图像处理技术的研究现状和发展趋势

合集下载

计算机图像处理技术及其发展趋势分析

计算机图像处理技术及其发展趋势分析

计算机图像处理技术及其发展趋势分析计算机图像处理技术是指利用计算机对图像进行各种操作和处理,从而改善图像质量、获取具体信息或实现特定功能的技术。

计算机图像处理技术在各个领域广泛应用,如医学影像、人工智能、虚拟现实、娱乐等。

随着技术的发展和需求的增加,计算机图像处理技术也在不断进步和创新,其发展趋势也备受瞩目。

一、计算机图像处理技术的发展历程计算机图像处理技术的发展可以追溯到上世纪60年代。

当时,科学家们开始利用计算机对图像进行数字化处理。

随着计算机硬件和软件的不断升级,图像处理技术也得到了迅速发展。

上世纪80年代,数字图像处理技术逐渐成熟,并开始应用于工业、医学、军事等领域。

90年代以来,随着计算机技术的飞速发展和互联网的普及,计算机图像处理技术呈现出快速的发展态势。

如今,计算机图像处理技术已经成为现代科技和社会发展的重要组成部分。

计算机图像处理技术的基本原理包括图像获取、预处理、特征提取、分析与识别等过程。

图像获取是指通过摄影、扫描、摄像等手段将物理世界中的图像转化为数字形式的过程。

然后,图像预处理是指对原始图像进行去噪、增强、滤波等操作,以提高图像的质量和信息可用性。

接着,特征提取是指从图像中提取出具有代表性的特征,如边缘、纹理、颜色等。

分析与识别是指利用各种算法和模型对图像进行分析和识别,从而实现人脸识别、目标跟踪、图像检索等功能。

1. 深度学习和人工智能技术的应用随着深度学习和人工智能技术的迅速发展,计算机图像处理技术也得到了极大的促进。

深度学习算法可以自动提取图像特征,并训练出高效的图像识别模型,从而实现智能化的图像处理。

在医学影像、智能监控、自动驾驶等领域,深度学习技术已经取得了显著的成果。

2. 虚拟现实和增强现实技术的融合虚拟现实和增强现实技术可以为用户提供沉浸式的视觉体验,而计算机图像处理技术则是其重要的技术支撑。

随着虚拟现实和增强现实技术的进一步发展,图像处理技术将更加注重实时性和交互性,从而实现更加真实和灵活的虚拟体验。

图像处理技术的研究现状和发展趋势

图像处理技术的研究现状和发展趋势

图像处理技术的研究现状和发展趋势庄振帅数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。

数字图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。

数字图像处理作为一门学科大约形成于20世纪60年代初期。

早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。

图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。

首次获得实际成功应用的是美国喷气推进实验室(JPL)。

他们对航天探测器徘徊者7号在1964年发回的几千张月球照片使用了图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,获得了巨大的成功。

随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,获得了非凡的成果,为人类登月创举奠定了坚实的基础,也推动了数字图像处理这门学科的诞生。

在以后的宇航空间技术,如对火星、土星等星球的探测研究中,数字图像处理都发挥了巨大的作用。

数字图像处理取得的另一个巨大成就是在医学上获得的成果。

1972年英国EMI公司工程师Housfield发明了用于头颅诊断的X射线计算机断层摄影装置,也就是我们通常所说的CT(Computer Tomograph)。

CT的基本方法是根据人的头部截面的投影,经计算机处理来重建截面图像,称为图像重建。

1975年EMI公司又成功研制出全身用的CT装置,获得了人体各个部位鲜明清晰的断层图像。

1979年,这项无损伤诊断技术获得了诺贝尔奖,说明它对人类作出了划时代的贡献。

与此同时,图像处理技术在许多应用领域受到广泛重视并取得了重大的开拓性成就,属于这些领域的有航空航天、生物医学过程、工业检测、机器人视觉、公安司法、军事制导、文化艺术等,使图像处理成为一门引人注目、前景远大的新型学科。

