2021最新人教版八年级上册数学期末达标训练题

合集下载

2021人教版八年级数学上册期末测试卷及答案

2021人教版八年级数学上册期末测试卷及答案

2021人教版八年级数学上册期末测试卷及答案班级___________ 姓名___________ 成绩_______一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列分式中,最简分式有()A.2个B.3个C.4个D.5个2.△ABC的两条中线AD、BE交于点F,连接CF,若△ABC的面积为24,则△ABF的面积为( )A.10 B.8 C.6 D. 43.下列式子正确的是()A.(a﹣b)2=a2﹣2ab+b2B.(a﹣b 2=a2﹣b2C.(a﹣b 2=a2+2ab+b2D.(a﹣b 2=a2﹣ab+b24.下列算式中,你认为错误的是()A. B.C. D.5.等腰三角形的一条边长为6,另一边长为13,则它的周长为( )A.25B.25或32C.32D.196.下列计算正确的是()A.a6÷a2=a3B.a2+a2=2a4C.(a﹣b)2=a2﹣b2D.(a2)3=a67.化简,可得()A. B. C. D.8.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是()A.8 B.9 C.10 D.119.方格纸中,每个小格顶点叫做一个格点,以格点连线为边的三角形叫做格点三角形.如图,在4×4的方格纸中,有两个格点三角形△ABC、△DEF,下列说法中成立的是()A.∠BCA=∠EDFB.∠BCA=∠EFDC.∠BAC=∠EFDD.这两个三角形中,没有相等的角10.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=( )A.118°B.119°C.120°D.121°11.如图,D为BC上一点,且AB=AC=BD,则图中∠1与∠2关系是()A.∠1=2∠2B.∠1+∠2=180°C.∠1+3∠2=180°D.3∠1-∠2=180°12.在一段坡路,小明骑自行车上坡的速度为每小时v千米,下坡时的速度为每小时v2千米,则1他在这段路上、下坡的平均速度是每小时()A.千米B.千米C.千米D.无法确定二、填空题(本大题共6小题,每小题3分,共18分)13.已知﹣(x﹣1)0有意义,则x的取值范围是.14.分解因式:8(a2+1)﹣16a= .15.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A= °.16.已知等腰三角形的两边长分别为4cm和7cm,且它的周长大于16cm,则第三边长为_____.17.已知a+=3,则a2+的值是.18.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数为.三、计算题(本大题共6小题,共24分)19.(1) (ab2)2•(﹣a3b)3÷(﹣5ab); (2)(x+1)2﹣(x+2)(x﹣2).20.化简:(1) +. (2)21.分解因式:(1)3x﹣12x3;(2)3m(2x-y)2-3mn2;四、解答题(本大题共4小题,共22分)22.如图,已知DE⊥AC,BF⊥AC,垂足分别是E、F,AE=CF,DC∥AB,(1)试证明:DE=BF;(2)连接DF、BE,猜想DF与BE的关系?并证明你的猜想的正确性.23.如图、已知∠AOB=30°,OC平分∠AOB,P为OC上任意一点,PD∥OA交OB于D,PE⊥OA于E.如果OD=4cm,求PE的长.24.在一次“手拉手”捐款活动中,某同学对甲.乙两班捐款的情况进行统计,得到如下三条信息:信息一.甲班共捐款120元,乙班共捐款88元;信息二.乙班平均每人捐款数比甲班平均每人捐款数的0.8倍;信息三.甲班比乙班多5人.请你根据以上三条信息,求出甲班平均每人捐款多少元?25.已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作等边△ADE(顶点A、D、E按逆时针方向排列),连接CE.(1)如图1,当点D在边BC上时,求证:①BD=CE,②AC=CE+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CE+CD是否成立?