从实际问题到方程

合集下载

6.1 《从实际问题到方程》 课件 华师大版 (9)

6.1 《从实际问题到方程》 课件 华师大版 (9)
右边=-13 因为左边≠右边, 所以x=1不是方程的解.
根据题意设未知数,并列出方程(不必求解): 1. 某班原分成两个小组活动,第一组26人,第二 组22人,根据学校活动器材的数量,要将第一组人 数调整为第二组人数的一半,应从第一组调多少人 到第二组去? 2. 小明的爸爸三年前为小明存了一份 3000元的教育储 蓄 . 今年到期时取出,得到的本息和为 3243 元 . 请你 帮小明算一算这种储蓄的年利率.
等量关系: 胜的分数 + 平的分数 = 总分
如果设甲队胜了x场,则平的场数是 (10- x) 场, 那么可得到方程
3x (10 x) 22

测一测:
1、根据题意列方程:
在一卷公元前 1600年左右遗留下来的古埃及草卷 中,记载着一些数学问题,其中一个问题翻译过 1 来是:“啊哈,它的全部,它的 ,其和等于 — 19”,你能求出问题中的它吗? 7
(3)某长方形足球场的周长是 310米,长和宽之 差为25米,这个足球场的长和宽分别是多少米? 等量关系: 2(长+宽)=周长
如果设这个足球场的宽为x 米, 那么它的长 就是 ( x 25)米。 由此可得方程 2x ( x 25) 310.
x+25 足球场 x
(2)甲、乙两队开展足球对抗赛,规定每队 胜一场得3分,平一场得1分,负一场得0分, 甲队与乙队一共比赛了 10 场,甲队保持了不 败的记录,一共得了 22 分,甲队胜了几场? 平了几场?
例2 检验下面方程后面括号内所列各 数是否为这个方程的解: 2(x+2)-5(1-2x)=-13, {x=-1,1}
解:将x=-1代入方程的两边得
将x=1代入方程的两边得
左边=2(-1+2)-5[1-2×(-1)]=-13

6.1_华师大从实际问题到方程

6.1_华师大从实际问题到方程

2.全班同学去划船,如果减少一条船,每条 船正好坐9个同学;如果增加一条船,每条 船正好坐6个同学.问这个班有多少个同学? (只列方程不求解) 解:设这个班有x个同学 x 根据题意列方程,得:9 1
x 1 6
小结
1、什么是等式?什么是方程? 2、根据题意列出方程的一般步骤?
(1)弄清题意和其中的数量关系,用字母表示适当 的未知数。 (2)找出题目中有关数量的相等关系。 (3)对这个等量关系中涉及的量,列出所需的表达 式,根据等量关系,得到方程。
2 n 1
是同类项, ∴m-1=2,n-1=2.解得m=3,n=3. ∴x=3.把x=3分别代入方程的左边和右边, 得左边=2×3-6=0=右边, mn ∴x ,即x=3是方程2x-6=0的解。
2
思维训练:
1.甲.乙两个运输队,甲队32人, 乙队28人,若乙队调走x人到甲队, 则甲队人数是乙队人数的2倍,其 中x应满足的条件是( ) B A 2(32+x)=28-x C 32=2(28-x) B D 32+x=2(28-x) 3×32=28-x
请大家把下面的句子用方程的形式表示 出来:
4 (1)某数的 与1的和是2; 5 (2)某数的4倍等于某数的3倍
2 (3)某数与8的差的 等于0。 3
与7的差;
(1)弄清题意和其中的数量关系, 用字母表示适当的未知数。 (2)找出题目中有关数量的相等关系。 (3)对这个等量关系中涉及的量, 列出所需的表达式,根据等量关系, 得到方程。
右边= - 123
左边=右边
∴ y= - 10 是方程的解
当y= 10时,左边=11 y – 13= 97 右边= 147
左边≠右边
∴ y= 10不 是方程的解

