北京理工大学数值分析课件1

合集下载

数值分析-数值计算方法48页PPT

数值分析-数值计算方法48页PPT

▪Leabharlann 29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
48
数值分析-数值计算方法
26、机遇对于有准备的头脑有特别的 亲和力 。 27、自信是人格的核心。
28、目标的坚定是性格中最必要的力 量泉源 之一, 也是成 功的利 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。--温斯顿.丘吉 尔。 30、我奋斗,所以我快乐。--格林斯 潘。

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

《数值分析第二章》PPT课件

《数值分析第二章》PPT课件

定理2.1
顺序高斯消去法的前 n1 个主元
a (k ) kk
均不
为零的充要条件是 Ax b 的系数矩阵 A 的前 n 1个
顺序主子式
a a (1) (1) 11 12
Dk
a(1) 21
a(1) 22
a(1) 1k
a(1) 2k
0
(k1,2,...,n1).
a a (1) (1) k1 k2
a(1) kk
(1)
4 x2 x3 5
(2)
2
x1
2
x2
x3
1
(3)
解 <1> 化上三角方程组
x1 x2 x3 6

4 x2 x3 5

③+(-2)×①
2
x1
2 x2
x3
1

x1 x2 x3 6

4 x2 x3 5

④+ ②
4 x2 x3 11

x1 x2 x3 6
检验
原方程组:
0.012x1 0.010x20.167x3 0.6781
x10.8334x25.910x3 12.1
3200x1 1200x2 4.2x3 981
近似解: x 3 5 .5 4 6 ,x 2 1 0 0 .0 ,x 1 1 0 4 .0
把上近似解代入第 3 个方程后,得
3200×(-104)+1200×100 +4.2×5.546 = -2.1278e+005
列主元素消去法求解方程组时,各个列主元素
a (k ) ik k
均不为零。

设有一个列主元素
a
(r ) ir r

数值分析ppt

数值分析ppt

由插值多项式的唯一性, Newton基本插值公式的余项为 基本插值公式的余项 由插值多项式的唯一性, Newton基本插值公式的余项为
f ( n +1) (ξ ) Rn ( x ) = f ( x ) − N n ( x ) = ω n +1 ( x) (n + 1)!
若将x ≠ xi , (i = 0 ,1,L , n)视为一个节点, 则
因此, 因此,可以作为插值基函数 线性无关, 线性无关,
设插值节点为 xi ,
函数值为 f i , i = 0 ,1,L , n
hi = xi + 1 − xi , i = 0 ,1,2 ,L , n − 1
插值条件为 P( xi ) = f i , i = 0 ,1,L , n
设插值多项式 P ( x )具有如下形式
一、均差 二、Newton插值公式 三、等距节点的Newton插值公式 四、Newton插值算法
均差) 引入差商 (均差) 的目的 我们知道,Lagrange插值多项式的插值基函数为 我们知道,Lagrange插值多项式的插值基函数为 ,Lagrange
( x − xi ) l j (x ) = ∏ i = 0 ( x j − xi )
0.28000 0.35893 0.43348 0.52493 0.19733 0.21300 0.22863 0.03134 0.03126 −0.00012
15
从均差表看到4阶均差近似常数,5阶均差近似为0. 故取4次插值多项式 N4(x)做近似即可. 按牛顿插值公式,将数据代入
N4(x) = 0.41075+1.116(x −0.4) +0.28(x −0.4)(x −0.55)

数值分析第四章数值积分与数值微分-PPT课件

数值分析第四章数值积分与数值微分-PPT课件

Cotes系数只与 j 和 n 有关, 与 f x 和积分区间 a , b
无关, 且满足:
1 C k
n
n
C n k
n
(n) 2 C j 1 j0
2、截断误差
Newton-Cotes公式的误差为:
1 ) f (n ( ) R (f) w (x ) dx n 1 a ( n 1 )! b n 2 n n h (n 1 ) f ( ) ( tj) dt , ( a ,b ) ( n 1 )!0 0 j

n ( u j ) du 2
据此可断定 R f 0 ,因为上述被积函数是个奇函数.
4、数值稳定性
现在讨论舍入误差对计算结果产生的影响. 设用公式 近似计算积分
( n ) I ( f ) ( b a ) C j f(xj) n j 0 n
I ( f ) f ( x)dx
a
b
0 , 1 ,2 , . . . n 时, 其中计算函数值 f x j 有误差 ,而 j j
计算 C
n
j
没有误差, 中间计算过程中的舍入误差也不考虑,
j
则在 I n ( f ) 的计算中,由
引起的误差为
( n ) e ( b a ) C f ( x ) ( b a ) C j) j (f(xj) n j j 0 ( n ) j j 0 ( n ) ( b a ) C j j n
x
f x
1 4
2 4.5
3 6
4 8
5 8.5
呵呵…这就需要积 原来通过原函数来计 分的数值方法来帮 算积分有它的局限性。 忙啦。 那…… 怎么办呢?