若不成立,请写出AC、CE、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的反向延长线上且其他条件不变时,补全图形,并直接写出AC、CE、CD之间存在的数量关系.试题答案1.C.2.B3.A4.B.5.C6.D7.B.8.C9.B 10.C 11.D 12.C.13.答案为:x≠2且x≠1.14.【解答】解:8(a2+1)﹣16a=8(a2+1﹣2a)=8(a﹣1)2.故答案为:8(a﹣1)2.15.【解答】解:∵三角形△ABC绕着点C时针旋转35°,得到△AB′C′∴∠ACA′=35°,∠A'DC=90°∴∠A′=55°,∵∠A的对应角是∠A′,即∠A=∠A′,∴∠A=55°;故答案为:55°.16.7cm17.【解答】解:∵a+=3,∴a2+2+=9,∴a2+=9﹣2=7.故答案为:7.18.【解答】解:∵∠AOB=60°,OC平分∠AOB,∴∠AOC=30°,①当E在E1时,OE=CE,∵∠AOC=∠OCE=30°,∴∠OEC=180°﹣30°﹣30°=120°;②当E在E2点时,OC=OE,则∠OCE=∠OEC=(180°﹣30°)=75°;③当E在E3时,OC=CE,则∠OEC=∠AOC=30°;故答案为:120°或75°或30°.19.(1)原式=a2b4•(﹣a9b3)÷(﹣5ab)=a10b6;(2)原式=x2+2x+1﹣x2+4=2x+5.20.(1)原式=+•=+==.(2)原式=﹣÷=﹣•=﹣.21.(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)原式=3m(2x-y+n)(2x-y-n);22.【解答】(1)证明:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,∵DE⊥AC,BF⊥AC,∴∠AFB=∠DEC=90°,∵DC∥AB,∴∠DCE=∠BAF,在△AFB和△CED中∴△AFB≌△CED,∴DE=EF;(2)DF=BE,DF∥BE,证明:∵DE⊥AC,BF⊥AC,∴DE∥BF,∵DE=BF,∴四边形DEBF是平行四边形,∴DF=BE,DF∥BE.23.【解答】解:过P作PF⊥OB于F,∵∠AOB=30°,OC平分∠AOB,∴∠AOC=∠BOC=15°,∵PD∥OA,∴∠DPO=∠AOP=15°,∴∠BOC=∠DPO,∴PD=OD=4cm,∵∠AOB=30°,PD∥OA,∴∠BDP=30°,∴在Rt△PDF中,PF=PD=2cm,∵OC为角平分线,PE⊥OA,PF⊥OB,∴PE=PF,∴PE=PF=2cm.24.【解答】解:设甲班平均每人捐款为x元,依题意得整理得:4x=8,解之得x=2经检验,x=2是原方程的解.答:甲班平均每人捐款2元25.(1)∵△ABC和△ADE都是等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°.∴∠BAC-∠CAD=∠DAE-∠CAD,即∠BAD=∠CAE.在△ABD和△ACE中,AB=AC,∠BAD=∠CAE,AD=AE∴△ABD≌△ACE(SAS),∴BD=CE.∵BC=BD+CD,AC=BC,∴AC=CE+CD;(2)AC=CE+CD不成立,AC、CE、CD之间存在的数量关系是:AC=CE-CD.理由:∵△ABC和△ADE都是等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°.∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE在△ABD和△ACE中,AB=AC,∠BAD=∠CAE,AD=AE∴△ABD≌△ACE(SAS)∴BD=CE ∴CE-CD=BD-CD=BC=AC,∴AC=CE-CD;(3)补全图形(如图)AC、CE、CD之间存在的数量关系是:AC=CD-CE.理由:∵△ABC和△ADE都是等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°.∴∠BAC-∠BAE=∠DAE-∠BAE,∴∠BAD=∠CAE在△ABD和△ACE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS)∴BD=CE.∵BC=CD-BD,∴BC=CD-CE,∴AC=CD-CE.附:初中数学学习方法总结1.先看笔记后做作业有的同学感到,老师讲过的,自己已经听得明明白白了。

