x-3(x+2)=6+x (x=3,x=-4)(b)2y(y-1)=3 (y=-1,y=32) (c)5(x-1)(x-2)=0 (x=0,x=1,x=2)(2)根据题意,列出相应的方程,不必求解。

学习应用方程解决实际问题——从算式到方程教案设计

学习应用方程解决实际问题——从算式到方程教案设计

学习应用方程解决实际问题——从算式到方程教案设计从算式到方程教案设计一、教学目标通过本节课的学习,学生能够:1.掌握将实际问题转化为方程的方法;2.认识利用方程解决实际问题的重要性;3.掌握解方程的方法和技巧,熟练运用这些技巧和方法解决实际问题。

二、教学重点1.理解方程与实际问题的关系;2.掌握解方程的方法和技巧。

三、教学难点1.将实际问题转化为方程;2.解决复杂的实际问题。

四、教学方法讲授、练习与反思相结合。

五、教学内容1.方程与实际问题的关系在生活中,我们经常会遇到各种各样的实际问题,而实际问题不一定用算式就能解决。

因此,我们需要将实际问题转化为方程才能解决。

什么是方程呢?方程是用来表示未知数与已知数之间关系的数学语句。

通过将实际问题转化为方程,我们可以用数学方法解决问题。

例如:小明去买水果,买了苹果和香蕉两种水果,苹果6元一斤,香蕉8元一斤,共花费了24元。

苹果买了3斤,香蕉买了2斤。

问苹果和香蕉分别多少斤。

设苹果的重量为x,香蕉的重量为y,则有以下方程:6x + 8y = 24x + y = 5通过解方程可以得出:苹果3斤,香蕉2斤。

2.解方程的方法和技巧在解决实际问题过程中,我们需要掌握解方程的方法和技巧。

下面介绍一些常用的方法和技巧。

1)一元一次方程的解法一元一次方程指的是只有一个未知数,并且这个未知数的最高次数是一次的方程。

如:ax+b=0(a≠0)。

解一元一次方程的方法(1)两边加或减一个数(2)两边同时乘以或除以一个数(不允许除以0)(3)移项变号(4)利用等式的性质,如:2)二元一次方程的解法二元一次方程指的是有两个未知数,并且这两个未知数的最高次数都为一次。

如:ax+by=c,dx+ey=f。

解二元一次方程的方法(1)联立方程组(2)代入法(3)消元法(4)Cramer法则……六、教学实践1.通过教师讲授,学生笔记,展示练习等方式,让学生掌握将实际问题转化为方程的方法,认识利用方程解决实际问题的重要性,掌握解方程的方法和技巧。

6.1 《从实际问题到方程》 课件 华师大版 (5)

6.1 《从实际问题到方程》 课件 华师大版 (5)
初中数学七年级下册
(华师大版)
1.创设情境,引入新课





问 题
问题一: 回顾应用方程解决问题一般步骤?
(1)审:审题,分析题中的已知量、未知量,明确它们之 间的关系; (2)找:找出能表示问题中全部含义的一个等量关系; (3)设:设未知数(一般求什么就设什么)并写单位名称; (4)列:根据等量关系列出方程; (5)解:解所列出的方程,求出未知数的值; (6)答:检验所求解是否符合题意,写出答案.
1.创设情境,引入新课





问 题
问题一: 回顾应用方程解决问题一般步骤?
鸡兔同笼:今有鸡兔同笼,上有三十五头, 下有九十四足,问鸡兔各几何?
2.合作质疑,探索新知





问 题
问题二:
等量关系式:鸡足数量+兔足数量=总的足数 设鸡有x只,则兔有(35-x)只
数量 鸡 兔 头 足
x (35-x)
生产螺钉1200个或螺母2000个,一个螺钉要配2
个螺母,为了使每天的产品刚好配套,应该分配 多少名工人生产螺钉,多少名工人生产螺母?
用 5.发展能力,拓展延伸




问 题
古代有这样一个寓言故事,驴子和骡子一同走,他们驮着
不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担
太重,骡子说:你抱怨干嘛?如果你给我一袋,那么我所负
3.自主归纳,形成方法





