数值分析
数值分析中的名词解释

数值分析中的名词解释数值分析是一门研究如何利用计算机进行数值计算和模拟的学科,它在科学计算、工程领域以及许多其他领域中都有广泛的应用。
本文将通过解释数值分析中的一些重要名词,来介绍这个领域的基本概念和方法。
一、误差与精度在数值分析中,误差是指数值计算和实际结果之间的差异。
由于计算过程中存在舍入误差、截断误差等,数值计算很难得到完全准确的结果。
为了度量误差的大小,我们需要引入精度的概念。
精度表示了计算结果的准确程度,通常使用绝对误差或相对误差来衡量。
绝对误差是计算结果与实际结果的差值,而相对误差则是绝对误差与实际结果的比值。
二、插值与外推插值是指根据已知数据点的数值,通过某种方法去估算出未知点的数值。
常用的插值方法有拉格朗日插值、牛顿插值等。
而外推则是利用已知数据点的数值,通过推算来估计未知点的数值。
插值和外推在数值分析中常常用于构建函数的近似表达式或预测未来数据的趋势。
三、数值积分与数值微分数值积分是指通过数值方法来近似求解定积分。
由于很多函数的原函数无法用解析算式表示,或者求解困难,因此数值积分成为了一种常用的求解方法。
常见的数值积分方法有梯形法则、辛普森法则等。
而数值微分则是通过数值方法来近似求解微分。
数值微分的目的是通过逼近导数的定义来估算导数值,通常使用数值差商或有限差分来实现。
四、线性方程组的解法在科学计算中,线性方程组的求解是一个核心问题。
数值分析中有各种不同的算法和方法可以用来解决线性方程组,如高斯消元法、追赶法、迭代法等。
这些方法的基本思想是通过对系数矩阵进行操作或迭代运算来求解未知数的值。
线性方程组的求解在很多科学和工程问题中都非常重要,比如力学模拟、电路分析等。
五、常微分方程的数值解法常微分方程是描述自然界中许多现象的数学模型。
然而,绝大部分的常微分方程都无法用解析算式求解,因此需要使用数值方法来近似求解。
数值分析中有许多不同的方法可以用于求解常微分方程,如欧拉法、龙格-库塔法、四阶龙格-库塔法等。
数值分析方法

数值分析方法数值分析方法是一种通过数学模型和计算方法来解决实际问题的技术。
它在科学计算、工程设计、经济分析等领域有着广泛的应用。
数值分析方法的核心在于将连续的数学问题转化为离散的计算问题,通过数值计算来逼近解析解,从而得到问题的近似解。
本文将介绍数值分析方法的基本原理、常用技术和应用领域。
数值分析方法的基本原理是利用数值计算来逼近解析解。
在实际问题中,很多数学模型很难或者无法得到精确的解析解,这时就需要借助数值分析方法来求解。
数值分析方法的基本步骤包括建立数学模型、离散化、选择适当的数值计算方法、计算近似解并进行误差分析。
其中,离散化是数值分析方法的核心,它将连续的数学问题转化为离散的计算问题,从而使得问题可以通过计算机进行求解。
常用的数值分析方法包括插值法、数值积分、常微分方程数值解、偏微分方程数值解等。
插值法是一种通过已知数据点来估计未知数据点的方法,常用的插值方法包括拉格朗日插值、牛顿插值等。
数值积分是一种通过数值计算来逼近定积分的方法,常用的数值积分方法包括梯形法则、辛普森法则等。
常微分方程数值解和偏微分方程数值解是解决微分方程数值解的常用方法,常用的数值解方法包括欧拉法、龙格-库塔法等。
数值分析方法在科学计算、工程设计、经济分析等领域有着广泛的应用。
在科学计算中,数值分析方法常用于模拟物理现象、计算数学模型等。
在工程设计中,数值分析方法常用于求解结构力学、流体力学等问题。
在经济分析中,数值分析方法常用于求解经济模型、金融衍生品定价等问题。
总之,数值分析方法已经成为现代科学技术和工程技术中不可或缺的一部分。
综上所述,数值分析方法是一种通过数学模型和计算方法来解决实际问题的技术。
它的基本原理是利用数值计算来逼近解析解,常用的方法包括插值法、数值积分、常微分方程数值解、偏微分方程数值解等。
数值分析方法在科学计算、工程设计、经济分析等领域有着广泛的应用。