人教版2021年八年级数学上册期末测试卷【参考答案】

人教版2021年八年级数学上册期末测试卷【参考答案】

人教版2021年八年级数学上册期末测试卷【参考答案】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( )A .a ≤﹣3B .a <﹣3C .a >3D .a ≥32.若a b c d ,,,满足a b c d b c d a ===,则2222ab bc cd da a b c d ++++++的值为( ) A .1或0B .1- 或0C .1或2-D .1或1-3.语句“x 的18与x 的和不超过5”可以表示为( )A .58x x +≤B .58x x +≥C .855x ≤+D .58xx +=4.已知x 是整数,当30x -取最小值时,x 的值是( ) A .5B .6C .7D .85.下列各组数中,能作为一个三角形三边边长的是( ) A .1,1,2B .1,2,4C .2,3,4D .2,3,56.如果2a a 2a 1+-+=1,那么a 的取值范围是( ) A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .18.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度9.夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为()A.530020015030x yx y+=⎧⎨+=⎩B.530015020030x yx y+=⎧⎨+=⎩C.302001505300x yx y+=⎧⎨+=⎩D.301502005300x yx y+=⎧⎨+=⎩10.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为()A.x y50{x y180=-+=B.x y50{x y180=++=C.x y50{x y90=++=D.x y50{x y90=-+=二、填空题(本大题共6小题,每小题3分,共18分)1.已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=________.2.已知菱形ABCD的面积是12cm2,对角线AC=4cm,则菱形的边长是______cm.3.已知x、y满足方程组2524x yx y+=⎧⎨+=⎩,则x y-的值为________.4.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是________.5.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有__________对全等三角形.6.如图,ABCD的对角线相交于点O,且AD≠CD,过点O作OM⊥AC,交AD于点M.如果CDM的周长为8,那么ABCD的周长是_____.三、解答题(本大题共6小题,共72分)1.解方程组:4311 213x yx y-=⎧⎨+=⎩2.先化简,再求值:(1﹣11x-)÷22441x xx-+-,其中x5 23.已知11881,2y x x=--22x y x yy x y x+++-.4.如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED 是矩形;(2)若CE=1,DE=2,ABCD的面积是 .5.如图,某市有一块长为()3a b +米,宽为()2a b +米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当3,2a b ==时的绿化面积?6.“绿水青山就是金山银山”,为保护生态环境,A ,B 两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表: 村庄清理养鱼网箱人数/人清理捕鱼网箱人数/人 总支出/元A 15 9 57000 B101668000(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、A4、A5、C6、C7、B8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、723、14、425、36、16三、解答题(本大题共6小题,共72分)1、53xy=⎧⎨=⎩.2、12xx+-,55+3、14、(1)略;(2)4.5、(5a2+3ab)平方米,63平方米6、(1)清理养鱼网箱的人均费用为2000元,清理捕鱼网箱的人均费用为3000元;(2)分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱.。

人教版2021年八年级数学上册期末测试卷(参考答案)

人教版2021年八年级数学上册期末测试卷(参考答案)