医学图像处理技术的发展趋势及前沿研究

医学图像处理技术的发展趋势及前沿研究

医学图像处理技术的发展趋势及前沿研究近年来,随着医疗技术的快速发展,医学图像处理技术已经成为医学领域的重要组成部分。

在医学图像处理技术的支持下,医疗行业已经取得了许多重大的成果和突破,同时也为人类健康事业的发展做出了重大贡献。

本文将从发展历程、现状及前沿研究三个方面分析医学图像处理技术的发展趋势。

一、发展历程早在20世纪70年代,较早的医学图像处理技术开发包括将计算机图像技术应用到斑块形成、分析心电图谱、以及影像重建的医学应用中。

20世纪80年代,人们在斑块分析和图像重建方面取得了更加出色的成绩。

90年代以来,基于医疗图像的信息完整性保护、图像细节化保存和分析信息处理技术的发展,医疗图像处理技术各方面已不断提高。

二、现状医学图像处理技术的现状主要集中在影像分析及医学诊断两个方面。

1. 影像分析医学影像分析技术是医学图像处理技术领域中应用最广泛的分支之一,主要应用于各类医学影像数据的处理、分析、重建和展示等方面。

通过对医学影像数据的分析和处理,可以更直观地、更全面地了解患者的生理、病理信息。

医学影像分析技术不仅可以应用于传统的平面医学影像识别,同时也可以支持三维医疗影像的识别、数据采集、及更深层次的医学影像分析等方面。

2. 医学诊断医学影像技术在医学诊断领域中的应用也是不可替代的。

通过对人体内部的影像检查和分析,医生可以更快、更易于发现疾病,并加以及时有效的治疗。

在医学诊断中,医生可以通过医学影像技术采集、处理、分析各类患者的影像数据资料,进行疾病定位和诊断。

这种技术应用不仅提高了医生的诊断速度和准确性,同时也较直观的向患者展现所检查部位的情况。

三、前沿研究医学图像处理技术在未来的发展趋势中,可望实现对医学影像数据的更加准确、高效、智能的处理和分析,提高患者的就医体验。

1. 人工智能人工智能技术的不断发展,将拓宽医学图像处理技术的应用范围。

这种技术可以将图像分析和医学诊断过程自动化,从而提高分析和诊断的速度、精度和效率。

数字图像处理技术发展现状及趋势研究

数字图像处理技术发展现状及趋势研究

数字图像处理技术发展现状及趋势研究摘要:随着多媒体技术和通信技术的快速发展,人们早己习惯于采用图像这种快捷方式进行信息传递,由此便诞生了数字图像处理技术,并已被逐渐应用到了生活和工作的各个领域,尤其是在生物医药工程、通信工程和军事等方面。

为了促进数字图像处理技术的全面发展和应用,本文主要对数字图像处理技术的发展现状和发展趋势进行了具体分析。

关键词:数字图像处理;现状;发展趋势;1 数字图像处理技术概述数字图像处理技术即计算机图像处理技术,是一个对图像进行增强、分割、复原、编码、压缩等处理的过程,那么由此可见图像处理技术是离不开计算机和数学的发展的,而且在近年来数字图像处理技术己经在许多领域得到科学合理的应用,人们逐渐习惯于使用这种技术对图像进行完美化处理。

而且数字图像处理技术对数学和企业的发展也有着一定的影响,因为数字图像处理是为了适应企业的发展要求应运而生的,而具体的实践过程需要计算机和数学的全面辅助。

因此在信息技术的发展推动下,数字图像处理技术为许多行业的改善和发展提供了帮助。

相信在未来的继续发展下,数字图像处理技术一定会更加完善和优化,进而为各个学科领域的发展带来更多的帮助。

2 数字图像处理的主要技术分析2.1 图像变换为了减少图像在空间域中处理的计算量,数字图像处理技术通过傅立叶变换、沃尔什变换、离散余弦变换等图像变换方法而对图像进行变换域处理,大大提高了图像处理的效率。