初中七年级上册数学《从算式到方程》教案

初中七年级上册数学《从算式到方程》教案

初中七年级上册数学《从算式到方程》教案五篇初中七年级上册数学《从算式到方程》教案一1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义;2、了解什么是方程,什么是一元一次方程及什么是方程的解。

1、认识列方程解决问题的思想以及用字母表示未知数,用方程表示相等关系的符号化的方法2、结合从实际问题中得出的方程,学会用“去分母”解一元一次方程,进一步体会化归的思想。

体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学习数学的热情。

建立一元一次方程的概念。

问题与情境师生活动设计意图一、创设情境,展示问题:问题1:世界最大的动物是蓝鲸,一只蓝鲸重124吨,比一头大象体重的25倍少一吨,这头大象重几吨? 问题2:章前图中的汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水之间,距青山50千米,距秀水70千米,王家庄到翠湖有多远? 地名时间王家庄10:00 青山13:00 秀水15:00 教师展示问题,要求用算术解法,让学生充分发表意见。

算术方法:(124+1)25=5(吨)方程方法:可设大象重为`吨,则124=25`-1 学生独立思考,小组交流,代表发言,解释说明。

问题1的算术解法:(50+70)2=60(千米/时) 605-70=230(千米) 问题1用算术法较容易解决,但问题2却不容易解决,这样产生矛盾冲突,使学生认识到进一步学习的必要性。

示意图有助于分析问题。

二、寻找关系,列出方程1、对于问题1,如果设王家庄到翠湖的路程是`千米,则:路程时间速度王家庄-青山王家庄-秀水根据汽车匀速前进,可知各路段汽车速度相等,列方程。

2、比一比:列算式与列方程有什么不同?哪一个更简便?3、想一想:对于问题1,你还能列出其他方程吗?如果能,你根据的是哪个相等关系?你认为列方程的关键是什么? 结合图形,引导学生分析各路段的路程、速度、时间之间的关系,填写表格。

学生思考回答:1、王家庄-青山(`50)千米,王家庄-秀水(`+70)千米。

实际问题与一元一次方程解题技巧

实际问题与一元一次方程解题技巧

实际问题与一元一次方程解题技巧现实生活中常常需要列方程解决实际问题。

实际问题的内容不一定很精确,它一般比数学问题更宽一些。

如工程问题、调配问题、生产问题、造价问题、行程问题、时间问题等都是实际生活中的典型问题。

这些问题和方程对提高我们的数学素养和解决实际问题的能力有很大的帮助。

一、实际问题转化为数学问题——建立方程实际问题往往很复杂,涉及到的未知数很多,关系很复杂,列方程往往无从下手。

这就要求我们先认真审题,从中找出已知量和未知量,再找出它们之间的数量关系,从而列出方程。

例:一个水池可贮水250吨,现水池中已有水50吨,再注入多少水才能使水池中水量达300吨?分析:这是一个工程问题,先要求出水池的贮水增量与注入的水量之间的关系,再根据题目条件列出方程。

解:设再注入x吨水,则有方程:(250+50)+x=300二、解一元一次方程——化简求值解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项、系数化为1。

在解某些方程时,往往需要灵活运用各种方法,如因式分解法、公式法等。

在解一元一次方程时,要注意检验。

例:解方程:3(2x-1)-(x+2)=8-2(x-1)分析:去括号、移项时要注意符号的变化。

解:去括号得:6x-3-x-2=8-2x+2移项合并同类项得:7x=13解得:x=1.3三、实际问题解答要完整——实际问题解答时要注意完整地叙述表达实际问题中的对象、关系、叙述准确、完整;特别是实际问题的等量关系,在解答过程中常常需要构造代数式把它转化为一元一次方程加以解决;另外对实际问题的解答要有初步估计,看看结果是否符合实际情况。