问 题
学生自主归纳:如何利用列表方法分析实际问题?
巩固练习


6.1从实际问题到方程

6.1从实际问题到方程

问题2 在课外活动中,张老师发现同学们的年龄
基本上都是13岁,就问同学们:“我今年45岁,经 1 ?”(你能 过几年后你们的年龄正好是我年龄的 3 给出答案吗?) 列举法:
1 1年后:老师46,学生14,不是老师年龄的 ; 3 1 2年后:老师47,学生15,不是老师年龄的 ; 3 3年后:老师48,学生16,恰好是老师年龄的 1 。 3
你会列方程来解答吗?
1 解: 设经过x年后同学的年龄是老师年龄的 , 设经过x年后同 3
学的年龄是(13+x)岁,老师年龄是(45+x)岁.
根据题意得方程:
1 13 x 45 x 3
用小学的数学知识, 你会求出这个方程的解吗?
想一想:
⑴什么叫做方程的解?能够使方程左右两边的值相等的未 知数的值,叫做方程的解。 ⑵从小敏同学的解法中你能得到什么启发,求出这个方程 的解?
例:检验下面方程后面大括号内所列的数是不是方程
的解. 5x 1 x 1, 8
3 ,3 2
思考
已知x=2是方程2(x-3)+1=x+m的解,求m的值.
想一想:
把问题2中的“三分之一”改为“二 x 45 x 2
华东师大版七年级下册《数学》
制作:遂宁一中HDL
问题1
某校七年级328名师生乘车外出春游,已知有2辆
校车可乘坐64人,还需要租用44座的客车多少辆? 你能用算术方法和代数方法 分别解答这个问题吗? 算术解法: 需租用44座客车的辆数是: (328-64)÷44 =264÷44 =6(辆) 代数解法: 设租用44座客车x辆,则共可乘坐44x人, 根据题意得: 44x+64=328 解得:x=6

华师大版七下数学6.1《从实际问题到方程》教学设计

华师大版七下数学6.1《从实际问题到方程》教学设计

华师大版七下数学6.1《从实际问题到方程》教学设计一. 教材分析华师大版七下数学6.1《从实际问题到方程》这一节主要介绍了方程的概念和实际问题与方程的联系。

通过本节课的学习,学生能够理解方程的定义,掌握一元一次方程的解法,并能够将实际问题转化为方程进行求解。

二. 学情分析学生在学习本节课之前,已经掌握了有理数的运算和一元一次不等式的解法,但对于方程的概念和实际问题与方程的联系可能还不够清晰。

因此,在教学过程中,需要引导学生从实际问题中发现方程,理解方程的定义,并掌握一元一次方程的解法。

三. 教学目标1.理解方程的概念,能够识别一元一次方程。

2.掌握一元一次方程的解法,能够将实际问题转化为方程进行求解。

3.培养学生的数学思维能力和问题解决能力。

四. 教学重难点1.重难点:一元一次方程的解法和实际问题与方程的联系。

2.难点:理解方程的概念,将实际问题转化为方程。

五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生从实际问题中发现方程。

2.案例教学法:通过分析典型案例,让学生理解实际问题与方程的联系,掌握一元一次方程的解法。

3.小组合作学习:引导学生进行小组讨论和合作,培养学生的团队合作能力和问题解决能力。

六. 教学准备1.教学PPT:制作相关的教学PPT,展示典型案例和实际问题。

2.教学案例:准备一些相关的实际问题,用于引导学生发现方程和练习解方程。

3.练习题:准备一些练习题,用于巩固学生对一元一次方程的解法的掌握。

七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,如购物时找零问题、速度和时间问题等,引导学生从实际问题中发现方程,并激发学生的学习兴趣。

2.呈现(10分钟)通过PPT呈现方程的定义和一元一次方程的解法,让学生了解方程的基本概念和求解方法。

3.操练(10分钟)让学生分组讨论,每组选择一个实际问题,尝试将其转化为方程,并运用一元一次方程的解法进行求解。

教师巡回指导,给予学生必要的帮助和提示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:设这种储蓄 的年利率是x ,则
3000+3000 x 3=3243
习题精讲
1、检验下列方程后面大括号内所列各数是否为相应 方程的解:
(1) 5x 1 x 1 8
x=3
3 2
,3
(2) 2(y-2)-9(1-y)=3(4y-1),{-10,10}
x=-10
பைடு நூலகம்
习题精讲
3、小赵去商店买练习本,回来后问同学:“店主告 诉我,如果多买一些就给我八折优惠.我就买了20 本,结果便宜了1.60元.你猜原来每本价格是多少?” 你能列出方程吗?
注重联系实际,激发我们的学习兴趣.
复习
我们知道:
☆含有未知数的等式,称为方程.
3x 4 0 7 y 6 8y 5x 2 7x 8
☆方程是为了解决实际问题而引入的.
复习 练一练
(1)3 2 1
(4)x2 2x 1 (7)0
(10)a2 1 2a
(2)3x y 2y x (3)2x 4 0
13+x
=
1 3
(45+x)
当x=1时:左边=13+1=14,
右边= 13(45+1)≠14
当x=2时:左边=13+2=15, 右边= 13(45+2)≠15
当x=3时:左边=13+3=16, 右边= 13(45+3)=16 所以X=3是方程 13+x =13 (45+x) 的解
这样得到 x = 3是方程的解.因为x=3能使方程左右
(5)2m 4n 0 (6)3x 2y
(8)
x 2 1 x 5
3
(9)y2 2 0
属于代数式的是: (4) (6) (7)

