2019-2020学年度最新高考数学二轮复习专题三数列第1讲等差数列等比数列的基本问题练习
2019高考数学一本策略复习专题三数列第一讲等差数列、等比数列课件文

[全练——快速解答 ]
3.(2018·天津模拟)已知等比数列 {an}的前 n 项和为 Sn,且 8a2a4= a3a6,则Sa43=___78_____.
由 8a2a4 = a3a6 可 得 8a23=a3a6,故 a6=8a3, 设公比为 q,则 q3=8,
q
=
2
,
故
S3 a4
=
a11+a1qq3+q2=78.
2×2-1 2
×d
+
4a1
+
4×24-1×d,将 a1=2 代
入上式,解得 d=-3,
故 a5 = a1 + (5 - 1)d= 2 + 4×(-3)=-10.
故选 B.
[全练——快速解答 ]
2.(2017·高考全国卷Ⅲ)等差数列
{an}的首项为 1,公差不为 0.若 a2,
a3,a6 成等比数列,则{an}前 6 项
专题三 数列 第一讲 等差数列、等比数列
C目录 ONTENTS
考点一 考点二 考点三 4 课后训练 提升能力
年份 2018
卷别 Ⅰ卷
Ⅲ卷
考查角度 及命题位 置 等比数列 的判定及 通项求 法·T17
等比数列 的基本运 算及应 用·T17
命题分析及学科素养
命题分析 (1)高考主要考查两种基本数列(等差数列、等比数 列)、两种数列求和方法(裂项求和法、错位相减 法)、两类综合(与函数综合、与不等式综合),主 要突出数学思想的应用. (2)若以解答题形式考查,数列往往与解三角形在 17 题的位置上交替考查,试题难度中等;若以客 观题考查,难度中等的题目较多,但有时也出现 在第 12 题或 16 题位置上,难度偏大,复习时应 引起关注. 学科素养 主要是通过等差数列、等比数列的判定与证明及 基本运算考查逻辑推理与数学运算两大核心素养.
2019-2020年高考数学二轮复习专题4数列第1讲等差数列等比数列课件

• 1.忽视等比数列的条件: • 判断一个数列是等比数列时,忽视各项都不为零的条件. • 2.漏掉等比中项: • 正数a,b的等比中项是±,容易漏掉-. • 3.忽略对等比数列的公比的讨论: • 应用等比数列前n项和公式时应首先讨论公式q是否等于1.
4.an-an-1=d 或aan-n 1=q 中注意 n 的范围限制. 5.易忽略公式 an=Sn-Sn-1 成立的条件是 n≥2. 6.证明一个数列是等差或等比数列时,由数列的前 n 项和想当然得到 的通项公式,易出错,必须用定义证明. 7.等差数列的单调性只取决于公差 d 的正负,而等比数列的单调性既 虑公比 q,又要考虑首项 a1 的正负.
高考真题体验
1.(2017·全国卷Ⅰ,4)记 Sn 为等差数列{an}的前 n 项和.若 a4+a5=24
=48,则{an}的公差为 导学号 52134460 ( C )
A.1
B.2
C.4
D.8
[解析] 设{an}的公差为 d,则由aS46+ =a458=,24,
a1+3d+a1+4d=24, 得6a1+6×2 5d=48,
• 备考策略 • 本部分内容在备考时应注意以下几个方面:
• (1)加强对等差(比)数列概念的理解,掌握等差(比)数列的判定与 明方法.
