高考数学模拟复习试卷试题模拟卷12116

合集下载

高考数学试卷新高考模拟卷

高考数学试卷新高考模拟卷

一、选择题(每小题5分,共50分)1. 若函数f(x) = ax^2 + bx + c的图象开口向上,且顶点坐标为(1, -2),则下列选项中正确的是()。

A. a > 0, b > 0, c < 0B. a > 0, b < 0, c > 0C. a < 0, b > 0, c < 0D. a < 0, b < 0, c > 02. 已知数列{an}的通项公式为an = 3^n - 2^n,则数列{an}的前n项和S_n为()。

A. 3^n - 2^nB. 3^n - 2^n + nC. 3^n - 2^n + n(n+1)/2D. 3^n - 2^n - n(n+1)/23. 在直角坐标系中,直线y = kx + b与圆(x - 1)^2 + (y - 2)^2 = 4相切,则k和b的取值范围是()。

A. k > 0, b > 0B. k < 0, b < 0C. k > 0, b < 0D. k < 0, b > 04. 设复数z = a + bi(a, b ∈ R),若|z - 1| = |z + 1|,则a + b的值为()。

A. 0B. 2C. -2D. 45. 已知等差数列{an}的前n项和为S_n,若S_5 = 35,S_8 = 56,则数列的公差d为()。

A. 1B. 2C. 3D. 46. 若不等式x^2 - 4x + 3 ≥ 0的解集为A,不等式x^2 - 2x - 3 ≤ 0的解集为B,则集合A和B的交集为()。

A. {x | x ≤ 1 或x ≥ 3}B. {x | -1 ≤ x ≤ 3}C. {x | x ≤ -1 或x ≥ 3}D. {x | -1 ≤ x ≤ 1}7. 已知函数f(x) = log_2(x + 1) + log_2(x - 1),则f(x)的定义域为()。

高三数学模拟试题及答案

高三数学模拟试题及答案

高三数学模拟试题及答案一、选择题(本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 已知函数f(x) = 2x^2 - 4x + 3,求f(2)的值。

A. 1B. 3C. 5D. 7答案:C2. 求下列数列的通项公式:数列:1, 1/2, 1/3, 1/4, ...A. a_n = nB. a_n = 1/nC. a_n = n^2D. a_n = 1/(n+1)答案:B3. 已知圆x^2 + y^2 = 9,点P(1, 2),求点P到圆心的距离。