目前新研究的小波变换方法,其在时域和频域中都具有良好的局部化特性,现已广泛应用于数字图像处理技术中。

2.2 图像编码压缩这一技术主要是为了减少图像描述的数据量,以减少图像传输、处理的时间和存储容量。

图像编码压缩能绝对保证图像信息的真实性,是数字图像处理技术中较为成熟的技术。

2.3 图像增强和复原对图像进行增强和复原的操作,主要是为了提高图像的质量,使其清晰度更高。

首先,图像增强主要是突出图像中需要突出的部分,例如,采用强化图像高频分量,使其图像中物体轮廓更清晰,起突出强调作用。

图像处理技术的研究现状和发展趋势

图像处理技术的研究现状和发展趋势

图像处理技术的研究现状和发展趋势庄振帅数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。

数字图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。

数字图像处理作为一门学科大约形成于20世纪60年代初期。

早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。

图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。

首次获得实际成功应用的是美国喷气推进实验室(JPL)。

他们对航天探测器徘徊者7号在1964年发回的几千张月球照片使用了图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,获得了巨大的成功。

随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,获得了非凡的成果,为人类登月创举奠定了坚实的基础,也推动了数字图像处理这门学科的诞生。

在以后的宇航空间技术,如对火星、土星等星球的探测研究中,数字图像处理都发挥了巨大的作用。

数字图像处理取得的另一个巨大成就是在医学上获得的成果。

1972年英国EMI公司工程师Housfield发明了用于头颅诊断的X射线计算机断层摄影装置,也就是我们通常所说的CT(Computer Tomograph)。

CT的基本方法是根据人的头部截面的投影,经计算机处理来重建截面图像,称为图像重建。

1975年EMI公司又成功研制出全身用的CT装置,获得了人体各个部位鲜明清晰的断层图像。

1979年,这项无损伤诊断技术获得了诺贝尔奖,说明它对人类作出了划时代的贡献。

与此同时,图像处理技术在许多应用领域受到广泛重视并取得了重大的开拓性成就,属于这些领域的有航空航天、生物医学过程、工业检测、机器人视觉、公安司法、军事制导、文化艺术等,使图像处理成为一门引人注目、前景远大的新型学科。

图形图像处理技术的发展现状

图形图像处理技术的发展现状

图形图像处理技术的发展现状近年来,随着科技的不断进步和应用领域的扩大,图形图像处理技术已经成为各行各业中不可或缺的一部分。

在计算机视觉、虚拟现实、电影、游戏等领域,图形图像处理技术都得到了广泛应用。

本文将从技术、应用和未来发展三个方面来探讨图形图像处理技术的现状和未来趋势。

一、技术发展1.图形图像处理技术的起源和发展图形图像处理技术的起源可以追溯到上世纪60年代。

当时计算机领域的研究人员开始尝试在计算机上进行图形图像的处理和显示。

当时主要的图形图像处理任务是在屏幕上显示基本的图形和文字,并进行简单的编辑和调整。

但是由于计算机的处理能力和存储能力都非常有限,所以这种处理方式过于简单和低效。

随着计算机硬件技术的发展,计算机处理能力和存储能力得到了极大提升,同时计算机图形学和计算几何学等学科的发展也为图形图像处理技术的发展提供了重要的理论支撑。

在这样的背景下,计算机图形学和计算机视觉等领域的研究人员开始大量探索和研究图形图像处理技术。

2.图形图像处理技术的发展阶段在图形图像处理技术的发展历程中,可以将其发展分为三个阶段:传统图形图像处理阶段、数字图像处理阶段和深度学习图像处理阶段。

传统图形图像处理阶段主要是以传统的计算机图形学为主,通过一系列复杂的算法和数据结构来实现图形图像的处理和显示。

但是传统图形图像处理技术存在计算复杂度高、处理速度慢、稳定性低等问题。

数字图像处理阶段主要是以数字图像处理技术为主,这种处理方式在计算速度、稳定性、效果等方面都有极大提升。

数字图像处理技术主要包括图像去噪、图像锐化、图像分割、图像融合等方面。

深度学习图像处理阶段是目前图形图像处理技术较为热门的领域。

深度学习技术基于神经网络,通过学习大量数据来实现图形图像的高质量自动生成和识别。

二、应用现状随着图形图像处理技术的不断发展,其在各个领域的应用方面也在不断拓展。

1.计算机视觉计算机视觉是图形图像处理技术的重要应用领域之一。

数字图像处理技术现状及发展趋势

数字图像处理技术现状及发展趋势

数字图像处理技术现状及发展趋势摘要现今是计算机技术、网络技术以及多媒体技术高速发展的时代,更多高科技技术正在全面发展,数字图像处理技术作为一种新式技术,如今已经广泛地应用于人们的生产生活中。