• (2)掌握等差(比)数列的通项公式、前n项和公式,并会应用. • (3)掌握等差(比)数列的简单性质并会应用. • 预测2018年命题热点为: • (1)在解答题中,涉及等差、等比数列有关量的计算、求解. • (2)已知数列满足的关系式,判定或证明该数列为等差(比)数列. • (3)给出等差(比)数列某些项或项与项之间的关系或某些项的和,
第一部分 专题强化突破
专题四 数 列
2020届高三理科数学二轮复习讲义:模块二 专题三 数列 第一讲 等差数列、等比数列 Word版含解析.doc

专题三 数列第一讲 等差数列、等比数列高考导航对等差、等比数列基本量的考查,常以客观题的形式出现,考查利用通项公式、前n 项和公式建立方程组求解.2.对等差、等比数列性质的考查主要以客观题出现,具有“新、巧、活”的特点,考查利用性质解决有关计算问题.3.对等差、等比数列的判断与证明,主要出现在解答题的第一问,是为求数列的通项公式而准备的,因此是解决问题的关键环节.1.(2016·全国卷Ⅰ)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( )A .100B .99C .98D .97[解析] 设{a n }的公差为d ,由等差数列前n 项和公式及通项公式,得⎩⎨⎧ S 9=9a 1+9×82d =27,a 10=a 1+9d =8,解得⎩⎪⎨⎪⎧ a 1=-1,d =1,a n =a 1+(n -1)d =n -2,∴a 100=100-2=98.故选C.[答案] C 2.(2017·全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8[解析] 设等差数列{a n }的公差为d ,依题意得a 23=a 2·a 6,即(1+2d )2=(1+d )(1+5d ),解得d =-2或d =0(舍去),又a 1=1,∴S 6=6×1+6×52×(-2)=-24.故选A.[答案] A3.(2016·浙江卷)设数列{a n }的前n 项和为S n ,若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.[解析] ∵a n +1=2S n +1,∴a 2=2S 1+1,即S 2-a 1=2a 1+1,又∵S 2=4,∴4-a 1=2a 1+1,解得a 1=1.又a n +1=S n +1-S n ,∴S n +1-S n =2S n +1.解法一:S n +1=3S n +1,由S 2=4,可求出S 3=13,S 4=40,S 5=121.解法二:S n +1=3S n +1,则S n +1+12=3⎝ ⎛⎭⎪⎫S n +12.又S 1+12=32,∴⎩⎨⎧⎭⎬⎫S n +12是首项为32,公比为3的等比数列, ∴S n +12=32×3n -1,即S n =3n -12,∴S 5=35-12=121.[答案] 1 1214.(2017·绵阳三诊)已知{a n }是各项都为正数的数列,其前n 项和为S n ,且S n 为a n 与1a n的等差中项. (1)求证:数列{S 2n }为等差数列;(2)设b n =(-1)na n,求{b n }的前n 项和T n . [解析] (1)证明:由题意知2S n =a n +1a n, 即2S n a n -a 2n =1.①当n =1时,由①式可得S 1=1;当n ≥2时,a n =S n -S n -1,代入①式得2S n (S n -S n -1)-(S n -S n -1)2=1,整理得S 2n -S 2n -1=1.∴{S 2n }是首项为1,公差为1的等差数列.(2)由(1)知S 2n =n ,则S n =n ,∴a n =S n -S n -1=n -n -1.∴b n =(-1)na n =(-1)n n -n -1=(-1)n (n +n -1). 当n 为奇数时,T n =-1+(2+1)-(3+2)+…+(n -1+n -2)-(n +n -1)=-n ;当n 为偶数时,T n =-1+(2+1)-(3+2)+…-(n -1+n -2)+(n +n -1)=n .∴{b n }的前n 项和T n =(-1)n n .考点一 等差、等比数列的基本运算1.等差数列的通项公式及前n 项和公式a n =a 1+(n -1)d ;S n =n (a 1+a n )2=na 1+n (n -1)2d . 2.等比数列的通项公式及前n 项和公式a n =a 1q n -1(q ≠0);S n =⎩⎪⎨⎪⎧ na 1(q =1),a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1).[对点训练]1.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8[解析] 等差数列{a n }中,S 6=(a 1+a 6)×62=48,则a 1+a 6=16=a 2+a 5,又a 4+a 5=24,所以a 4-a 2=2d =24-16=8,得d =4,故选C.[答案] C2.(2017·全国卷Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏[解析] 由题意可知,由上到下灯的盏数a 1,a 2,a 3,…,a 7构成以2为公比的等比数列,∴S 7=a 1(1-27)1-2=381,∴a 1=3.故选B. [答案] B3.(2017·湖北省武汉市武昌区高三调研)设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则a 1=( )A .-2B .-1 C.12 D.23[解析]由S2=3a2+2,S4=3a4+2得a3+a4=3a4-3a2,即q+q2=3q2-3,解得q=-1(舍)或q=32,将q=32代入S2=3a2+2中得a1+32a1=3×32a1+2,解得a1=-1,故选B.[答案] B4.(2017·东北三校联考)已知等差数列{a n}满足a2=3,a5=9,若数列{b n}满足b1=3,b n+1=ab n,则{b n}的通项公式为________.[解析]由题意可得等差数列{an }的公差d=a5-a25-2=2,所以a n=a2+(n-2)d=2n-1,则b n+1=ab n=2b n-1,b n+1-1=2(b n-1),又因为b1-1=2,所以数列{b n-1}是首项为2、公比为2的等比数列,所以b n-1=2n,b n=2n+1.