A. 2B. 3C. 4D. 5答案:C4. 已知向量a = (3, -4),向量b = (-2, 3),求向量a与向量b的夹角θ。

A. 30°B. 45°C. 60°D. 90°答案:B5. 已知函数y = x^3 - 3x^2 + 4x,求导数y'。

A. 3x^2 - 6x + 4B. 3x^2 - 6x + 5C. 3x^2 - 6x + 3D. 3x^2 - 6x + 2答案:A6. 已知等差数列的第5项为15,第8项为25,求公差d。

A. 2B. 3C. 4D. 5答案:B7. 已知三角形ABC的三边长分别为a = 3,b = 4,c = 5,求三角形ABC的面积。

A. 6B. 9C. 12D. 15答案:A8. 已知函数f(x) = sin(x) + cos(x),求f(π/4)的值。

A. √2B. √3C. 2D. 1答案:A9. 已知复数z = 1 + i,求z的共轭复数。

A. 1 - iB. 1 + iC. -1 + iD. -1 - i答案:A10. 已知函数y = x^2 - 6x + 9,求函数的最小值。

A. 0B. 3C. 6D. 9答案:A二、填空题(本题共5小题,每小题4分,共20分。

)11. 已知函数f(x) = x^3 - 3x + 1,求f''(x)的值。

高三数学模拟试题及答案

高三数学模拟试题及答案

高三数学模拟试题及答案一、选择题(每题4分,共40分)1. 若函数f(x)=x^2-4x+m在区间[2,+∞)上单调递增,则实数m的取值范围是:A. m≥4B. m≤4C. m≥0D. m≤02. 已知向量a=(3,-1),b=(2,4),则向量a+b的坐标为:A. (5,3)B. (1,3)C. (5,-3)D. (1,-3)3. 函数y=sin(x)的最小正周期为:A. πB. 2πC. π/2D. 4π4. 直线l:y=2x+3与x轴的交点坐标为:A. (-3/2,0)B. (3/2,0)C. (-3,0)D. (3,0)5. 已知数列{an}满足a1=1,且an+1=2an+1,求数列{an}的通项公式:A. an=2^n-1B. an=2^nC. an=2^(n-1)+1D. an=2^(n-1)6. 已知函数f(x)=x^3-3x,求f'(x)的表达式:A. f'(x)=3x^2-3B. f'(x)=x^2-3xC. f'(x)=x^2-3D. f'(x)=3x^2-9x7. 已知双曲线C的方程为x^2/a^2-y^2/b^2=1(a>0,b>0),若双曲线C 的一条渐近线方程为y=√2x,则双曲线C的离心率e为:A. √2B. √3C. 2D. 38. 已知三角形ABC的三边长分别为a、b、c,且满足a^2+b^2=c^2,求三角形ABC的形状:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不等边三角形9. 已知函数f(x)=x^2-6x+8,求函数f(x)的值域:A. (-∞,1]B. [1,+∞)C. (-∞,8]D. [8,+∞)10. 已知等比数列{bn}的首项b1=2,公比q=1/2,求数列{bn}的前n 项和Sn:A. Sn=2(1-(1/2)^n)/(1-1/2)B. Sn=2(1-(1/2)^n)C. Sn=2(1-(1/2)^(n-1))/(1-1/2)D. Sn=2(1-(1/2)^(n-1))二、填空题(每题4分,共20分)11. 已知函数f(x)=x^3-3x,求f'(1)的值。

高三数学试卷模拟十五套

高三数学试卷模拟十五套

一、选择题(本大题共15小题,每小题5分,共75分)1. 若函数f(x) = ax^2 + bx + c在x=1时取得极值,则a+b+c的值为()A. 0B. 1C. -1D. 无法确定2. 已知等差数列{an}的首项为2,公差为3,则第10项与第15项的和为()A. 50B. 60C. 70D. 803. 在△ABC中,角A、B、C的对边分别为a、b、c,若a=3,b=4,c=5,则角C的余弦值为()A. 1/2B. 1/3C. 2/3D. 3/44. 下列函数中,在定义域内单调递增的是()A. y = x^2B. y = 2^xC. y = log2xD. y = x^35. 已知等比数列{an}的首项为2,公比为1/2,则第n项an的值为()A. 2^nB. 2^(n-1)C. 2^(n+1)D. 2^(1-n)6. 若复数z满足|z-1|=|z+1|,则复数z的实部为()A. 0B. 1C. -1D. 无法确定7. 下列不等式中,恒成立的是()A. x^2 + 1 > 0B. x^2 - 1 > 0C. x^2 + 1 < 0D. x^2 - 1 < 08. 若函数f(x) = x^3 - 3x在区间[0,3]上的最大值为2,则f(x)在区间[-3,0]上的最小值为()A. -2B. 0C. 2D. 无法确定9. 在直角坐标系中,点P(2,3)关于直线y=x的对称点为()A. (2,3)B. (3,2)C. (3,-2)D. (-2,3)10. 若复数z满足z^2 + z + 1 = 0,则复数z的虚部为()A. 1B. -1C. iD. -i11. 下列数列中,不是等比数列的是()A. 1, 2, 4, 8, ...B. 1, 3, 9, 27, ...C. 1, -2, 4, -8, ...D. 1, 3, 5, 7, ...12. 若函数f(x) = ax^2 + bx + c在x=2时取得最小值,则a、b、c之间的关系为()A. a > 0, b > 0, c > 0B. a > 0, b < 0, c > 0C. a < 0, b > 0, c < 0D.a < 0,b < 0,c < 013. 已知函数f(x) = x^2 - 4x + 3,则f(x)的图像的对称轴为()A. x = 1B. x = 2C. x = 3D. x = 414. 若等差数列{an}的首项为3,公差为2,则第10项与第15项的差的绝对值为()A. 18B. 20C. 22D. 2415. 下列数列中,不是等差数列的是()A. 1, 4, 7, 10, ...B. 2, 5, 8, 11, ...C. 3, 6, 9, 12, ...D. 4, 7, 10, 13, ...二、填空题(本大题共15小题,每小题5分,共75分)16. 已知函数f(x) = 2x - 3,则f(-1)的值为______。

全国高考数学模拟试卷(4套)

全国高考数学模拟试卷(4套)