希望本文的介绍能够帮助读者更好地理解数值分析方法的基本原理和应用价值。
数值分析 知识点总结

数值分析知识点总结一、数值分析的基本概念1. 数值分析的对象数值分析的对象是现实生活中的数字数据和信息。
这些数据和信息可以来自各个领域,包括自然科学、社会科学、技术工程等。
例如,物理实验中测得的实验数据、经济管理中的统计信息、天气观测中的气象数据等,都是数值分析的对象。
2. 数值分析的目的数值分析的主要目的是通过对数值数据和信息的定量分析,发现其中的规律,提取有用的信息,做出科学的预测和决策。
例如,通过对某种药物的临床试验数据进行数值分析,可以得出这种药物的疗效和毒性情况,为临床医生的治疗决策提供依据。
3. 数值分析的方法数值分析采用数学和计算机科学的方法对数值数据和信息进行处理和分析。
它涉及的具体方法包括数值计算、插值与逼近、数值微分和积分、常微分方程数值解、数值线性代数等。
二、数值分析的基本内容1. 数值计算数值计算是数值分析的基本方法之一,它包括离散化、数值稳定性、误差分析等内容。
离散化是将连续问题转化为离散问题,这是数值计算的基本工作方式。
数值稳定性研究的是数值方法对误差的敏感程度,是评价数值方法好坏的重要指标。
误差分析则研究数值计算中产生的误差的成因和大小。
2. 插值与逼近插值与逼近是数值分析的重要内容之一,它研究如何通过已知的数值数据估计未知函数的值。
插值是通过已知的离散数据点构造一个连续函数,使得这个函数通过这些数据点;逼近则是通过已知的离散数据点构造一个近似函数,使得这个函数与原函数的差尽量小。
3. 数值微分和积分数值微分和积分是数值分析的又一重要内容,它研究如何通过已知的函数值计算函数的导数和定积分值。
数值微分是通过函数值计算函数的导数值;数值积分则是通过函数值计算函数的定积分值。
这两项工作在科学计算中有着广泛的应用。
4. 常微分方程数值解常微分方程数值解也是数值分析的重要内容之一,它研究如何通过数值方法计算常微分方程的近似解。
常微分方程是自然界和技术工程中经常出现的数学模型,因此其数值解的研究有着广泛的应用价值。
《数值分析》课程教案

《数值分析》课程教案数值分析课程教案一、课程介绍本课程旨在介绍数值分析的基本概念、方法和技巧,以及其在科学计算和工程应用中的实际应用。
通过本课程的研究,学生将了解和掌握数值分析的基本原理和技术,以及解决实际问题的实用方法。
二、教学目标- 了解数值分析的基本概念和发展历程- 掌握数值计算的基本方法和技巧- 理解数值算法的稳定性和收敛性- 能够利用数值分析方法解决实际问题三、教学内容1. 数值计算的基本概念和方法- 数值计算的历史和发展- 数值计算的误差与精度- 数值计算的舍入误差与截断误差- 数值计算的有效数字和有效位数2. 插值与逼近- 插值多项式和插值方法- 最小二乘逼近和曲线拟合3. 数值微积分- 数值积分的基本原理和方法- 数值求解常微分方程的方法4. 线性方程组的数值解法- 直接解法和迭代解法- 线性方程组的稳定性和收敛性5. 非线性方程的数值解法- 迭代法和牛顿法- 非线性方程的稳定性和收敛性6. 数值特征值问题- 特征值和特征向量的基本概念- 幂迭代法和QR方法7. 数值积分与数值微分- 数值积分的基本原理和方法- 数值微分的基本原理和方法四、教学方法1. 理论讲授:通过课堂授课,讲解数值分析的基本概念、原理和方法。
2. 上机实践:通过实际的数值计算和编程实践,巩固和应用所学的数值分析知识。
3. 课堂讨论:组织学生进行课堂讨论,加深对数值分析问题的理解和思考能力。
五、考核方式1. 平时表现:包括课堂参与和作业完成情况。
2. 期中考试:对学生对于数值分析概念、原理和方法的理解程度进行考查。
3. 期末项目:要求学生通过上机实验和编程实践,解决一个实际问题,并进行分析和报告。
六、参考教材1. 《数值分析》(第三版),贾岩. 高等教育出版社,2020年。