解一元一次方程的基本步骤也可以直接应用于一元一次方程的实际问题。

在解答实际问题时,我们还要注意以下几点:1. 实际问题中有些数据是多余的,在解答时可以不要;如果某些数据在题目中没有出现,当然也不能代入。

2. 实际问题中数量关系式较多时容易使人分辨不清,在列方程的过程中,对于基本数量关系一定要用具体的字或词表示出来,防止由于概括不当造成的错误。

从实际问题到方程

从实际问题到方程

§6.1 从实际问题到方程科目:七年级数学备课人:王淑轶【教学目标】1.能判断一个数是不是某个方程的解,掌握用尝试检验方法求方程的解的思想方法;2.会列一元一次方程解决一些简单的应用题;3.初步认识方程与现实问题的联系,感受数学的应用价值,激发数学学习兴趣。

【教学重点】能判断一个数是不是某个方程的解,会列一元一次方程解决一些简单的应用题。

【教学难点】会列一元一次方程解决一些简单的应用题。

【教学过程】一、复习回顾,导入新课1.列方程解下面的应用题:一本笔记本1.2元。

小红有6元钱,那么她最多能买到多少本这样的笔记本呢?解:设小红能买到x本笔记本,根据题意得:1.2x=6解得:x=5答:小红能买到5本这样的笔记本。

2.结合上题的解答,说说列方程解应用题的一般步骤是什么?有哪些应当注意的问题?二、自主探索1.阅读课本1页“第6章导图”内容,试分别用算术法和方程法解答:一队师生共328人,乘车外出旅游,已有校车可乘64人,如果租用客车,每辆可乘44人,那么还要租多少辆客车?算术法:方程法:(328-64)÷44 解:设需要租用x辆客车,根据题意得:=264÷44 44x+64=328=6(辆) 解得: x =6答:还要租用6辆客车。

答:还要租用6辆客车。

2.阅读课本2页~3页“问题2”内容,完成下列问题:(1)小敏同学得出答案使用的是什么方法?他的答案正确吗?小敏同学是用“尝试、检验”的方法找出方程的解的。

他的答案是正确的。

(2)你能列方程解答张老师的这道题吗?试一试。

三、合作交流1.你用方程法得到的答案和小敏的答案一样吗?你有什么发现?2.讨论:如果未知数可能取到的数值较多,或者不一定是整数,该从何试起?如果试验根本无法入手又该怎么办呢?四、实践应用1.课本3页“习题6.1”第1~3题。

2.补充练习:(1)检验下列方程后面括号内所列各数是否为相应方程的解。

(a)x-3(x+2)=6+x (x=3,x=-4)(b)2y(y-1)=3 (y=-1,y=32) (c)5(x-1)(x-2)=0 (x=0,x=1,x=2)(2)根据题意,列出相应的方程,不必求解。

一元一次方程应用题(含答案)2018

一元一次方程应用题(含答案)2018

2018《一元一次方程应用题》专项训练(Day1)从实际问题到方程1. 已知矩形的周长为20厘米,设长为x厘米,则宽为 .2.学生a人,以每10人为一组,其中有两组各少1人,则学生共有()组.A. 10a-2B. 10-2aC. 10-(2-a)D.(10+2)/a3.一个两位数的个位数字与十位数字都是x,如果将个位数字与十位数字分别加2和1,所得的新数比原数大12,则可列的方程是4.一项工程甲单独做要40天完成,乙单独做需要50天完成,甲先单独做4天,然后甲乙两人合作x完成这项工程,则可以列的方程是5.一队师生共328人,乘车外出旅行,已有校车可乘64人,如果租用客车,每辆可乘44人,那么还要租用多少辆客车?如果设还要租x辆客车,可列方程为6.民航规定:乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超过部分每千克按飞机票价的1.5%购买行李票。

一名旅客带了35千克行李乘机,机票连同行李费共付了1323元,求该旅客的机票票价。

7. 在课外活动中,张老师发现同学们的年龄大多是13岁.就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”8.某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。

某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛?9.一个两位数,十位上的数与个位上的数字之和为11,如果十位上的数字与个位上的数字对调,则所得的新数比原来大63,求原来两位数。