全国高考数学模拟试卷(4套)一、选择题(共30题,每题2分,共60分)1. 已知函数 $ f(x) = x^2 4x + 3 $,则下列哪个选项是正确的?A. $ f(x) $ 在 $ x = 2 $ 处取得最小值B. $ f(x) $ 在 $ x = 2 $ 处取得最大值C. $ f(x) $ 在 $ x = 2 $ 处取得极值D. $ f(x) $ 在 $ x = 2 $ 处无极值2. 若 $ \log_2 8 = x $,则 $ x $ 的值为多少?A. 3B. 4C. 5D. 63. 已知等差数列 $ \{a_n\} $,若 $ a_1 = 3 $,$ a_3 = 9 $,则 $ a_5 $ 的值为多少?A. 12B. 15C. 18D. 214. 若 $ \sin^2 x + \cos^2 x = 1 $,则下列哪个选项是正确的?A. $ \sin x $ 和 $ \cos x $ 必须同时为正B. $ \sin x $ 和 $ \cos x $ 必须同时为负C. $ \sin x $ 和 $ \cos x $ 一正一负D. $ \sin x $ 和 $ \cos x $ 可以同时为零5. 若 $ \frac{a}{b} = \frac{c}{d} $,则下列哪个选项是正确的?A. $ a + c = b + d $B. $ ad = bc $C. $ a c = b d $D. $ \frac{a}{c} = \frac{b}{d} $6. 已知 $ a $、$ b $、$ c $ 是等边三角形的三边长,则下列哪个选项是正确的?A. $ a^2 + b^2 = c^2 $B. $ a^2 + c^2 = b^2 $C. $ b^2 + c^2 = a^2 $D. $ a = b = c $7. 若 $ \frac{x^2}{a^2} \frac{y^2}{b^2} = 1 $,则下列哪个选项是正确的?A. 该方程表示椭圆B. 该方程表示双曲线C. 该方程表示抛物线D. 该方程表示圆8. 已知 $ \sqrt{3} $ 是方程 $ x^2 2x + 1 = 0 $ 的根,则该方程的另一根为多少?A. $ 1 \sqrt{3} $B. $ 1 + \sqrt{3} $C. $ 2 \sqrt{3} $D. $ 2 + \sqrt{3} $9. 若 $ a $、$ b $、$ c $ 是三角形的三边长,且 $ a^2 +b^2 = c^2 $,则下列哪个选项是正确的?A. 该三角形是等腰三角形B. 该三角形是等边三角形C. 该三角形是直角三角形D. 该三角形是钝角三角形10. 若 $ \frac{1}{x} + \frac{1}{y} = \frac{1}{z} $,则下列哪个选项是正确的?A. $ x + y = z $B. $ xy = z $C. $ \frac{1}{x} + \frac{1}{y} = z $D. $ x + y + z = 0 $二、填空题(共10题,每题2分,共20分)11. 已知 $ f(x) = 2x + 1 $,若 $ f(3) = 7 $,则 $ f(1)$ 的值为______。

全国高考数学模拟试卷(4套)

全国高考数学模拟试卷(4套)

全国高考数学模拟试卷(4套)试卷一:基础能力测试一、选择题(每题5分,共50分)1. 若函数 $ f(x) = \sqrt{3x 1} $ 在区间 $[0, 2]$ 上有定义,则 $ x $ 的取值范围是:A. $[0, 1]$B. $[0, 2]$C. $[1, 2]$D. $[1, 3]$2. 已知集合 $ A = \{x | x^2 3x + 2 = 0\} $,则集合 $ A $ 的元素个数是:A. 1B. 2C. 3D. 43. 若 $ a, b $ 是方程 $ x^2 4x + 3 = 0 $ 的两个根,则$ a + b $ 的值是:A. 1B. 2C. 3D. 44. 已知函数 $ f(x) = 2x^3 3x^2 + x $,则 $ f'(1) $ 的值是:A. 2B. 3C. 4D. 55. 若 $ \log_2 8 = x $,则 $ x $ 的值是:A. 2B. 3C. 4D. 56. 已知等差数列 $ \{a_n\} $ 的首项 $ a_1 = 2 $,公差 $ d = 3 $,则第10项 $ a_{10} $ 的值是:A. 29B. 30C. 31D. 327. 若 $ \sin 45^\circ = x $,则 $ x $ 的值是:A. $ \frac{\sqrt{2}}{2} $B. $ \frac{\sqrt{3}}{2} $C. $ \frac{1}{2} $D. $ \frac{1}{\sqrt{2}} $8. 已知函数 $ f(x) = \frac{1}{x} $,则 $ f^{1}(x) $ 的表达式是:A. $ x $B. $ \frac{1}{x} $C. $ x $D. $ \frac{1}{x} $9. 若 $ a^2 = b^2 $,则 $ a $ 和 $ b $ 的关系是:A. $ a = b $B. $ a = b $C. $ a = b $ 或 $ a = b $D. $ a $ 和 $ b $ 无关10. 已知等比数列 $ \{a_n\} $ 的首项 $ a_1 = 1 $,公比 $ q = 2 $,则第5项 $ a_5 $ 的值是:A. 8B. 16C. 32D. 64二、填空题(每题5分,共20分)1. 若 $ x^2 5x + 6 = 0 $,则 $ x $ 的值是 ________。