2. 《数值计算方法》,李刚. 清华大学出版社,2018年。
以上是《数值分析》课程教案的概要内容。
通过本课程的研究,学生将能够掌握数值分析的基本原理和技术,并应用于实际问题的解决中。
数值分析的所有知识点总结

数值分析的所有知识点总结一、数值分析的基本概念1.1 数值分析的定义和作用数值分析是研究利用计算机对数学问题进行数值计算的一门学科。
它旨在发展和分析数值计算方法,以解决实际问题中出现的数学模型。
数值分析的主要作用在于加快科学研究和工程设计的速度,提高计算精度和可靠性,以及发现新的科学规律和工程技术。
1.2 数值计算的基本步骤数值计算通常包括以下基本步骤:建立数学模型、选择适当的数值方法、编写计算程序、进行计算和分析结果。
其中,建立数学模型是数值计算的基础,它将实际问题抽象为数学公式或方程组的形式;选择适当的数值方法是指根据具体问题的特点,选择合适的数值计算方法进行求解;编写计算程序是指将选择的数值方法用计算机程序的形式实现;进行计算和分析结果是指利用计算机进行数值计算,并分析计算结果的准确性和可靠性。
1.3 数值分析的应用范围数值分析广泛应用于科学、工程、经济、金融等领域。
在科学研究中,数值分析常用于数学建模、实验数据处理、科学计算等方面;在工程领域,数值分析常用于工程设计、结构分析、流体力学、传热传质等方面;在经济金融领域,数值分析常用于风险评估、金融工程、市场预测等方面。
二、数值计算方法2.1 插值法插值法是利用已知的离散数据(如实验数据、观测数据)推导出未知的数据值的一种数值计算方法。
常用的插值方法包括拉格朗日插值、牛顿插值、分段插值等。
2.2 数值微分与数值积分数值微分是指利用离散数据计算函数的导数值的数值计算方法。
常用的数值微分方法包括差商法、中心差商法等。
数值积分是指利用离散数据计算函数的积分值的数值计算方法。
常用的数值积分方法包括复合梯形法、复合辛普森法等。
2.3 数值线性代数数值线性代数是研究线性代数问题的数值计算方法。
它涉及到线性方程组的求解、线性方程组的特征值和特征向量的计算、矩阵的LU分解、矩阵的QR分解等内容。
2.4 非线性方程求解非线性方程求解是研究非线性方程的数值计算方法。
数值分析例题和知识点总结

数值分析例题和知识点总结数值分析是一门研究如何用计算机求解数学问题数值解的学科,它在科学计算、工程技术、金融经济等领域都有着广泛的应用。
为了更好地理解和掌握数值分析的知识,下面将通过一些例题来对常见的知识点进行总结。
一、误差分析误差是数值分析中一个非常重要的概念。
误差分为绝对误差、相对误差和有效数字。
绝对误差:设某量的准确值为$x$,近似值为$x^$,则绝对误差为$|x x^|$。
相对误差:相对误差是绝对误差与准确值的比值,即$\frac{|xx^|}{|x|}$。
有效数字:若近似值$x^$的绝对误差限是某一位的半个单位,该位到$x^$的第一位非零数字共有$n$位,则称$x^$有$n$位有效数字。
例如,$\pi$的近似值为 314,准确值约为 31415926,绝对误差为$|31415926 314| = 00015926$,相对误差为$\frac{00015926}{31415926} \approx 0000507$,314 有 3 位有效数字。
二、插值法插值法是数值分析中的一种基本方法,用于通过已知的数据点来构造一个函数。
1、拉格朗日插值已知$n + 1$个互异节点$(x_0, y_0),(x_1, y_1),\cdots, (x_n, y_n)$,拉格朗日插值多项式为:$L_n(x) =\sum_{i = 0}^n y_i l_i(x)$其中,$l_i(x) =\frac{\prod_{j = 0, j \neq i}^n (x x_j)}{\prod_{j = 0, j \neq i}^n (x_i x_j)}$例如,已知点$(1, 2)$,$(2, 3)$,$(3, 5)$,求插值多项式。