10.有一个两位数,它的十位上的数字比个位上的数字大5,并且这个两位数比它的两个数位上的数字之和的8倍还要大5,求这个两位数。

11.小兵今年13岁,约翰的年龄的3倍比小兵的年龄的2倍多10岁,求约翰的年龄。

12.小蓓蓓今年3岁,她与她妈妈年龄的十分之一的和的一半恰好就是小蓓蓓的年龄,小蓓蓓的妈妈今年多少岁?1和12名女生参加数学竞赛,剩下的男生人数恰好是所剩女生人13.某校初一年级选出的男生的11数的2倍.已知该年级共有学生156人,问男生、女生各有多少人?14.长安电冰箱厂原计划每天生产电冰箱40台,经过技术革新后,效率提高了12.5%,这样提前两天完成了这一批任务,并且比原计划还多生产了35台.问实际生产电冰箱多少台?(Day2)行程问题一、本课重点,请你理一理1.航行问题的数量关系:(1)顺流(风)航行的路程=逆流(风)航行的路程(2)顺水(风)速度=________________________ 逆水(风)速度=________________________二、基础题,请你做一做1、甲的速度是每小时行4千米,则他x小时行()千米.2、乙3小时走了x千米,则他的速度是().3、甲每小时行4千米,乙每小时行5千米,则甲、乙一小时共行()千米,y小时共行()千米.4、某一段路程x 千米,如果火车以49千米/时的速度行驶,那么火车行完全程需要小时. 5.甲、乙两站的路程为360千米,一列快车从乙站开出,每小时行驶72千米;一列慢车从甲站开出,每小时行驶48千米.(1)两列火车同时开出,相向而行,经过多少小时相遇?(2)快车先开25分钟,两车相向而行,慢车行驶了多少小时两车相遇?(3)若两车同时开出,同向而行,快车在慢车的后面,几小时后快车追上慢车?(4)若两车同时开出,同向而行,慢车在快车的后面,几小时后快车与慢车相距720千米?(Day3)综合题,请你试一试1.甲、乙两地路程为180千米,一人骑自行车从甲地出发每时走15千米,另一人骑摩托车从乙地出发,已知摩托车速度是自行车速度的3倍,若两人同时出发,相向而行,问经过多少时间两人相遇?2. 甲、乙两地路程为180千米,一人骑自行车从甲地出发每时走15千米,另一人骑摩托车从乙地出发,已知摩托车速度是自行车速度的3倍,若两人同向而行,骑自行车在先且先出发2小时,问摩托车经过多少时间追上自行车?3.一架直升机在A,B两个城市之间飞行,顺风飞行需要4小时,逆风飞行需要5小时 .如果已知风速为30km/h,求A,B两个城市之间的距离.4.某人乘船由A地顺流而下到B地,然后又逆流而上到C地,共乘船3小时,已知船在静水中的速度是每小时8千米,水流速度是每小时2千米,若A、C两地距离为2千米,则A、B两地之间的距离是.5.一条环行跑道长400米,甲每分钟行550米,乙每分钟行250米.(1)甲、乙两人同时同地反向出发,问多少分钟后他们再相遇?(2)甲、乙两人同时同地同向出发,问多少分钟后他们再相遇?6.一架飞机在两城之间飞行,风速为24千米/小时,顺风飞行需2小时50分,逆风飞行需要3小时。

学习应用方程解决实际问题——从算式到方程教案设计

学习应用方程解决实际问题——从算式到方程教案设计

学习应用方程解决实际问题——从算式到方程教案设计从算式到方程教案设计一、教学目标通过本节课的学习,学生能够:1.掌握将实际问题转化为方程的方法;2.认识利用方程解决实际问题的重要性;3.掌握解方程的方法和技巧,熟练运用这些技巧和方法解决实际问题。