高考数学模拟试题及答案 (二十套)

高考数学模拟试题及答案 (二十套)
【答案】AC
【解析】
【分析】
以点 为坐标原点, 、 、 所在直线分别为 、 、 轴建立空间直角坐标系 ,利用空间向量法可判断A选项的正误;证明出 平面 ,分别取棱 、 、 、 、 、 的中点 、 、 、 、 、 ,比较 和六边形 的周长和面积的大小,可判断B选项的正误;利用空间向量法找出平面 与棱 、 的交点 、 ,判断四边形 的形状可判断C选项的正误;将矩形 与矩形 延展为一个平面,利用 、 、 三点共线得知 最短,利用平行线分线段成比例定理求得 ,可判断D选项的正误.
9.Keep是一款具有社交属性的健身APP,致力于提供健身教学、跑步、骑行、交友及健身饮食指导、装备购买等一站式运动解决方案.Keep可以让你随时随地进行锻炼,记录你每天的训练进程.不仅如此,它还可以根据不同人的体质,制定不同的健身计划.小明根据Keep记录的2019年1月至2019年11月期间每月跑步的里程(单位:十公里)数据整理并绘制了下面的折线图.根据该折线图,下列结论正确的是()
,则 , ,所以B正确.
对于选项C、D, ,
令 ,即 ,所以 ,则令 ,
,令 ,得
由函数 的图像性质可知:
时, , 单调递减.
时, , 单调递增.
所以 时, 取得极小值,
即当 时 取得极小值,
又 ,即
又因为在 上 单调递减,所以
所以 时, 取得极小值,
即当 时 取得极大值,
又 ,即
所以
当 时,
所以当 ,即 时,f(x)在(-π,+∞)上无零点,所以C不正确.
A.月跑步里程最小值出现在2月
B.月跑步里程逐月增加
C.月跑步里程的中位数为5月份对应的里程数
D. 1月至5月的月跑步里程相对于6月至11月波动性更小

高考数学模拟考试试卷(含有答案)

高考数学模拟考试试卷(含有答案)

高考数学模拟考试试卷(含有答案)本试卷共19题。

全卷满分120分。

考试用时120分钟注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试卷、草稿纸和答题卡的非答题区域均无效。