[答案]bn=2n+1等差(比)数列的运算注意两点(1)在等差(比)数列中,首项a1和公差d(公比q)是两个最基本的元素.(2)在进行等差(比)数列项与和的运算时,若条件和结论间的联系不明显,则均可化成关于a1和d(q)的方程组求解,但要注意消元法及整体计算,以减少计算量.【易错提醒】等比数列前n项和公式中若不确定q是否等于1应分q=1或q≠1两种情况讨论.考点二 等差、等比数列的性质[对点训练]1.(2017·广州六校联考)已知等差数列{a n }中,a 7+a 9=16,S 11=992,则a 12的值是( )A .15B .30C .31D .64[解析] 因为a 7+a 9=2a 8=16,所以a 8=8.因为S 11=11(a 1+a 11)2=11×2a 62=11a 6=992,所以a 6=92,则d =a 8-a 62=74,所以a 12=a 8+4d =15,故选A.[答案] A2.(2017·太原模拟)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A .2B .1 C.12 D.18[解析] 由等比数列的性质,得a 3a 5=a 24=4(a 4-1),解得a 4=2.又a 1=14,所以q 3=a 4a 1=8,即q =2,故a 2=a 1q =14×2=12.[答案] C3.(2017·合肥模拟)设等比数列{a n }的前n 项和为S n ,若S 5=1,S 10=3,则S 15的值是________.[解析] ∵数列{a n }是等比数列,∴S 5,S 10-S 5,S 15-S 10成等比数列,∴(S 10-S 5)2=S 5·(S 15-S 10),4=1×(S 15-3),得S 15=7.[答案] 7[探究追问] 3题中条件不变,如何求S 100的值?[解析] 在等比数列{a n }中,S 5,S 10-S 5,S 15-S 10,…成等比数列,因为S 5=1,S 10=3,所以S 100可表示为等比数列1,2,4,…的前20项和,故S 100=1×(1-220)1-2=220-1. [答案] 220-1等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.考点三 等差、等比数列的判定与证明1.证明数列{a n }是等差数列的两种基本方法(1)利用定义,证明a n +1-a n (n ∈N *)为一常数;(2)利用等差中项,即证明2a n =a n -1+a n +1(n ≥2).2.证明数列{a n }是等比数列的两种基本方法(1)利用定义,证明a n +1a n(n ∈N *)为一常数; (2)利用等比中项,即证明a 2n =a n -1a n +1(n ≥2).[解] (1)证明:由a 1=1,及S n +1=4a n +2,有a 1+a 2=4a 1+2,a 2=3a 1+2=5,∴b 1=a 2-2a 1=3.由S n +1=4a n +2①知当n ≥2时,有S n =4a n -1+2②①-②得a n +1=4a n -4a n -1,∴a n +1-2a n =2(a n -2a n -1)又∵b n =a n +1-2a n ,∴b n =2b n -1,∴{b n }是首项b 1=3,公比为2的等比数列.(2)由(1)可得b n =a n +1-2a n =3·2n -1,∴a n +12n +1-a n 2n =34,∴数列⎩⎨⎧⎭⎬⎫a n 2n 是首项为12,公差为34的等差数列. ∴a n 2n =12+(n -1)×34=34n -14,a n =(3n -1)·2n -2.等差、等比数列的判定与证明应注意的两点(1)判断一个数列是等差(比)数列,也可以利用通项公式及前n 项和公式,但不能作为证明方法.(2)a n +1a n=q 和a 2n =a n -1a n +1(n ≥2)都是数列{a n }为等比数列的必要不充分条件,判断时还要看各项是否为零.[对点训练]若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列; (2)求数列{a n }的通项公式.[解] (1)证明:当n ≥2时,由a n +2S n S n -1=0,得S n -S n -1=-2S n S n -1,所以1S n-1S n -1=2, 又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)由(1)可得1S n=2n ,∴S n =12n , 当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1). 当n =1时,a 1=12不适合上式.故a n =⎩⎨⎧12,n =1,-12n (n -1),n ≥2.热点课题11 函数与方程思想在数列中的应用[感悟体验]1.(2017·西安统测)已知等差数列{a n }的前n 项和为S n ,a 1=13,S 3=S 11,则S n 的最大值为( )A .49B .28C .-49或-28D .28或49[解析] 由S 3=S 11,可得3a 1+3d =11a 1+55d ,把a 1=13代入得d =-2,故S n =13n -n (n -1)=-n 2+14n ,根据二次函数性质,知当n =7时,S n 最大,且最大值为49.[答案] A2.(2017·河南郑州二中期末)已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 是数列{a n }的前n 项的和,则2S n +16a n +3(n ∈N *)的最小值为( )A .4B .3C .23-2 D.92[解析] ∵a 1=1,a 1、a 3、a 13成等比数列, ∴(1+2d )2=1+12d .得d =2或d =0(舍去) ∴a n =2n -1,∴S n =n (1+2n -1)2=n 2, ∴2S n +16a n +3=2n 2+162n +2.令t =n +1, 则2S n +16a n +3=t +9t -2≥6-2=4当且仅当t =3, 即n =2时,∴2S n +16a n +3的最小值为4.故选A. [答案] A。
统考版2024高考数学二轮专题复习第三篇关键能力为重专题二数列第1讲等差数列等比数列课件文

3.[2023·全国乙卷]已知 an 为等比数列,a2a4a5=a3a6,a9a10=-8,则 a7
-2
=________.