数字图像处理技术的应用和发展为人们的生活发展带来了很多的便利,在遥感技术、工业检测方面发展迅速,在医学领域,气象通信领域也有很大的成就。

由此,本文主要探讨数字图像处理技术的现状及发展趋势。

关键词数字图像处理技术;现状;发展趋势现今是计算机和网络技术高速发展的时代,计算机的应用给人们的生产生活带来了很大的便利,人们应用计算机处理各种复杂的数据,将传统方式不能处理的问题以全新的技术和方式有效解决[1]。

数字图像处理技术是应用较为广泛的一种技术,在具体应用过程中,能够经过增强、复原、分割等过程对数据进行处理,且具有多样性、精度高、处理量大的显著优势,本文对数字图像处理技术的现状及发展趋势进行研究和探讨。

1 数字图像处理技术发展现状数字图像处理技术是近年来发展较为迅速的一种技术,具体是指应用计算机对图像进行一系列的处理,最终达到人们要求的水平,在具体的处理过程中,以改善图像的视觉效果为核心,最终呈现出人们想要表达的意思。

笔者查阅国内外诸多文献库,发现对数字图像处理技术的研究多数集中于图像数字化、图像增强、图像还原、图像分割等领域[2]。

最初数字图像处理技术产生于20世纪20年代,当时普遍将其应用于报纸业,发展至20世纪50年代,图像处理技术跟随着计算机的发展而迅速发展,也有更多的人开始关注和应用该技术,当时在各国的太空计划中发挥了巨大作用,尤其是对月球照片的处理,获得了很大的成功。

发展到20世纪70年代时,数字图像处理技术的应用已经很普遍了,尤其是在计算机断层扫面(CT)等方面,该技术的应用得到了一致好评,而现今,数字图像处理技术随处可见,已广泛应用在各行各业中。

2 数字图像处理技术的特点数字图像处理技术有以下几个特点:①图像处理的多样性特点。

数字图像处理技术的发展现状及趋势

数字图像处理技术的发展现状及趋势

数字图像处理技术的发展现状及趋势摘要:近年来,多媒体和通信技术发展迅速,具有大量数据内容的数字图像处理技术也随着这些技术的发展有了更新的进步,所以必须对之进行及时的了解。

文章从数字图像处理的概述、发展现状及发展趋势几个方面对之进行了基本论述。

关键词:数字图像;处理技术;电子信息不论在哪种通讯手段中,人们都更愿意选择直观的图像表达,因此,未来社会对图像传递信息的要求越来越高,及时性、直观性、客观性等发展条件都对现有的数字图像处理技术提出了挑战。

1数字图像处理技术概述数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。

这一过程包括对图像进行增强、除噪、分割、复原、编码、压缩、提取特征等内容,图像处理技术的产生离不开计算机的发展、数学的发展以及各个行业的应用需求的增长。

20世纪60年代,图像处理的技术开始得到较为科学的应用,人们用这种技术进行输出图像的理想化处理。

经过多年的发展,现在的电子图像处理技术已具有了以下特点:更好的再现性:数字图像处理与传统的模拟图像处理相比,不会因为图像处理过程中的存储、复制或传输等环节引起图像质量的改变;占用的频带更宽:这一点是相对于语言信息而言的,图像信息比语言信息所占频带要大好几个数量级,因此图像信息在实现操作的过程中难度更大;适用面宽:可以从各个途径获得数据源,从显微镜到天文望远镜的图像都可以进行数字处理;具有较高的灵活性:只要可以用数学公式和数理逻辑表达的内容,几乎都可以用电子图像来进行表现处理.2数字图像处理技术的发展自从美国在1964年开始通过卫星获得大量月球图片并运用数字技术对之进行处理之后,越来越多的相应技术开始被运用到图像处理方面,数字图像处理也作为一门科学占据了一个独立的学科地位,开始被各个领域的科学研究运用。