人教版2021年八年级数学上册期末测试卷(参考答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2019的相反数是()A.2019 B.-2019 C.12019D.12019-2.在平面直角坐标系中,点P(-2,2x+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为()A.74610-⨯B.74.610-⨯C.64.610-⨯D.50.4610-⨯4.如果a+b<0,并且ab>0,那么()A.a<0,b<0 B.a>0,b>0 C.a<0,b>0 D.a>0,b<0 5.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差6.如图,PA、PB是⊙O切线,A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB等于()A.55°B.70°C.110°D.125°7.实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简2a a b-+的结果为()A.2a+b B.-2a+b C.b D.2a-b8.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2-ab-ac-bc的值是()A.0 B.1 C.2 D.39.如图,小明从A点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A点时,一共走的路程是()A.100米B.110米C.120米D.200米10.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150°B.180°C.210°D.225°二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a-=__________.2.已知x,y满足方程组x2y5x2y3-=⎧+=-⎨⎩,则22x4y-的值为__________.3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C,A’B’交AC于点D,若∠A’DC=90°,则∠A= °.5.在平面直角坐标系内,一次函数y=k1x+b1与y=k2x+b2的图象如图所示,则关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是________.6.如图,长为8 cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3 cm 到点D ,则橡皮筋被拉长了_____ cm.三、解答题(本大题共6小题,共72分)1.用适当的方法解方程组(1)3322x y x y =-⎧⎨+=⎩ (2)353123x y x y -=⎧⎪⎨-=⎪⎩2.先化简,再求值:21211222m m m m ++⎛⎫-÷ ⎪++⎝⎭,其中22m =3.已知5a 2+的立方根是3,3a b 1+-的算术平方根是4,c 13分.(1)求a ,b ,c 的值;(2)求3a b c -+的平方根.4.如图,在ABC 中,ACB 90∠=,AC BC =,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90得到线段CE ,连结DE 交BC 于点F ,连接BE .1()求证:ACD ≌BCE ;2()当AD BF=时,求BEF∠的度数.5.如图,ABC中,点E在BC边上,AE AB=,将线段AC绕点A旋转到AF 的位置,使得CAF BAE∠=∠,连接EF,EF与AC交于点G(1)求证:EF BC=;(2)若65ABC∠=︒,28ACB∠=︒,求FGC∠的度数.6.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、A5、D6、B7、C8、D9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、()()33a a +-2、-153、如果两个角互为对顶角,那么这两个角相等4、55.5、21x y =⎧⎨=⎩.6、2.三、解答题(本大题共6小题,共72分)1、(1) 47x y =-⎧⎨=⎩;(2) 831x y ⎧=⎪⎨⎪=⎩23、(1)a=5,b=2,c=3 ;(2)±4.4、()1略;()2BEF 67.5∠=.5、(1)略;(2)78°.6、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.。