解析:方法一 设数列{an}的公比为 q,则由 a2a4a5=a3a6,得 a1q·a1q3·a1q4=
a1q2·a1q5.又 a1≠0,且 q≠0,所以可得 a1q=1 ①.又 a9a10=a1q8·a1q9=a21 q17=-8
为等比数列{a
}的前n项和.若8S
=7S
,则
n
n
6
3
1
-
{an}的公比为________.
2
a1(1-q6)
解析:由 8S6 =7S3 ,可知数列{an}的公比 q≠1,所以 8×
=
1-q
a1(1-q3)
1
6
3
3
7×
,即 8(1-q )=7(1-q )
,即 8(1+q )=7,所以 q=- .
2
1-q
(2)an=amqn-m;
(3)Sm,S2m-Sm,S3m-S2m,…
仍成等比数列(q≠-1)
例 2 (1)[2023·河南省郑州市高三测试]在等差数列{an}中,已知a1>0,
且S8=S17,则当Sn取最大值时,n=(
)
A.10
B.11
C.12或13
D.13
答案:C
解析:(1)因为在等差数列{an}中,S17-S8=0,
故选C.
(2)[2023·贵州省高三考前解压卷]已知等比数列{an}的公比q>0且
q≠1,前n项积为Tn,若T10=T6,则下列结论正确的是(
)
高考数学:专题三 第一讲 等差数列与等比数列配套限时规范训练

专题三 数列、推理与证明 第一讲 等差数列与等比数列(推荐时间:50分钟)一、选择题1.等比数列{a n }的公比q =2,a 1+a 2+a 3=21,则a 3+a 4+a 5等于( )A .42B .63C .84D .1682.(2012·浙江)设S n 是公差为d (d ≠0)的无穷等差数列{a n }的前n 项和,则下列命题错误..的是( )A .若d <0,则数列{S n }有最大项B .若数列{S n }有最大项,则d <0C .若数列{S n }是递增数列,则对任意n ∈N *,均有S n >0D .若对任意n ∈N *,均有S n >0,则数列{S n }是递增数列3.已知等比数列{}a n 中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 9+a 10a 7+a 8的值为( )A .1+ 2B .1- 2C .3+2 2D .3-2 24.在函数y =f (x )的图象上有点列(x n ,y n ),若数列{x n }是等差数列,数列{y n }是等比数列,则函数y =f (x )的解析式可能为( )A .f (x )=2x +1B .f (x )=4x 2C .f (x )=log 3xD .f (x )=⎝⎛⎭34x5.首项为-24的等差数列{a n }从第10项开始为正数,则公差d 的取值范围是 ( )A.83≤d <3B.83<d <3C.83<d ≤3D.83≤d ≤3 6.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3a nb n为整数的正整数n 的个数是( )A .2B .3C .4D .57.已知正项数列{a n }的前n 项的乘积T n =⎝⎛⎭⎫14n n62-(n ∈N *),b n =log 2a n ,则数列{b n }的前n 项和S n 中的最大值是( )A .S 6B .S 5C .S 4D .S 38.(2012·四川)设函数f (x )=2x -cos x ,{a n }是公差为π8的等差数列,f (a 1)+f (a 2)+…+f (a 5)=5π,则[f (a 3)]2-a 1a 5等于( ) A .0B.116π2C.18π2D.1316π2 二、填空题9.等差数列{a n }的公差d <0,且a 2·a 4=12,a 2+a 4=8,则数列{a n }的通项a n =____________ (n ∈N *).10.在等比数列{a n }中,若a 1=12,a 4=-4,则公比q =______;|a 1|+|a 2|+…+|a n |=__________.11.(2011·江苏)设1=a 1≤a 2≤…≤a 7,其中a 1,a 3,a 5,a 7成公比为q 的等比数列,a 2,a 4,a 6成公差为1的等差数列,则q 的最小值是________.12.