图像技术再一次的飞跃式发展出现在1972年,标志是CT医学技术的诞生,在这种技术指导下,运用X射线计算机断层摄影装置,根据人的头部截面的投影,计算机对数据处理后重建截面图像,这种图像重建技术后来被推广到全身CT的装置中,为人类发展做出了跨时代的贡献,随后,数字图像处理技术在更多的领域里被运用,发展成为一门具有无限前景的新型学科。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图像处理技术的研究现状和发展趋势庄振帅数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。

数字图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。

数字图像处理作为一门学科大约形成于20世纪60年代初期。

早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。

图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。

首次获得实际成功应用的是美国喷气推进实验室(JPL)。

他们对航天探测器徘徊者7号在1964年发回的几千张月球照片使用了图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,获得了巨大的成功。

随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,获得了非凡的成果,为人类登月创举奠定了坚实的基础,也推动了数字图像处理这门学科的诞生。

在以后的宇航空间技术,如对火星、土星等星球的探测研究中,数字图像处理都发挥了巨大的作用。

数字图像处理取得的另一个巨大成就是在医学上获得的成果。

1972年英国EMI公司工程师Housfield发明了用于头颅诊断的X射线计算机断层摄影装置,也就是我们通常所说的CT(Computer Tomograph)。

CT的基本方法是根据人的头部截面的投影,经计算机处理来重建截面图像,称为图像重建。

1975年EMI公司又成功研制出全身用的CT装置,获得了人体各个部位鲜明清晰的断层图像。

1979年,这项无损伤诊断技术获得了诺贝尔奖,说明它对人类作出了划时代的贡献。

与此同时,图像处理技术在许多应用领域受到广泛重视并取得了重大的开拓性成就,属于这些领域的有航空航天、生物医学过程、工业检测、机器人视觉、公安司法、军事制导、文化艺术等,使图像处理成为一门引人注目、前景远大的新型学科。

随着图像处理技术的深入发展,从70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展。

人们已开始研究如何用计算机系统解释图像,实现类似人类视觉系统理解外部世界,这被称为图像理解或计算机视觉。

很多国家,特别是发达国家投入更多的人力、物力到这项研究,取得了不少重要的研究成果。

其中代表性的成果是70年代末MIT的Marr提出的视觉计算理论,这个理论成为计算机视觉领域其后十多年的主导思想。

图像理解虽然在理论方法研究上已取得不小的进展,但它本身是一个比较难的研究领域,存在不少困难,因人类本身对自己的视觉过程还了解甚少,因此计算机视觉是一个有待人们进一步探索的新领域。

对图像进行处理(或加工、分析)的主要目的有三个方面: (1)提高图像的视感质量,如进行图像的亮度、彩色变换,增强、抑制某些成分,对图像进行几何变换等,以改善图像的质量。

(2)提取图像中所包含的某些特征或特殊信息,这些被提取的特征或信息往往为计算机分析图像提供便利。

提取特征或信息的过程是计算机或计算机视觉的预处理。

提取的特征可以包括很多方面,如频域特征、灰度或颜色特征、边界特征、区域特征、纹理特征、形状特征、拓扑特征和关系结构等。

(3)图像数据的变换、编码和压缩,以便于图像的存储和传输。

不管是何种目的的图像处理,都需要由计算机和图像专用设备组成的图像处理系统对图像数据进行输入、加工和输出。

数字图像处理主要研究的内容有以下几个方面:(1)图像变换由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。

因此,往往采用各种图像变换的方法,如傅里叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。

目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。

(2)图像编码压缩图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。

压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。

编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。

(3)图像增强和复原图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。

图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。

如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。

图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立"降质模型",再采用某种滤波方法,恢复或重建原来的图像。