设$L_2(x) = y_0 l_0(x) + y_1 l_1(x) + y_2 l_2(x)$$l_0(x) =\frac{(x 2)(x 3)}{(1 2)(1 3)}=\frac{1}{2}(x 2)(x 3)$$l_1(x) =\frac{(x 1)(x 3)}{(2 1)(2 3)}=(x 1)(x 3)$$l_2(x) =\frac{(x 1)(x 2)}{(3 1)(3 2)}=\frac{1}{2}(x 1)(x 2)$则$L_2(x) = 2 \times \frac{1}{2}(x 2)(x 3) + 3 \times (x1)(x 3) + 5 \times \frac{1}{2}(x 1)(x 2)$2、牛顿插值牛顿插值多项式为:$N_n(x) = fx_0 + fx_0, x_1(x x_0) + fx_0, x_1, x_2(x x_0)(xx_1) +\cdots + fx_0, x_1, \cdots, x_n(x x_0)(x x_1) \cdots (xx_{n 1})$其中,均差$fx_0, x_1, \cdots, x_k =\frac{fx_1, x_2, \cdots, x_k fx_0, x_1, \cdots, x_{k 1}}{x_k x_0}$三、数值积分数值积分用于计算定积分的近似值。
数值分析教案

数值分析教案数值分析教案是一份旨在帮助学生深入理解数值分析概念和原理的教学计划。
通过数值分析教案的学习,学生将能够掌握数值计算方法,理解数值误差分析和算法设计等重要内容。
本教案将分为以下几个部分进行讨论与学习:一、数值分析概述数值分析是一门研究用数值方法解决数学问题的学科。
其主要目的是通过数值计算的方法,得到数学、物理或工程问题的近似解。
数值分析的应用领域非常广泛,涵盖了数学、计算机科学、工程等多个学科领域。
二、数值误差分析在进行数值计算时,往往会产生误差。
这些误差可能来源于测量精度、舍入误差、截断误差等多个方面。
了解不同类型的误差对于正确理解数值计算结果至关重要。
三、插值和逼近插值和逼近是数值分析中的重要内容。
插值是指通过一组已知数据点,构造一个多项式函数,使得该函数在已知数据点处与原函数取值相同;而逼近则是通过多个已知数据点,构造一个函数来近似原函数。
四、数值积分与微分方程数值积分和微分方程是数值分析中的另外两大重要内容。
数值积分是对函数在一定区间上的积分进行数值计算,而微分方程则是研究描述变化的物理现象的数学方程。
五、算法设计算法设计是数值分析中一个至关重要的环节。
一个高效、准确的算法可以大大提高数值计算的效率和精度。
学生需要学会设计和实现各种数值计算算法。
通过本教案的学习,相信学生将对数值分析有更为深入的了解,掌握数值计算方法,提高数学建模和问题求解的能力。
数值分析作为一门重要的学科,对于理工科学生的学习和研究具有重要的指导意义。
愿本教案能够帮助学生打下坚实的数值分析基础,为未来的学习和工作打下良好的基础。
数值分析解决实际问题

数值分析解决实际问题数值分析是一门研究利用计算机对数学问题进行数值计算的学科,它通过数值方法来解决实际问题,广泛应用于工程、科学、经济等领域。
数值分析的方法包括插值法、数值积分、常微分方程数值解、线性代数方程组求解等,这些方法在解决实际问题时发挥着重要作用。
本文将介绍数值分析在实际问题中的应用,并探讨其在解决实际问题中的重要性和价值。
一、插值法插值法是数值分析中常用的方法之一,它通过已知数据点之间的插值多项式来估计未知数据点的值。
在实际问题中,插值法常用于数据的平滑处理、曲线拟合等方面。
例如,在气象学中,我们需要根据已知的气温数据点来预测未来某一时刻的气温变化,这时可以利用插值法来进行数据的预测和分析。
二、数值积分数值积分是数值分析中的另一个重要方法,它通过数值逼近来计算定积分的近似值。
在实际问题中,数值积分常用于计算曲线下面积、求解物理学中的力学问题等。