在数列{a n }中,a n =4n -52,a 1+a 2+…+a n =an 2+bn +c ,n ∈N *,其中a ,b 为常数,则ab +c =______________________________________________________________.三、解答题13.在数1和正实数a 之间插入n 个正实数,使得这n +2个数构成等比数列,将这n +2个数的乘积记作b n ,且a n =log a b n . (1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和S n .14.(2012·山东)在等差数列{a n }中,a 3+a 4+a 5=84,a 9=73.(1)求数列{a n }的通项公式;(2)对任意m ∈N *,将数列{a n }中落入区间(9m,92m )内的项的个数记为b m ,求数列{b m }的前m 项和S m .答案1.C 2.C 3.C 4.D 5.C 6.D 7.D 8.D 9.-2n +10 10.-2 2n -1-1211. 33 12.-113.解 (1)设t 1,t 2,…,t n +2构成等比数列,其中t 1=1,t n +2=a ,则b n =t 1·t 2·…·t n +1·t n +2,① b n =t n +2·t n +1·…·t 2·t 1.②①×②并利用t i ·t n +3-i =t 1t n +2=a (1≤i ≤n +2),得b n 2=(t 1t n +2)·(t 2t n +1)·…·(t n +1t 2)·(t n +2t 1)=a n +2,又b n >0,∴b n =a()221+n ,a n =12(n +2).(2)∵b n +1b n =()()221321++n n a a =a 12(常数);∴{b n }为等比数列. 当a =1时,S n =n ;当a ≠1时,S n =2122311a a a n-⎪⎪⎭⎫ ⎝⎛-.14.解 (1)因为{a n }是一个等差数列,所以a 3+a 4+a 5=3a 4=84,所以a 4=28. 设数列{a n }的公差为d ,则5d =a 9-a 4=73-28=45,故d =9. 由a 4=a 1+3d 得28=a 1+3×9,即a 1=1,所以a n =a 1+(n -1)d =1+9(n -1)=9n -8(n ∈N *). (2)对m ∈N *,若9m <a n <92m ,则9m +8<9n <92m +8, 因此9m -1+1≤n ≤92m -1,故得b m =92m -1-9m -1. 于是S m =b 1+b 2+b 3+…+b m=(9+93+…+92m -1)-(1+9+…+9m -1)=9×1-81m 1-81-1-9m1-9=92m +1-10×9m+180.。
高考数学:专题三 第一讲 等差数列与等比数列课件

题型与方法
例 1
第一讲
已知等差数列{an}中,a3a7=-16,a4+a6=0,求{an}
的前 n 项和 Sn.
本 讲 栏 目 开 关
解 设{an}的首项为 a1,公差为 d, a +2da +6d=-16, 1 1 则 a1+3d+a1+5d=0,
a2+8da +12d2=-16, 1 1 即 a1=-4d, a =-8 a =8, 1 1 解得 或 d=2 d=-2,
第一讲
本 讲 栏 目 开 关
c1 而当 n=1 时, =a2,∴c1=3. b1 3,n=1, ∴cn= - 2×3n 1,n≥2.
∴c1+c2+…+c2 011=3+2×31+2×32+…+2×32 010 6-6×32 010 =3+ =3-3+32 011=32 011. 1-3
即 2a1+d=a1+2d, 1 又 a1=2,
1 所以 d=2,
故 a2=a1+d=1.
答案 1
题型与方法
第一讲
本 讲 栏 目 开 关
题型一 题型概述
等差数列的有关问题 等差数列是一个重要的数列类型, 高考命题主要考
查等差数列的概念、 基本量的运算及由概念推导出的一些重 要性质,灵活运用这些性质解题,可达到避繁就简的目的.
则 c5=2c3-c1=2×21-7=35.
答案 35
考点与考题
第一讲
1 5.(2012· 北京)已知{an}为等差数列, n 为其前 n 项和.若 a1= , S 2 S2=a3,则 a2=________.
本 讲 栏 目 开 关
解析
设{an}的公差为 d,
由 S2=a3 知,a1+a2=a3,
故 a7=0.