常用数值分析方法(精品课件)

常用数值分析方法(精品课件)

可能性
计算机的迅速发 展,也使数值分 析得到有效而经 济的成果。
欢迎下载 可修改
4
一、数值分析方法概述
有限元法
边界元法
数值分析 的主要求 解方法
数值流 形方法
离散元法
界面 元法
欢迎下载 可修改
5
二、几种常见的数值分析方法
1.离散单元法 (DEM)
处理非连续介质——离散单元法
可行的
欢迎下载 可修改
欢迎下载 可修改
13
THANK YOU !
欢迎下载 可修改
14
9、 人的价值,在招收诱惑的一瞬间被决定 。20.1 0.292 0.10.2 9Thursday, October 29, 2020
10、低头要有勇气,抬头要有低气。 09:57: 2109: 57:21 09:57 10/29 /2020 9:57:21 AM
14、抱最大的希望,作最大的努力。 2020 年10月 29日星 期四上 午9时5 7分21 秒09: 57:212 0.10. 29
Hale Waihona Puke 15、一个人炫耀什么,说明他内心缺 少什么 。。20 20年1 0月上 午9时5 7分20. 10.29 09:57 Octob er 29, 2020
16、业余生活要有意义,不要越轨。 2020 年10月 29日星 期四9 时57分 21秒0 9:57:2 129 October 2020
常用数值分析方法 理论与应用
欢迎下载 可修改
1
主要内容
1、数值分析方法概述 2、几种常见的数值分析方法 3、几点思考
欢迎下载 可修改
2
一、数值分析方法概述
求解方法
精确解
数值方法

数值分析全册完整课件

数值分析全册完整课件
似算法的收敛性和数值稳定性; 要有好的计算复杂性,节省时间及存储量; 有数值实验,证明算法有效。
算法基本结构:顺序,分支,循环
算法描述:程序或流程图
常采用的处理方法:
构造性方法 离散化方法 递推化方法 迭代法 近似替代方法 以直代曲法 化整为零的处理方法 外推法
数学基础:
微积分的若干定理: 罗尔定理和微分中值定理; 介值定理及推论; 泰勒公式(一元、二元); 积分中值定理;
设y=f(x)为一元函数,自变量准确值x*,对应函数准确 值y*=f(x*),x误差为e(x),误差限为ε(x),函数近似值 误差e(y),误差限为ε(y)。则(可由Taylor公式推得)
( y) | f '(x) | (x)
r
(
y)
|
xf |f
'(x) (x) |
|
r
(
x)
对于多元函数 z f (x1, x2 ,, xn )
定义1.1 设x*为某一数据的准确值,x为x*的一个近 似值,称e(x)=x-x*(近似值-准确值)为近似值x的绝对 误差,简称误差。
e(x) 可正可负,当e(x) >0时近似值偏大,叫强近似值;当e(x) <0时近似值偏小,叫弱近似值。
由于x*通常无法确定,只能估计其绝对误差值 不超过某整数ε(x),即
设准确值
z* f (x1*, x2*,, xn* )
由多元函数Taylor公式,可得误差估计:
n
(z)
k 1
f xk
(xk )
相对误差限为:
r (z)
n k 1
xk
f xk
r (xk )
z
2. 算术运算的误差估计:

北京理工大学数值分析总复习

北京理工大学数值分析总 复习2012
考试时带计算器
• 上机题请在11月30日晚9:30之前交,交 打印稿。
• 答疑时间:11月28,29, 30(即星期3, 4, 5)晚上7:30—9:30,上机作业也在答疑 时间交。
• 答疑地点:中教816。
2
第一章 误差
绝对(相对)误差 ( 限 ) 有效数字
(2) H H '((xx ii)) yyii,', (i0,1, ,n).
24
➢ H ( x ) y 0 h 0 ( x ) y 1 h 1 ( x ) y n h n ( x ) y 0 ' H 0 ( x ) y 1 ' H 1 ( x ) y n ' H n ( x )
(i 1 ,2 , ,n )
12
➢ 迭代法收敛的充分必要条件
x(k1) Mx(k) g,
x(0) 任意
收敛
(M)1.
➢ 迭代法收敛的充分条件
若i迭代法和Gauss-Seidel迭代法均收敛.
若A为对称正定阵, 则求解Ax=b的Gauss-Seidel迭代 法收敛.
复化梯形公式 复化Simpson公式 Romberg算法 Gauss型求积公式 代数精确度 截断误差
33
代数精确度
设有求积公式
b
n
f(x)dx
a
Akf(xk)
k0
若它对 f (x)=1, x, x2,…, xm 都能精确成立(即上式等
号成立), 但对 f (x)=xm+1 上式等号不成立, 则称该求
hi (x)
xi x0
(2n+1)次多项式
x i x n 1
h i ( x ) 1 2 l i ' ( x ) x ( x i ) l i 2 ( x ),