属于等式的是: (1) (2) (5) (8) (9) ;
属于方程的是: (2) (5) (8) (9)

看谁做得又对又快:
问题一: 天林初中全体师生共543人,乘车外出 旅游,已有部分老师的小车可乘59人,如果租 用客车,每辆可乘44人,那么还要租多少辆客 车?
(八折即原价的80﹪)
设原来每本价格是 x 元,则
20x 200.8x 1.6
课堂小结一
1、概念的区分:
2年后,老师47岁,同学们的年龄是15岁,不是老师的三分之一
3年后,老师48岁,同学们的年龄是16岁, 是 老师的三分之一
你能否用列方程的方法来解呢?
问题2 在课外活动中,张老师发现同学们的年龄大多
是13岁,就问同学:“我今年45岁,几年以后你们的 年龄是我年龄的三分之一?
解:设x年后学生年龄是老师年龄的三分之一
(2) 10=3x+1 (0, 1, 2, 3)x=3 (3) 2x-4=12 (4, 8, 12) x=8
检验方程的解的书写格式
例: 检验下面方程后面括号内所列各数是否为这个方程的解:
2(x+2)-5(1-2x)=-13, { x =-1, 1 }
解:将x=-1代入方程的两边,得: 将x=1代入方程的两边,得:
原来 调整后
第一组
26
26-x
第二组
22
22+x
练习题精讲
根据题意设未知数,并列出方程(不必求解):
2、小明的爸爸三年前为小明存了一份3000元的教育储 蓄.今年到期时取出,得到的本利和为3243元.请你帮小 明算一算这种储蓄 的年利率.
(本利和是指本金与利息的和) (年利息=本金×年利率×年数)
两边的值都相等.
归纳: 如何检验一个数是某方程的解?
方法:将这个数分别代入原方程的左边和右边计算 代数式的值,如果左边=右边,那么这个数就是这 个方程的解;如果左边≠右边,那么这个数就不是 这个方程的解.
练习 以下各方程后面的括号内分别给出了一组
数,从中找出方程的解.
(1) 6x+2=14 (0, 1, 2, 3)x=2
左边=2(-1+2)-5[1-2×(-1)]=-13 左边=2(1+2)-5(1-2×1)=11
右边=-13
右边=-13
因为 左边=右边,
因为 左边≠右边,
所以 x=-1是方程的解.
所以 x=1不是方程的解.
思考题: 5x-1=2x+7 (x= ? )
如果未知数可能取到的数值较多,或者不一 定是整数,该从何试起?如果试验根本无法 入手又该怎么办?
分析
这是一个利用方程解决的实际问题,基本思路是先 分析问题中的数量关系,包括已知数和未知数以及包括 题目中所含有的等量关系. 如上题中的等量关系为:
乘坐小车的人数+乘坐客车的人数=师生总人数
然后用字母表示未知数(即设元)列出需要的代数 式.如44x,从而根据等量关系列出方程.
天林初中全体师生共543人,乘车外出旅游, 已有部分老师的小车可乘59人,如果租用客车, 每辆可乘44人,那么还要租多少辆客车?
学生年龄=
1 3
×老师年龄
13+x
=
1 3
(45+x)
我们来求出方程的解
13+x
=
1 3
(45+x)
方程的解的定义:使方程左右两边的值都相等的
未知数的值,叫做方程的解.
可以用尝试、检验的方法找出方程的解,即只
要将x=1,2,3,4,5, …代入方程的左右两边,
看哪个数能使两边的值相等.
能使方程的左边=右边的未知数的值叫着方程的解.
那就只有“解”方程了.
练习题精讲
根据题意设未知数,并列出方程(不必求解):
1、某班原分成两个小组活动,第一组26人,第二 组22人,根据学校活动器材的数量,要将第一组人数 调整为第二组人数的一半,应从第一组调多少人到第二 组去?
解:设应从第一组调x人到第二组,则 26 x 1 (x 22). 2
44 (?) 59 543
设需租用客车 x 辆,共可乘坐44x人,
加上部分老师的小车可乘59人,就是全体543人.
可得: 44x 59 543.
你会解这个方程吗? 试一试.
x 11.
问题2 在课外活动中,张老师发现同学们的年龄大多 是13岁,就问同学:“我今年45岁,几年以后你们的 年龄是我年龄的三分之一? 小敏同学很快说出了答案. 他是这样算的: 1年后,老师46岁,同学们的年龄是14岁,不是老师的三分之一
华东师大版义务教育课程标准 数学(七年级下) 第六章 一元一次方程
6.1 从实际问题到方程
1 .知识与技能 (1)会列一元一次方程; (2)会判断一个数是不是某个方程的解. 2 .过程与方法 (1)让我们初步认识方程与现实生活的联系,感受
数学价值; (2)让我们在练习中尝试检验的方法找出部分方
程的解. 3.情感目标
相关文档
最新文档