人教版2021年八年级数学上册期末测试卷带答案

人教版2021年八年级数学上册期末测试卷带答案

人教版2021年八年级数学上册期末测试卷带答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若m >n ,则下列不等式正确的是( )A .m ﹣2<n ﹣2B .44m n >C .6m <6nD .﹣8m >﹣8n 2.若关于x 的方程3m(x +1)+5=m(3x -1)-5x 的解是负数,则m 的取值范围是( )A .m >-54B .m <-54C .m >54D .m <543.下列各式中,正确的是( )A .2(3)3-=-B .233-=-C .2(3)3±=±D .23=3±4.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.下面四个图形中,∠1=∠2一定成立的是( )A .B .C .D .6. 如图,在周长为12的菱形ABCD 中,AE =1,AF =2,若P 为对角线BD 上一动点,则EP +FP 的最小值为( )A .1B .2C .3D .47.下面是一位同学做的四道题:①222()a b a b +=+;②224(2)4a a -=-;③532a a a ÷=;④3412a a a ⋅=,其中做对的一道题的序号是( )A .①B .②C .③D .④8.如图,△ABC 中,AB ⊥BC ,BE ⊥AC ,∠1=∠2,AD =AB ,则下列结论不正确的是( )A .BF =DFB .∠1=∠EFDC .BF >EFD .FD ∥BC9.如图,小明从A 点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A 点时,一共走的路程是( )A .100米B .110米C .120米D .200米10.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°二、填空题(本大题共6小题,每小题3分,共18分)1.若a ,b 都是实数,b 12a -21a -﹣2,则a b 的值为________.2.若x 2+kx+25是一个完全平方式,则k 的值是____________.3.将“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式为_________.4.如图,直线y=x+b 与直线y=kx+6交于点P (3,5),则关于x 的不等式x+b>kx+6的解集是_________.5.如图是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是_____________.6.如图,已知ABC DCB ∠=∠,添加下列条件中的一个:①A D ∠=∠,②AC DB =,③AB DC =,其中不能确定ABC ∆≌△DCB ∆的是_____(只填序号).三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)75331x y x y +=⎧⎨+=⎩; (2)()346126x y y x y y ⎧+-=⎪⎨+-=⎪⎩.2.先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中2,b=12.3.已知关于x ,y 的方程组325x y a x y a -=+⎧⎨+=⎩. (1)若x ,y 为非负数,求a 的取值范围;(2)若x y >,且20x y +<,求x 的取值范围.4.如图,直线y =kx +b 经过点A (-5,0),B (-1,4)(1)求直线AB 的表达式;(2)求直线CE :y =-2x -4与直线AB 及y 轴围成图形的面积;(3)根据图象,直接写出关于x 的不等式kx +b >-2x -4的解集.5.甲、乙两车分别从A 、B 两地同时出发,甲车匀速前往B 地,到达B 地立即以另一速度按原路匀速返回到A 地;乙车匀速前往A 地,设甲、乙两车距A 地的路程为y (千米),甲车行驶的时间为x (时),y 与x 之间的函数图象如图所示(1)求甲车从A 地到达B 地的行驶时间;(2)求甲车返回时y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)求乙车到达A 地时甲车距A 地的路程.6.随着人们生活水平的不断提高,人们对生活饮用水质量要求也越来越高,更多的居民选择购买家用净水器.一商家抓住商机,从生产厂家购进了A,B两种型号家用净水器.已知购进2台A型号家用净水器比1台B型号家用净水器多用200元;购进3台A型号净水器和2台B型号家用净水器共用6600元,(1)求A,B两种型号家用净水器每台进价各为多少元?(2)该商家用不超过26400元共购进A,B两种型号家用净水器20台,再将购进的两种型号家用净水器分别加价50%后出售,若两种型号家用净水器全部售出后毛利润不低于12000元,求商家购进A,B两种型号家用净水器各多少台?(注:毛利润=售价-进价)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、B4、D5、B6、C7、C8、B9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、42、±10.3、如果两条直线平行于同一条直线,那么这两条直线平行.4、x>3.5、56、②.三、解答题(本大题共6小题,共72分)1、(1)52xy=⎧⎨=⎩;(2)2xy=⎧⎨=⎩2、原式=a b a b-=+3、(1)a≥2;(2)-5<x<14、(1)y=x+5;(2)272;(3)x>-3.5、(1)2.5小时;(2)y=﹣100x+550;(3)175千米.6、(1)A型号家用净水器每台进价为1000元,B型号家用净水器每台进价为1800元;(2)则商家购进A型号家用净水器12台,购进B型号家用净水器8台;购进A型号家用净水器13台,购进B型号家用净水器7台;购进A型号家用净水器14台,购进B型号家用净水器6台;购进A型号家用净水器15台,购进B型号家用净水器5台.。