二、教学重点1.理解方程与实际问题的关系;2.掌握解方程的方法和技巧。

三、教学难点1.将实际问题转化为方程;2.解决复杂的实际问题。

四、教学方法讲授、练习与反思相结合。

五、教学内容1.方程与实际问题的关系在生活中,我们经常会遇到各种各样的实际问题,而实际问题不一定用算式就能解决。

因此,我们需要将实际问题转化为方程才能解决。

什么是方程呢?方程是用来表示未知数与已知数之间关系的数学语句。

通过将实际问题转化为方程,我们可以用数学方法解决问题。

例如:小明去买水果,买了苹果和香蕉两种水果,苹果6元一斤,香蕉8元一斤,共花费了24元。

苹果买了3斤,香蕉买了2斤。

问苹果和香蕉分别多少斤。

设苹果的重量为x,香蕉的重量为y,则有以下方程:6x + 8y = 24x + y = 5通过解方程可以得出:苹果3斤,香蕉2斤。

2.解方程的方法和技巧在解决实际问题过程中,我们需要掌握解方程的方法和技巧。

下面介绍一些常用的方法和技巧。

1)一元一次方程的解法一元一次方程指的是只有一个未知数,并且这个未知数的最高次数是一次的方程。

如:ax+b=0(a≠0)。

解一元一次方程的方法(1)两边加或减一个数(2)两边同时乘以或除以一个数(不允许除以0)(3)移项变号(4)利用等式的性质,如:2)二元一次方程的解法二元一次方程指的是有两个未知数,并且这两个未知数的最高次数都为一次。

如:ax+by=c,dx+ey=f。

解二元一次方程的方法(1)联立方程组(2)代入法(3)消元法(4)Cramer法则……六、教学实践1.通过教师讲授,学生笔记,展示练习等方式,让学生掌握将实际问题转化为方程的方法,认识利用方程解决实际问题的重要性,掌握解方程的方法和技巧。

解方程的方法与步骤从实际问题解决方程

解方程的方法与步骤从实际问题解决方程

解方程的方法与步骤从实际问题解决方程在数学中,解方程是一个重要的概念和技能。

通过解方程,我们可以找到未知数的值,从而解决各种实际问题。

本文将介绍解方程的方法和步骤,并结合实际问题进行说明。

一、一元一次方程的解法一元一次方程是指只含有一个未知数,并且最高次数为一的方程。

解一元一次方程的方法可以通过逆向操作,将方程化简成为形如x = a的形式,从而找到未知数的值。

以下是一元一次方程解法的步骤:1. 利用消元法将方程化简:通过加减乘除操作将方程中含有未知数的项集中到一边,将常数项集中到另一边,从而得到x = a的形式。

2. 检验解的合法性:将求得的解代入原方程中,验证等式是否成立。

举例说明,假设有如下问题:“小明去超市购买了苹果和香蕉,总共花费了x元。

苹果的价格为a元,香蕉的价格为b元,已知苹果的数量为m个,香蕉的数量为n个,且m和n的和等于10。

求苹果的价格a。

”解答过程如下:1. 根据题意,可以列出方程:x = a * m + b * n2. 根据题意,可以得到另一个方程:m + n = 103. 将第二个方程变形为m = 10 - n,并代入第一个方程中,得到x =a * (10 - n) +b * n4. 将x展开,得到x = 10a + (b - a)n5. 根据题意,x是已知的,且a、b、n都是未知数。

将x = 10a + (b -a)n看作一个一元一次方程,利用解一元一次方程的方法,可以求得a的值。

通过以上步骤,我们可以解得a的值,进而得到苹果的价格。

二、一元二次方程的解法一元二次方程是指只含有一个未知数,并且最高次数为二的方程。

解一元二次方程的方法可以通过配方法、因式分解、求根公式等方式。

以下是一元二次方程解法的步骤:1. 利用配方法将方程化简:通过配方法将一元二次方程化简为形如(x+a)(x+b) = 0的形式。

2. 利用因式分解将方程化简:如果方程可以因式分解,则将方程化简为(x-a)(x-b) = 0的形式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档