数值分析方法【ch01】插值与逼近 培训教学课件


二、多项式插值
0 5 Hermite插值
二、多项式插值
0 5 Hermite插值
二、多项式插值
0 5 Hermite插值
03
三、径向基函数插值
0 1 概述
三、径向基函数插值
0 1 概述
Hale Waihona Puke 三、径向基函数插值0 1 概述
三、径向基函数插值
0 2 再生核空间
三、径向基函数插值
0 2 再生核空间
二、多项式插值
0 4 分片线性插值
则Lagrange插值与Newton 插值失效,表现为: 当n增大时,在区间[-5,5]两端附近误差迅速增大(见 图1-2).
图1-2显示了当n=10时Lagrange插值与Newton 插值的效果,明显可以看出,在区间的两端附近插值 曲线出现振荡.
二、多项式插值
解:使用最小二乘方法可以求解.上 面的超定方程组,从而得到
四、最佳逼近
0 2 最佳一致逼近
常用的范数如下:
四、最佳逼近
0 2 最佳一致逼近
四、最佳逼近
0 2 最佳一致逼近
四、最佳逼近
0 3 最佳平方逼近
四、最佳逼近
0 3 最佳平方逼近
四、最佳逼近
0 4 正交多项式
四、最佳逼近
0 4 正交多项式
二、多项式插值
0 2 Lagrange插值
图1-1给出了7次Lagrange插值曲线,该曲线较好地通过了给定的样本数 据(图中的○表示样本数据,曲线为插值曲线).
二、多项式插值
0 3 Newton插值
当我们需要扩充试探空间的时候,之前所有的基函数都没有被保留,这非 常不利于大规模数值计算.克服这一缺陷的有效方法之一是Newton插值.选择 如下形式的试探空间

计算机组成 原理课件 2.1 数值数据的表示

N1 =01001 表示无符号数9
N2 =11001 表示无符号数25
北京理工大学计算机学院
2.1 数值数据的表示
计算机组成原理
对于字长为n+1位的无符号数的表示范 围0是00000~000(2n+1-111)1。11111
例如:字长为8位,无符号数的表示范 围是0~255。
北京理工大学计算机学院
北京理工大学计算机学院
2.1 数值数据的表示
计算机组成原理
模实际上是一个计量器的容量。例如:
一个4位的计数器,它的计数值为0~15,
当计数器计满15之后再加1,这个计数器就
发生溢出,其溢出量为16,也就是模等于
16。
24 23 22 21 20
1 01101010
丢失
一个字长为n+1位的纯整数的溢出量为 2n+1,即以2n+1为模。
反码的符号位表示方法与原码相同,但 其数值部分的表示与数的符号有关:对于正 数,数值部分与真值形式相同;对于负数, 数值部分为真值形式按位取反。
若真值为纯小数,它的反码形式为 Xs.X1X2…Xn,其中Xs表示符号位。
例1:X1=0.0110 , X2=-0.0110
[X1]反=0.0110 , [X2]反=1.1001
9-5=9+(-5)=9+(12-5)=9+7=4 (mod 12)
65-25=65+(-25)=65+(100-25)=65+75= 40 (mod 100)
将补数的概念用到计算机中,便出现 了补码这种机器数。
北京理工大学计算机学院
2.1 数值数据的表示
计算机组成原理
2.补码表示

北工大数值分析课件


好的算法--有可靠的理论分析以及计算复杂性的算法
课程信息
教材 : 数值分析(第五版)
李庆扬等编著,清华大学出版社,2008
教材配套辅导书 :
数值分析全程导学及习题全解(第5版)
清华大学出版社,2010
参考资料
参考资料 第三种科学方法:计算机时代的科学计算
石钟慈著,清华大学出版社,院士科普书系,2000


问题:已知Google矩阵(网页邻接矩阵),如 何求出PageRank? 首先,PageRank可以表示为向量 R=[R1,R2,…,Rn]
PageRank是主特征向量


PageRank是Google矩阵的主特征向量 Google矩阵A 记A=AT(关注被链接) A(注意每列为和1向量) 令 x= PageRank,则 求解 x=Ax A的最大特征值为1(主特征值) x是主特征值1对应的特征向量
应用举例
这个问题就是要求由函数
f(x)=sin x
给定的曲线从 x=0 到 x=48 英寸间的弧长 L,即:
L
48
0
1 ( f '( x )) dx
2
48
0
1 (cos x ) dx
2
上述积分为第二类椭圆积分,无法用普通方法来计算
数值积分与数值微分 —— 教材第四章
应用举例
例:Google 搜索引擎
应用数学 (Applied mathematics)
着限于说明自然现象,解决实际问题, 是纯粹数学与科学技术之间的桥梁
计算数学 (Computation mathematics)
数值分析是计算数学的一个主要部分, 它研究用计算机求 解各种数学问题的数值计算方法及其理论与软件实现.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档