3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项符合题目要求。

1.已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z 则T S ( ) A .∅ B .S C .T D .Z2.已知复数z 满足1z =且有510z z ++=则z = ( )A .12-±B .12±C .22±D i 12±3.已知α,β均为锐角,且sin cos()sin ααββ+=则tan α的最大值是 ( )A .4B .2CD 4.为了激发同学们学习数学的热情,某学校开展利用数学知识设计LOGO 的比赛,其中某位同学利用函数图像的一部分设计了如图的LOGO ,那么该同学所选的函数最有可能是 ( )A .()sin x x x f -=B .()sin cos f x x x x =-C .()221f x x x =-D .()3sin f x x x =+5.如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x 轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为 1.1x y =,第n 根弦(N n ∈,从左数第1根弦在y 轴上,称为第0根弦)分别与雁柱曲线和直线:1l y x =+交于点n A (n x ,n y )和n B (nx ',n y ')则200n n n y y ='=∑( ) 参考数据:取221.18.14=.A .814B .900C .914D .10006.表面积为4π的球内切于圆锥则该圆锥的表面积的最小值为( ) A .4πB .8πC .12πD .16π7.已知定点(,0)P m ,动点Q 在圆O :2216x y +=上,PQ 的垂直平分线交直线 OQ 于M 点,若动点M 的轨迹是双曲线则m 的值可以是 ( ) A .2B .3C .4D .58.设cos0.1a =和10sin0.1b =,110tan 0.1c =则 ( )A .a b c <<B .c b a <<C .c a b <<D .a c b <<二、选择题:本题共3小题,每小题6分,共18分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考模拟复习试卷试题模拟卷【考情解读】1.能够运用正弦定理、余弦定理等知识解决一些与测量和几何计算有关的实际问题.【重点知识梳理】1.实际问题中的常用角(1)仰角和俯角在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图1).(2)方位角从正北方向起按顺时针转到目标方向线之间的水平夹角叫做方位角.如B点的方位角为α(如图2).(3)方向角:正北或正南方向线与目标方向线所成的锐角,如南偏东30°,北偏西45°等.(4)坡度:坡面与水平面所成的二面角的正切值.【高频考点突破】考点一考查测量距离例1、如图所示,有两座建筑物AB和CD都在河的对岸(不知道它们的高度,且不能到达对岸),某人想测量两座建筑物尖顶A、C之间的距离,但只有卷尺和测量仪两种工具.若此人在地面上选一条基线EF,用卷尺测得EF的长度为a,并用测角仪测量了一些角度:∠AEF=α,∠AFE=β,∠CEF=θ,∠CFE=φ,∠AEC=γ.请你用文字和公式写出计算A、C之间距离的步骤和结果.【方法技巧】求距离问题时要注意(1)选定或确定要创建的三角形,要首先确定所求量所在的三角形,若其他量已知则直接解;若有未知量,则把未知量放在另一确定三角形中求解;(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.【变式探究】隔河看两目标A与B,但不能到达,在岸边选取相距 3 km的C,D两点,同时,测得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°(A,B,C,D在同一平面内),求两目标A,B之间的距离.考点二考查高度问题例2、如图,在湖面上高为10 m处测得天空中一朵云的仰角为30°,测得湖中之影的俯角为45°,则云距湖面的高度为(精确到0.1 m)()A.2.7 mB.17.3 mC.37.3 m D.373 m【方法技巧】求解高度问题首先应分清(1)在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内视线与水平线的夹角;(2)准确理解题意,分清已知条件与所求,画出示意图;(3)运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用.【变式探究】如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10米到位置D,测得∠BDC=45°,则塔AB的高是________米.考点三考查方位角例3、如图,我国的海监船在D岛海域例行维权巡航,某时刻航行至A处,此时测得其东北方向与它相距16海里的B处里一外国船只,且D岛位于海监船正东142海里处.(1)求此时该外国船只与D岛的距离;(2)观测中发现,此外国船只正以每小时4海里的速度沿正南方向航行.为了将该船拦截在离D岛12海里处,不让其进入D岛12海里内的海域,试确定海监船的航向,并求其速度的最小值.(参考数据:sin 36°52′≈0.6,sin 53°08′≈0.8)【方法技巧】解决方位角问题其关键是弄清方位角概念.结合图形恰当选择正、余弦定理解三角形,同时注意平面图形的几何性质的应用.【变式探究】如图,一船在海上自西向东航行,在A处测得某岛M的方位角为北偏东α角,前进m km后在B处测量该岛的方位角为北偏东β角,已知该岛周围n km范围内(包括边界)有暗礁,现该船继续东行,当α与β满足条件________时,该船没有触礁危险.