人教版2021年八年级数学上册期末测试卷及答案【精编】

人教版2021年八年级数学上册期末测试卷及答案【精编】

人教版2021年八年级数学上册期末测试卷及答案【精编】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若999999a =,990119b =,则下列结论正确是( )A .a <bB .a b =C .a >bD .1ab =2.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( ) A .﹣5 B .﹣3C .3D .13.解分式方程11222x x x-=---时,去分母变形正确的是( ) A .()1122x x -+=--- B .()1122x x -=-- C .()1122x x -+=+-D .()1122x x -=---4.下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4,用式子表示是16=±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是( ) A .0个B .1个C .2个D .3个5.已知4821-可以被在0~10之间的两个整数整除,则这两个数是( ) A .1、3B .3、5C .6、8D .7、96.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°7.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+18.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D ′处.若AB=3,AD=4,则ED 的长为( )A .32B .3C .1D .439.如图,在四边形ABCD 中,AD BC ∥,90D ︒∠=,4=AD ,3BC =.分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A .22B .4C .3D .1010.若b >0,则一次函数y =﹣x +b 的图象大致是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.已知直角三角形的两边长分别为3、4.则第三边长为________. 2.分解因式:3x 9x -=__________. 3.若关于x 的分式方程2222x m m x x+=--有增根,则m 的值为_______.4.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为_____________.5.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD=________度.6.如图,ABCD的对角线相交于点O,且AD≠CD,过点O作OM⊥AC,交AD于点M.如果CDM的周长为8,那么ABCD的周长是_____.三、解答题(本大题共6小题,共72分)1.解下列分式方程:(1)32111x x=+--(2)2531242x x x-=---2.先化简,再求值:(x+y)(x-y)-(4x3y-8xy3)÷2xy,其中x=-1,y=12.3.已知5a+2的立方根是3,3a+b-1的算术平方根是4,c13分,求3a-b+c的平方根.4.如图,直角坐标系xOy中,一次函数y=﹣12x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC ﹣S△BOC的值;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.5.如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.6.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、D5、D6、A7、B8、A9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、52、()() x x3x3+-3、14、10.5、30°6、16三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)32 x=-2、223x y-+,14-.3、3a-b+c的平方根是±4.4、(1)m=2,l2的解析式为y=2x;(2)S△AOC﹣S△BOC=15;(3)k的值为32或2或﹣12.5、(1)略;(2)略.6、(1)2元;(2)至少购进玫瑰200枝.。

人教版2021年八年级数学上册期末测试卷及答案【1套】

人教版2021年八年级数学上册期末测试卷及答案【1套】

人教版2021年八年级数学上册期末测试卷及答案【1套】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列说法中正确的是( )A .若0a <,则20a <B .x 是实数,且2x a =,则0a >C .x -有意义时,0x ≤D .0.1的平方根是0.01± 2.如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④ 3.成人每天维生素D 的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为( )A .74610-⨯B .74.610-⨯C .64.610-⨯D .50.4610-⨯4.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为( )A .(2,3)B .(-2,-3)C .(-3,2)D .(3,-2)5.如图,直线a ,b 被直线c 所截,那么∠1的同位角是( )A .∠2B .∠3C .∠4D .∠56.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根7.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .18.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )A .乙前4秒行驶的路程为48米B .在0到8秒内甲的速度每秒增加4米/秒C .两车到第3秒时行驶的路程相等D .在4至8秒内甲的速度都大于乙的速度9.如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从P 1,P 2,P 3,P 4四个点中找出符合条件的点P ,则点P 有( )A .1个B .2个C .3个D .4个10.如图在△ABC 中,BO ,CO 分别平分∠ABC ,∠ACB ,交于O ,CE 为外角∠ACD 的平分线,BO 的延长线交CE 于点E ,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是( )A .①②③B .①③④C .①④D .①②④二、填空题(本大题共6小题,每小题3分,共18分)1.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.2.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为_______cm .3.在△ABC 中,AB=15,AC=13,高AD=12,则ABC ∆的周长为____________.4.如图,在△ABC 中,AC =8,BC =5,AB 的垂直平分线DE 交AB 于点D ,交边AC 于点E ,则△BCE 的周长为__________.5.在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是________.6.如图,已知直线y =ax +b 和直线y =kx 交于点P ,则关于x ,y 的二元一次方程组y kx y ax b =⎧⎨=+⎩的解是________.三、解答题(本大题共6小题,共72分)1.解不等式(1)7252x x -+≥ (2)11132x x -+-<2.先化简,再求值:(x +2)(x -2)+x(4-x),其中x =14.3.已知关于x 的一元二次方程()22x 2k 1x k k 0-+++= (1)求证:方程有两个不相等的实数根;(2)若△ABC 的两边AB 、AC 的长是方程的两个实数根,第三边BC 的长为5.当△ABC 是等腰三角形时,求k 的值4.如图,在四边形ABCD 中,∠ABC=90°,AC=AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN .(1)求证:BM=MN ;(2)∠BAD=60°,AC 平分∠BAD ,AC=2,求BN 的长.5.如图,在等边△ABC 中,AB=AC=BC=10厘米,DC=4厘米.如果点M 以3厘米/秒的速度运动.(1)如果点M 在线段CB 上由点C 向点B 运动,点N 在线段BA 上由B 点向A 点运动.它们同时出发,若点N 的运动速度与点M 的运动速度相等.①经过2秒后,△BMN 和△CDM 是否全等?请说明理由.②当两点的运动时间为多少时,△BMN 是一个直角三角形?(2)若点N 的运动速度与点M 的运动速度不相等,点N 从点B 出发,点M 以原来的运动速度从点C 同时出发,都顺时针沿△ABC 三边运动,经过25秒点M 与点N 第一次相遇,则点N 的运动速度是 厘米/秒.(直接写出答案)6.为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、C4、C5、C6、A7、B8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、82、223、32或424、135、21x y =⎧⎨=⎩.6、12x y =⎧⎨=⎩.三、解答题(本大题共6小题,共72分)1、(1)2x ≥;(2)11x >-2、-3.3、(1)详见解析(2)k 4=或k 5=4、(1)略;(25、(1)①△BMN ≌△CDM .理由略;②当t=209秒或t=109秒时,△BMN 是直角三角形;(2)3.8或2.6.6、(1)A 种纪念品需要100元,购进一件B 种纪念品需要50元(2)共有4种进货方案(3)当购进A 种纪念品50件,B 种纪念品50件时,可获最大利润,最大利润是2500元。