例如,在工程学中,我们需要计算某一形状的曲线或曲面的面积或体积,这时可以利用数值积分方法来进行计算。
三、常微分方程数值解常微分方程数值解是数值分析中的重要内容之一,它通过数值方法来求解常微分方程的数值解。
在实际问题中,常微分方程数值解常用于模拟物理系统、生态系统等的动态行为。
例如,在生态学中,我们需要研究种群数量随时间的变化规律,这时可以利用常微分方程数值解来模拟和预测种群数量的变化趋势。
四、线性代数方程组求解线性代数方程组求解是数值分析中的重要内容之一,它通过数值方法来求解线性代数方程组的解。
在实际问题中,线性代数方程组求解常用于工程、经济等领域的优化问题。
例如,在工程优化中,我们需要确定某一系统的最优参数配置,这时可以利用线性代数方程组求解来进行优化计算。
综上所述,数值分析在解决实际问题中发挥着重要作用,它通过插值法、数值积分、常微分方程数值解、线性代数方程组求解等方法来对实际问题进行数值计算和分析,为工程、科学、经济等领域的发展提供了重要支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008级计算机学院《数值分析》期末试卷A 卷班级 学号 姓名 成绩一、 填空题(每空2分,共30分)1. 设函数f (x )区间[a ,b]内有二阶连续导数,且f (a )f (b )<0, 当 时,用双点弦截法产生的解序列收敛到方程f (x )=0的根。
2. n 个求积节点的插值型求积公式的代数精确度至少为______次,n 个求积节点的高斯求积公式的代数精度为 。
3. 已知a =3.201,b =0.57是经过四舍五入后得到的近似值,则a ⨯b 有 位有效数字,a +b 有 位有效数字。
4. 当x =1,-1,2时,对应的函数值分别为f (-1)=0,f (0)=2,f (4)=10,则f (x )的拉格朗日插值多项式是 。
5. 设有矩阵⎥⎦⎤⎢⎣⎡-=4032A ,则‖A ‖1=_______。
6. 要使...472135.420=的近似值的相对误差小于0.2%,至少要取 位有效数字。
7. 对任意初始向量0()X 和常数项N ,有迭代公式1()()k k x Mx N +=+产生的向量序列{}()k X 收敛的充分必要条件是 。
8. 已知n=3时的牛顿-科特斯系数,83,81)3(1)3(0==C C 则=)4(2C ,=)3(3C 。
9. 三次样条函数是在各个子区间上的 次多项式。
10. 用松弛法 (9.0=ω)解方程组⎪⎩⎪⎨⎧=+-=++--=++3103220241225322321321x x x x x x x x x 的迭代公式是。
11. 用牛顿下山法求解方程033=-x x 根的迭代公式是 ,下山条件是 。
二、选择填空(每题2分,共10分)1. 已知数x 1=721 x 2=0.721 x 3=0.700 x 4=7*10-2是由四舍五入得到的,则它们的有效数字的位数应分别为( )。
A. 3,3,3,1B. 3,3,3,3C. 3,3,1,1D. 3,3,3,22. 为求方程x 3―x 2―1=0在区间[1.3,1.6]内的一个根,把方程改写成下列形式,并建立相应的迭代公式,迭代公式不收敛的是( )。
A. 111-=+n n x x B.2111n n x x +=+C. 3211nn x x +=+ D. 11221+++=+n n nn x x x x3. 线性方程组 AX=B 能用高斯消元法求解的充分必要条件是( )。
A. A 为对称矩阵 B. A 为实矩阵C. ∣A ∣≠0D. A 的各阶顺序主子式不为零 4. 用选主元的方法解线性方程组AX =B ,是为了( )。
A. 提高计算速度 B. 减少舍入误差 C. 减少相对误差 D. 方便计算 5. 下列说法不正确的是( )。
A. 二分法不能用于求函数f (x )=0的复根。
B. 方程求根的迭代解法的迭代函数为ϕ(x),则迭代收敛的充分条件是ϕ(x)<1。