(4)图像分割图像分割是数字图像处理中的关键技术之一。

图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。

虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。

因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一。

(5)图像描述图像描述是图像识别和理解的必要前提。

作为最简单的二值图像可采用其几何特性描述物体的特性,一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。

对于特殊的纹理图像可采用二维纹理特征描述。

随着图像处理研究的深入发展,已经开始进行三维物体描述的研究,提出了体积描述、表面描述、广义圆柱体描述等方法。

(6)图像分类(识别)图像分类(识别)属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。

图像分类常采用经典的模式识别方法,有统计模式分类和句法(结构)模式分类,近年来新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中也越来越受到重视。

常用方法。

(1)图像变换:由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。

因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。

目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。

(2)图像编码压缩:图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。

压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。

编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。

(3)图像增强和复原:图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。

图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。

如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。

图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立“降质模型”,再采用某种滤波方法,恢复或重建原来的图像。

(4)图像分割:图像分割是数字图像处理中的关键技术之一。

图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。

虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。

因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一。

(5)图像描述:图像描述是图像识别和理解的必要前提。

作为最简单的二值图像可采用其几何特性描述物体的特性,一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。

对于特殊的纹理图像可采用二维纹理特征描述。

随着图像处理研究的深入发展,已经开始进行三维物体描述的研究,提出了体积描述、表面描述、广义圆柱体描述等方法。

(6)图像分类(识别):图像分类(识别)属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。

图像分类常采用经典的模式识别方法,有统计模式分类和句法(结构)模式分类,近年来新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中也越来越受到重视。

应用工具。

数字图像处理的工具可分为三大类:第一类包括各种正交变换和图像滤波等方法,其共同点是将图像变换到其它域(如频域)中进行处理(如滤波)后,再变换到原来的空间(域)中; 第二类方法是直接在空间域中处理图像,它包括各种统计方法、微分方法及其它数学方法;第三类是数学形态学运算,它不同于常用的频域和空域的方法,是建立在积分几何和随机集合论的基础上的运算。

由于被处理图像的数据量非常大且许多运算在本质上是并行的,所以图像并行处理结构和图像并行处理算法也是图像处理中的主要研究方向。

应用领域。

图像是人类获取和交换信息的主要来源,因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。

随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大。

(1)航天和航空技术方面。

航天和航空技术方面的应用数字图像处理技术在航天和航空技术方面的应用,除了JPL对月球、火星照片的处理之外,另一方面的应用是在飞机遥感和卫星遥感技术中。

许多国家每天派出很多侦察飞机对地球上有兴趣的地区进行大量的空中摄影。

对由此得来的照片进行处理分析,以前需要雇用几千人,而现在改用配备有高级计算机的图像处理系统来判读分析,既节省人力,又加快了速度,还可以从照片中提取人工所不能发现的大量有用情报。

从60年代末以来,美国及一些国际组织发射了资源遥感卫星(如LANDSAT系列)和天空实验室(如SKYLAB),由于成像条件受飞行器位置、姿态、环境条件等影响,图像质量总不是很高。

因此,以如此昂贵的代价进行简单直观的判读来获取图像是不合算的,而必须采用数字图像处理技术。

如LANDSAT系列陆地卫星,采用多波段扫描器(MSS),在900km高空对地球每一个地区以18天为一周期进行扫描成像,其图像分辨率大致相当于地面上十几米或100米左右(如1983年发射的LANDSAT-4,分辨率为30m)。

这些图像在空中先处理(数字化,编码)成数字信号存入磁带中,在卫星经过地面站上空时,再高速传送下来,然后由处理中心分析判读。

这些图像无论是在成像、存储、传输过程中,还是在判读分析中,都必须采用很多数字图像处理方法。

现在世界各国都在利用陆地卫星所获取的图像进行资源调查(如森林调查、海洋泥沙和渔业调查、水资源调查等),灾害检测(如病虫害检测、水火检测、环境污染检测等),资源勘察(如石油勘查、矿产量探测、大型工程地理位置勘探分析等),农业规划(如土壤营养、水份和农作物生长、产量的估算等),城市规划(如地质结构、水源及环境分析等)。

相关文档
最新文档