2021年部编人教版八年级数学上册期末测试卷及答案【A4版】

2021年部编人教版八年级数学上册期末测试卷及答案【A4版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.4的算术平方根为( )A .2±B .2C .2±D .22.已知35a =+,35b =-,则代数式22a ab b -+的值是( )A .24B .±26C .26D .253.成人每天维生素D 的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为( )A .74610-⨯B .74.610-⨯C .64.610-⨯D .50.4610-⨯4.若6-13的整数部分为x ,小数部分为y ,则(2x +13)y 的值是( )A .5-313B .3C .313-5D .-35.方程组33814x y x y -=⎧⎨-=⎩的解为( ) A .12x y =-⎧⎨=⎩ B .12x y =⎧⎨=-⎩ C .21x y =-⎧⎨=⎩ D .21x y =⎧⎨=-⎩6. 如图,在周长为12的菱形ABCD 中,AE =1,AF =2,若P 为对角线BD 上一动点,则EP +FP 的最小值为( )A .1B .2C .3D .47.四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB∥DC,AD=BC8.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若2)21a b+=(,大正方形的面积为13,则小正方形的面积为()A.3 B.4 C.5 D.69.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D10.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为()A.x y50{x y180=-+=B.x y50{x y180=++=C.x y50{x y90=++=D.x y50{x y90=-+=二、填空题(本大题共6小题,每小题3分,共18分)1.若0xy >,则二次根式2y x x -化简的结果为________. 2.已知x=2是关于x 的一元二次方程kx 2+(k 2﹣2)x+2k+4=0的一个根,则k 的值为__________.3.计算22111m m m ---的结果是________. 4.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B'处,当CEB'△为直角三角形时,BE 的长为______。