(通用版)2020版高考数学大二轮复习专题三第1讲等差数列与等比数列课件文
②利用等比中项,即证明���������2��� =an-1an+1(n≥2).
考点1 考点2 考点3
等差、等比数列基本运算(基本元思想)
例1(1)(2019天津和平区质检)已知等比数列{an}满足
a1=1,a3·a5=4(a4-1),则a7的值为( ) A.2 B.4
9
C. 2 D.6
(2)(2018全国Ⅱ,文17)记Sn为等差数列{an}的前n项和,已知a1=-
7,S3=-Biblioteka 5.①求{an}的通项公式; ②求Sn,并求Sn的最小值.
考点1 考点2 考点3
(1)解析:根据等比数列的性质,得a3a5= ������42, ∴ ������42 =4(a4-1),即(a4-2)2=0,解得a4=2. 又∵a1=1,a1a7= ������42 =4,∴a7=4. 答案:B
= =
������1 ������1
+ +
2������ 6������
= =
5, 13,
解得 ������1 = 1, ������ = 2.
故 S10=10a1+102×9d=10×1+102×9×2=100.
答案:100
一、等差、等比数列的基本运算
1.通项公式
等差数列:an=a1+(n-1)d;
16
16
64×63 2
×
1 162
+…>1+4+7>10,故选
A.
26 = 1+116 64=1+6146 +
答案:A
3.(2019 全国Ⅰ,文 14)记 Sn 为等比数列{an}的前 n 项和.若 a1=1,S3=34,
2020版高考数学大二轮复习专题二数列第一讲等差数列、等比数列课件理
2.(2019·衡阳一模)设正项等差数列{an}的前 n 项和为 Sn,若
S2 019=6 057,则a12+a24018的最小值为(
)
A.1
2.2
解析:依题2 0219(a1+a2 019)=6 057⇒a1+a2 019=a2+a2 018=6, a12+a24018=16(a2+a2 018)a12+a24018=165+a42a0128+a2a0218≥32. 当且仅当 a4=2,a2 018=4 时取等号, 故选 D.
2.等差数列中利用中项求和:
(1)若 n 为奇数,则
.
(2)若 n 为偶数,则
.
3.在等差数列中,当项数为偶数 2n 时,有 S 偶-S 奇=nd,SS偶 奇 =aan+n 1;当项数为奇数 2n-1 时,有 S 奇-S 偶=an,SS偶 奇=n-n 1.
4.在等比数列中,当项数为偶数 2n 时,SS偶 奇=q.
答案:B
(二)创新考法
1.(2019·南充模拟)在等比数列{an}中,a2·a6=23π,则 sina24-π3 =( )
A.-12
1 B.2
3 C. 2
D.-
3 2
解析:在等比数列{an}中,a2·a6=23π, 可得 a24=a2·a6=23π, 则 sina24-π3=sinπ3= 23, 故选 C.
(1)(2019·大武口区校级一模)已知数列{an}的首项为 1, 第 2 项为 3,前 n 项和为 Sn,当整数 n>1 时,Sn+1+Sn-1=2(Sn
+S1)恒成立,则 S15 等于( )
A.210
B.211
C.224
D.225
解析:结合 Sn+1+Sn-1=2(Sn+S1)可知,Sn+1+Sn-1-2Sn=2a1, 得到 an+1-an=2a1=2,所以 an=1+2·(n-1)=2n-1,所以 a15 =29, 所以 S15=a1+2a1515=29+21·15=225, 故选 D.
2019-2020年高考数学二轮复习第一部分专题三数列第一讲等差数列等比数列教案
a1 和
d( q) 的方程组求解,但要注意消元法及整体计算,以减少计算量.
[ 题组突破 ]
1.(xx ·贵阳模拟 ) 等差数列 { an} 的前 n 项和为 Sn,且 a3+ a9 =16,则 S11=(
)
A. 88
B.48
C. 96
D.176
11 a1+ a11
11 a3+a9
11×16
解析:依题意得 S11=
1+ 31+…+ 3n- 1
+n
n
3 + 2n- 1
则 Sn=
2
=4.
[ 误区警示 ]
在运用等比数列前 n 项和公式时, 一定要注意判断公比 q 是否为 1,切忌盲目套用公式导致失误.