C. 用高斯消元法求解线性方程组AX =B 时,在没有舍入误差的情况下得到的都是精确解。
D. 如果插值节点相同,在满足插值条件下用不同方法建立的插值公式是等价的。
三、计算题(共60分)1. 已知单调连续函数y =f (x )的如下数据,若用插值法计算,x 约为多少时f (x )=0.5,要求计算结果保留小数点后4位。
(6分)2. 设a 为常数,建立计算a 的牛顿迭代公式,并求115的近似值,要求计算结果保留小数点后5位。
(6分)3. 用三点高斯求积公式求⎰-+=115.1dx x I ,计算结果保留小数点后6位(6分)4. 用高斯消元法解下面的线性方程组。
(6分)⎪⎩⎪⎨⎧=++-=-+=-+120221321321321x x x x x x x x x 5. 用高斯赛德尔方法求下列方程组的解,计算结果保留4位小数。
(6分)⎪⎩⎪⎨⎧=+--=-+-=--1052151023210321321321x x x x x x x x x 6. 设函数f (x ) 在区间[0,3]上具有四阶连续导数,试用埃尔米特插值法求一个次数不高于3的多项式P 3(x ),使其满足如下数据表值,并给出截断误差估计公式。
(10分)x y y’ 0 0 1 1 3 217. 用 Euler 法和改进的欧拉法求解下述初值问题,取h =0.1,计算到x =0.5,要求计算结果保留小数点后6位。
(10分)⎪⎩⎪⎨⎧=<<-=1)0(10,2'y x y x y y8. 用复化梯形公式计算积分⎰+=1011dx xI ,若要使截断误差不超过10-2,则应在区间[0,1]上分成多少等份?并计算积分的近似值。
(10分)课程编号:12000044 北京理工大学2009-2010学年第二学期2008级计算机学院《数值分析》期末试卷A 卷班级 学号 姓名 成绩注意:① 答题方式为闭卷。
② 可以使用计算器。
请将填空题和选择题的答案直接填在试卷上,计算题答在答题纸上。
一、 填空题(每空2分,共30分)1. 设函数f (x )区间[a ,b]内有二阶连续导数,且f (a )f (b )<0, 当 f’(x )≠0 时,用双点弦截法产生的解序列收敛到方程f (x )=0的根。
2. n 个求积节点的插值型求积公式的代数精确度至少为______次,n 个求积节点的高斯求积公式的代数精度为 。
3. 已知a =3.201,b =0.57是经过四舍五入后得到的近似值,则a ⨯b 有 2 位有效数字,a +b 有 2 位有效数字。
解析:η(ab)= η(a)+ η(b)=009.057.0005.0201.30005.0≈+ , ε(ab)= η(ab)×ab =0.009×3.201×0.57≈0.016<0.05 ε(a+b)= ε(a)+ ε(b)=0.0005+0.005=0.0055<0.054. 当x =1,-1,2时,对应的函数值分别为f (-1)=0,f (0)=2,f (4)=10,则f (x )的拉格朗日插值多项式是 。
解析:)1(21)4)(1(21 10)04)(14()0)(1(2)40)(10()4)(1(0)41)(01()4)(0()(++-+-=⨯-+-++⨯-+-++⨯------=x x x x x x x x x x x l 5. 设有矩阵⎥⎦⎤⎢⎣⎡-=4032A ,则‖A ‖1=_______。
解析:||A||1=max{2+0,3+4}=76. 要使...472135.420=的近似值的相对误差小于0.2%,至少要取 3 位有效数字。
解析:009.0%2.020)20(%,2.020)20(≈⨯<<εε 0.005<0.0097. 对任意初始向量0()X 和常数项N ,有迭代公式1()()k k x Mx N +=+产生的向量序列{}()k X 收敛的充分必要条件是 ρ(M )<1 。
8. 已知n=3时的牛顿-科特斯系数,83,81)3(1)3(0==C C 则=)4(2C ,=)3(3C 。