考点四考查函数思想在解三角形中的应用例4、如图所示,一辆汽车从O点出发沿一条直线公路以50公里/小时的速度匀速行驶(图中的箭头方向为汽车行驶方向),汽车开动的同时,在距汽车出发点O点的距离为5公里、距离公路线的垂直距离为3公里的M点的地方有一个人骑摩托车出发想把一件东西送给汽车司机.问骑摩托车的人至少以多大的速度匀速行驶才能实现他的愿望,此时他驾驶摩托车行驶了多少公里?【方法技巧】函数思想在解三角形中常与余弦定理应用及函数最值求法相综合,此类问题综合性较强,能力要求较高,要求考生要有一定的分析问题解决问题的能力.解答本题利用了函数思想,求解时把速度表示为时间的函数,利用函数最值求法完成解答,注意函数中以1t 为整体构造二次函数,求最值.【变式探究】如图所示,已知树顶A 离地面212米,树上另一点B 离地面112米,某人在离地面32米的C处看此树,则该人离此树________米时,看A ,B 的视角最大.【真题感悟】【高考湖北,文15】如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD =_________m.【高考湖南,文17】(本小题满分12分)设ABC ∆的内角,,A B C 的对边分别为,,,tan a b c a b A =. (I )证明:sin cos B A =;(II) 若3sin sin cos 4C A B -=,且B 为钝角,求,,A B C .【高考陕西,文17】ABC ∆的内角,,A B C 所对的边分别为,,a b c ,向量(,3)m a b =与(cos ,sin )n A B =平行.(I)求A ;(II)若7,2a b ==求ABC ∆的面积.【高考浙江,文16】(本题满分14分)在ABC ∆中,内角A ,B ,C 所对的边分别为,,a b c .已知tan(A)24π+=. (1)求2sin 2sin 2cos A A A的值; (2)若B ,34a π==,求ABC ∆的面积.【押题专练】1.有一长为10 m 的斜坡,倾斜角为75°,在不改变坡高和坡顶的前提下,通过加长坡面的方法将它的倾斜角改为30°,则坡底要延长()A .5 mB .10 mC .10 2 mD .10 3 m 2.一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°,距灯塔68海里的M 处,下午2时到达这座灯塔的东南方向N 处,则该船航行的速度为()[来源:学*科*网Z*X*X*K]A.1722海里/小时 B .346海里/小时C.1762海里/小时 D .342海里/小时3.甲船在岛A 的正南B 处,以每小时4千米的速度向正北航行,AB =10千米,同时乙船自岛A 出发以每小时6千米的速度向北偏东60°的方向驶去,当甲、乙两船相距最近时,它们所航行的时间为()A.1507分钟B.157小时 C .21.5分钟 D .2.15小时4.如图,设A ,B 两点在河的两岸,一测量者在A 的同侧所在的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点间的距离为()A .50 2 mB .50 3 mC .25 2 m D.2522 m5.地上画了一个角∠BDA =60°,某人从角的顶点D 出发,沿角的一边DA 行走10米后,拐弯往另一边的方向行走14米正好到达∠BDA 的另一边BD 上的一点,我们将该点记为点N ,则N 与D 之间的距离为()A .14米B .15米C .16米D .17米6.已知等腰三角形的面积为32,顶角的正弦值是底角的正弦值的3倍,则该三角形的一腰长为()A. 2B. 3 C .2 D.67.如图,在某灾区的搜救现场,一条搜救犬从A 点出发沿正北方向行进x m 到达B 处发现生命迹象,然后向右转105°,行进10 m 到达C 处发现另一生命迹象,这时它向右转135°回到出发点,那么x =________.8.一船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔M 在北偏东60°方向,行驶4 h 后,船到B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为________km.9.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A 测得水柱顶端的仰角为45°,沿点A 向北偏东30°前进100 m 到达点B ,在B 点测得水柱顶端的仰角为30°,则水柱的高度是________ m.10.如图,在某平原地区一条河的彼岸有一建筑物,现在需要测量其高度AB.由于雨季河宽水急不能涉水,只能在此岸测量.现有的测量器材只有测角仪和皮尺.现在选定了一条水平基线HG ,使得H ,G ,B 三点在同一条直线上.请你设计一种测量方法测出建筑物的高度,并说明理由.(测角仪的高为h)11.如图,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30°,相距10海里的C 处的乙船.[来源:学*科*网](1)求处于C 处的乙船和遇险渔船间的距离;(2)设乙船沿直线CB 方向前往B 处救援,其方向向CA →成θ角,求f(x)=sin2θsin x +34cos2θcosx(x ∈R)的值域.12.A ,B ,C 是一条直线上的三个点,AB =BC =1 km ,从这三点分别遥望一座电视塔P ,A 处看塔,塔在东北方向,B 处看塔,塔在正东方向,C 处看塔,塔在南偏东60°方向.求塔到直线AC 的距离.13.某单位设计一个展览沙盘,现欲在沙盘平面内,设计一个对角线在l 上的四边形电气线路,如图所示.为充分利用现有材料,边BC ,CD 用一根长为5米的材料弯折而成,边BA ,AD 用一根长为9米的材料弯折而成,要求∠A 和∠C 互补,且AB =BC.(1)设AB =x 米,cos A =f(x),求f(x)的解析式,并指出x 的取值范围;(2)求四边形ABCD 面积的最大值.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。

相关文档
最新文档