等差数列、等比数列的性质
[ 方法结论 ]
1.等差数列、等比数列常用性质:
等差数列
等比数列
(1) 若 m,n,p,q∈ N*,且 m+ n= p+ q, (1) 若 m, n, p, q∈ N* ,且 m+n= p+ q,
2019-2020 年高考数学二轮复习第一部分专题三数列第一讲等差数列等比数列
教案
等差数列、等比数列的判定及其通项公式在考查基本运算、基本概念的同时,也注重对函数与方
程、等价转化、分类讨论等数学思想的考查;对等差数列、等比数列的性质考查主要是求解数列
的等差中项、等比中项、通项公式和前 n 项和的最大、最小值等问题,主要是中低档题;等差数
2
=
2
= 2 = 88,选 A.
优解:依题意,可考虑将题目中的等差数列特殊化为常数列
( 注意慎用此方法 ) ,即 an= 8,因此
S11= 88,选 A.
答案: A
2.(xx ·海口模拟 ) 已知数列 { an} ,an> 0, 它的前 n 项和为 Sn,且 2a2 是 4a1 与 a3 的等差中项.若
专题三 第1讲 等差数列、等比数列
核心提炼
等差数列、等比数列的基本公式(n∈N*) (1)等差数列的通项公式:an=a1+(n-1)d. (2)等比数列的通项公式:an=a1qn-1. (3)等差数列的求和公式: Sn=na1+ 2 an=na1+nn- 2 1d.
(4)等比数列的求和公式: Sn=a111--qqn=a11--aqnq,q≠1,
1 2 3 4 5 6 7 8 9 10 11 12 13 14
2.(2022·济宁模拟)在等比数列{an}中,a1+a3=1,a6+a8=-32,则aa105+ +aa172
等于
A.-8
B.16
C.32
√D.-32
设等比数列{an}的公比为q, 则a6+a8=(a1+a3)q5=1×q5=-32,所以q5=-32, 故aa105+ +aa172=aa5+5+aa77q5=q5=-32.
∴S14=14a12+a14=14a42+a11>0, S15=15a12+a15=15×2 2a8<0,
∴当Sn>0时,n的最大值为14,D正确.
考点三
等差数列、等比数列的判断
核心提炼
定义法 通项法 中项法
等差数列 an+1-an=d an=a1+(n-1)d 2an=an-1+an+1(n≥2)
是圆形的天心石,围绕天心石的是9圈扇环形的石板,从内到外各圈的
石板数依次为a1,a2,a3,…,a9,设数列{an}为等差数列,它的前n项
1=6
√B.{an}的公差为9
C.a6=3a3
√D.S9=405
设{an}的公差为d.由a4+a6=90, 得a5=45,又a2=18, 联立方程组aa11++d4=d=184,5, 解得ad1==99,, 故 A 错误,B 正确;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当n≥2时,2an+Sn-1-2=0.②
①-②,得2an+1-2an+an=0,所以=(n≥2).
因为a1=1,2a2+a1=2,所以a2=.
所以{an}是首项为1,公比为的等比数列.
所以数列{an}的通项公式为an=.
(2)由(1)知,Sn==2-.
答案 A
二、填空题
6.(20xx·全国Ⅰ卷)设等比数列满足a1+a3=10,a2+a4=5,则a1a2…an的最大值为__________.
解析 设等比数列{an}的公比为q,∴⇒解得
∴a1a2…an=
==,
当n=3或4时,取到最小值-6,
此时取到最大值26,所以a1a2…an的最大值为64.
答案 64
三、解答题
9.(20xx·新课标全国Ⅱ卷)已知数列{an}满足a1=1,an+1=3an+1,
(1)证明{an+}是等比数列,并求{an}的通项公式;
(2)证明++…+<.
证明 (1)由an+1=3an+1,
得an+1+=3.
又a1+=,所以{an+}是首项为,公比为3的等比数列.
an+=,
因此{an}的通项公式为an=.
解析 设数列{an}的首项和公差分别为a1,d,
则
则nSn=n=-n2.
设函数f(x)=-x2,则f′(x)=x2-x,
当x∈时,f′(x)<0;
当x∈时,f′(x)>0,
所以函数f(x)min=f,
但6<<7,且f(6)=-48,f(7)=-49,
因为-48>-49,所以最小值为-49.
答案 -49
答案 D
5.(20xx·浙江卷)如图,点列{An},{Bn}分别在某锐角的两边上,且|Bn+1|=|Bn+1Bn+2|,Bn≠Bn+2,n∈N*(P≠Q表示点P与Q不重合).若dn=|AnBn|,Sn为△AnBnBn+1的面积,则( )
A.a1d>0,dS4>0B.a1d<0,dS4<0
C.a1d>0,dS4<0D.a1d<0,dS4>0
解析 ∵a3,a4,a8成等比数列,∴(a1+3d)2=(a1+2d)·(a1+7d),整理得a1=-d,∴a1d=-d2<0,又S4=4a1+d=-,∴dS4=-<0,故选B.