9. 三次样条函数是在各个子区间上的 3 次多项式。
10. 用松弛法 (9.0=ω)解方程组⎪⎩⎪⎨⎧=+-=++--=++3103220241225322321321x x x x x x x x x 的迭代公式是⎪⎪⎪⎩⎪⎪⎪⎨⎧-+-+=--++=----+=++++++)10323(109.0)2420(49.0)2512(59.0321333212321*********kk k k k kk k k k kk k k k x x x x x x x x x x x x x x x 。
11. 用牛顿下山法求解方程033=-x x 根的迭代公式是 xx x x x n n n n 3)1(3321---=+λ,下山条件是 |f(x n+1)|< |f(x n )| 。
解析:牛顿迭代公式:x n+1=x n -f (x n )/ f ’(x n ) 牛顿下山法迭代公式:x n+1=x n -λf’(x n )/f(x n ) f’(x)=x 2-1x n+1=x n -λ( x n 3/3-x n )/( x n 2-1)= x n -λ x n ( x n 3-3)/( 3x n 2-3) 二、选择填空(每题2分,共10分)1. 已知数x 1=721 x 2=0.721 x 3=0.700 x 4=7*10-2是由四舍五入得到的,则它们的有效数字的位数应分别为( A )。
A. 3,3,3,1B. 3,3,3,3C. 3,3,1,1D. 3,3,3,22. 为求方程x 3―x 2―1=0在区间[1.3,1.6]内的一个根,把方程改写成下列形式,并建立相应的迭代公式,迭代公式不收敛的是( A,D )。
A. 111-=+n n x x B.2111n n x x +=+C. 3211nn x x +=+ D. 11221+++=+n n nn x x x x解析:A:3)1(21)('--=x x ϕ |ϕ’(1.3)|≈3.1 |ϕ’(1.6)| ≈1.1B:32)('xx -=ϕ |ϕ’(1.3)|≈0.9C:322)1(32)('x xx +-=ϕD:22232222)1(234)1()12()1(2)('++++=++++++=x x x x x x x x x x x x x ϕ3. 线性方程组 AX=B 能用高斯消元法求解的充分必要条件是(D )。
A. A 为对称矩阵 B. A 为实矩阵C. ∣A ∣≠0D. A 的各阶顺序主子式不为零 4. 用选主元的方法解线性方程组AX =B ,是为了( B )。
A. 提高计算速度 B. 减少舍入误差 C. 减少相对误差 D. 方便计算 5. 下列说法不正确的是( B )。
A. 二分法不能用于求函数f (x )=0的复根。
B. 方程求根的迭代解法的迭代函数为ϕ(x),则迭代收敛的充分条件是ϕ(x)<1。
C. 用高斯消元法求解线性方程组AX =B 时,在没有舍入误差的情况下得到的都是精确解。
D. 如果插值节点相同,在满足插值条件下用不同方法建立的插值公式是等价的。
三、计算题(共60分)1. 已知单调连续函数y =f (x )的如下数据,若用插值法计算,x 约为多少时f (x )=0.5,要求计算结果保留小数点后4位。
(6分)解答: 用反插值法:)1)(4(281)3)(1)(4(61)3)(1(84133)13)(43()0)(1)(4(2)30)(10)(40()3)(1)(4(0)31)(1)(41()3)(0)(4()1()34)(4)(14()3)(0)(1()(+++-++--+-=⨯++-+++⨯-++-+++⨯---+---++-⨯---+---+=y y y y y y y y y y y y y y y y y y y y y y ll(0.5)=2.916672. 设a 为常数,建立计算a 的牛顿迭代公式,并求115的近似值,要求计算结果保留小数点后5位。