答案 B
4.(20xx·福州二模)若a,b是函数f(x)=x2-px+q(p>0,q>0)的两个不同的零点,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于( )
(1) 证明:1≤≤2(n∈N*);
(2)设数列{a}的前n项和为Sn,证明:≤≤(n∈N*).
证明 (1)由题意得an+1-an=-a≤0,即an+1≤an,故an≤.
由an=(1-an-1)an-1得
an=(1-an-1)(1-an-2)…(1-a1)a1>0.
由0<an≤得
=)=∈[1,2],
A.6B.7
C.8D.9
解析 由题意知:a+b=p,ab=q,∵p>0,q>0,∴a>0,b>0.在a,b,-2这三个数的6种排序中,成等差数列的情况有a,b,-2;b,a,-2;-2,a,b;-2,b,a;成等比数列的情况有:a,-2,b;b,-2,a.
∴或解之得:或
∴p=5,q=4,∴p+q=9,故选D.
A.{Sn}是等差数列B.{S}是等差数列
C.{dn}是等差数列D.{d}是等差数列
解析 由题意,过点A1,A2,A3,…,An,An+1,…分别作直线B1Bn+1的垂线,高分别记为h1,h2,h3,…,hn,hn+1,…,根据平行线的性质,得h1,h2,h3,…,hn,hn+1,…成等差数列,又Sn=×|BnBn+1|×hn,|BnBn+1|为定值,所以{Sn}是等差数列,故选A.
A.n(n+1)B.n(n-1)
C.D.
解析 由a2,a4,a8成等比数列,得a=a2a8,
即(a1+6)2=(a1+2)(a1+14),∴a1=2.
∴Sn=2n+×2
=2n+n2-n=n(n+1).
答案 A
3.(20xx·浙江卷)已知{an}是等差数列,公差d不为零,前n项和是Sn,若a3,a4,a8成等比数列,则( )
A.3B.4
C.5D.6
解析 由已知得Sm-Sm-1=am=-16,Sm+1-Sm=am+1=32,
故公比q=-2,又Sm==-11,故a1=-1,
又am=a1qm-1=-16,代入可求得m=5.
答案 C
2.(20xx·新课标全国Ⅱ卷)等差数列{an}的公差为2,若a2,a4,a8成等比数列,则{an}的前n项和Sn等于( )
(2)由(1)知=.
因为当n≥1时,3n-1≥2×3n-1,所以≤.
于是++…+≤1++…+=<.
所以++…+<.
10.数列{an}的前n项和为Sn,a1=1,且对任意正整数n,点(an+1,Sn)在直线2x+y-2=0上.
(1)求数列{an}的通项公式;
(2)是否存在实数λ,使得数列为等差数列?若存在,求出λ的值;若不存在,请说明理由.
——教学资料参考参考范本——
2019-2020学年度最新高考数学二轮复习专题三数列第1讲等差数列等比数列的基本问题练习
______年______月______日
____________________部门
一、选择题
1.设等比数列{an}的前n项和为Sn,若Sm-1=5,Sm=-11,Sm+1=21,则m等于( )
若为等差数列,则S1+λ+,S2+2λ+,S3+3λ+成等差数列,则2=S1++S3+,即2=1+++,解得λ=2.
又λ=2时,Sn+2n+=2n+2,
显然{2n+2}成等差数列,故存在实数λ=2,
使得数列{Sn+λn+}成等差数列.
11.(20xx·浙江卷)已知数列{an}满足a1=且an+1=an-a(n∈N*).
即1≤≤2.
(2)由题意得
a=an-an+1,所以Sn=a1-an+1.①
由-=和1≤≤2得
1≤-≤2,所以n≤-≤2n,
因此≤an+1≤(n∈N*).②
由①②得≤≤(n∈N*).
7.数列{an}的前n项和为Sn,已知a1=,且对任意正整数m,n,都有am+n=am·an,若Sn<t恒成立,则实数t的最小值为________.
解析 令m=1,可得an+1=an,所以{an}是首项为,公比为的等比数列,所以Sn==<,故实数t的最小值为.
答案
8.(20xx·新课标全国Ⅱ卷)等差数列{an}的前n项和为Sn,已知S10=0,S15=25,则nSn的最小值为________.