人教版2021年八年级数学上册期末测试卷及答案【最新】

人教版2021年八年级数学上册期末测试卷及答案【最新】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.64的立方根是()A.4 B.±4 C.8 D.±82.矩形具有而平行四边形不一定具有的性质是()A.对边相等B.对角相等C.对角线相等D.对角线互相平分3.估计6+1的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间4.当22aa+-有意义时,a的取值范围是()A.a≥2 B.a>2 C.a≠2 D.a≠-25.代数式131xx-+-中x的取值范围在数轴上表示为()A.B.C.D.6.如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长是()A.20 B.24 C.40 D.487.若a72b27a和b互为()A.倒数B.相反数C.负倒数D.有理化因式8.如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E,若∠A=54°,∠B=48°,则∠CDE 的大小为( )A .44°B .40°C .39°D .38°9.如图,菱形ABCD 的周长为28,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于( )A .2B .3.5C .7D .1410.如图,▱ABCD 的对角线AC 、BD 相交于点O ,且AC+BD=16,CD=6,则△ABO 的周长是( )A .10B .14C .20D .22二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是 .2.若关于x 、y 的二元一次方程3x ﹣ay=1有一个解是32x y =⎧⎨=⎩,则a=_____. 3.若分式1x x-的值为0,则x 的值为________. 4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.5.如图,△ABC 中,AB=BC ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF ,若∠BAE=25°,则∠ACF=__________度.6.如图,四边形ABCD 中,∠A=90°,AB=33,AD=3,点M ,N 分别为线段BC ,AB 上的动点(含端点,但点M 不与点B 重合),点E ,F 分别为DM ,MN 的中点,则EF 长度的最大值为 .三、解答题(本大题共6小题,共72分)1.解分式方程:1x x -﹣1=233x x -.2.先化简,再求值:2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中2x =.3.已知关于x 的一元二次方程22240x x k ++-=有两个不相等的实数根(1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值.4.如图,矩形ABCD 中,AB =6,BC =4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.5.如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、B4、B5、A6、A7、D8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±4.2、43、1.4、(-4,2)或(-4,3)5、706、3三、解答题(本大题共6小题,共72分)1、分式方程的解为x=1.5.2、22x-,12-.3、(1)k<52(2)24、(1)略;(2).5、(1)略;(2)略.6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。

人教版2021年八年级数学上册期末测试卷【带答案】

人教版2021年八年级数学上册期末测试卷【带答案】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若关于x的不等式组324x ax a<+⎧⎨>-⎩无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥32.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5 B.﹣3 C.3 D.13.下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形4.已知一个多边形的内角和等于900º,则这个多边形是()A.五边形B.六边形C.七边形D.八边形5.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长()A.4 B.16 C.34D.4或346.菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形7.下列图形中,是轴对称图形的是()A.B. C.D.8.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若2)21a b +=(,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .69.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°10.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C .2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.2.已知菱形ABCD 的面积是12cm 2,对角线AC =4cm ,则菱形的边长是______cm .3.若214x x x++=,则2211x x ++= ________. 4.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________5.如图,在平面直角坐标系中,△AOB ≌△COD ,则点D 的坐标是__________.6.如图,四边形ABCD 中,∠A=90°,AB=33,AD=3,点M ,N 分别为线段BC ,AB 上的动点(含端点,但点M 不与点B 重合),点E ,F 分别为DM ,MN 的中点,则EF 长度的最大值为 .三、解答题(本大题共6小题,共72分)1.解下列不等式,并把解集在数轴上表示出来(1)2562x x -≥- (2)532122x x ++-<2.先化简,再求值:()()22141a a a +--,其中18a =.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,在▱ABCD 中,AE ⊥BC ,AF ⊥CD ,垂足分别为E ,F ,且BE=DF(1)求证:▱ABCD 是菱形;(2)若AB=5,AC=6,求▱ABCD 的面积.5.如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.(1)求证:△ABC≌△DFE;(2)连接AF、BD,求证:四边形ABDF是平行四边形.6.为支援灾区,某校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品共1000件.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品的件数与用120元购买A型学习用品的件数相同.(1)求A、B两种学习用品的单价各是多少元?(2)若购买这批学习用品的费用不超过28000元,则最多购买B型学习用品多少件?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、C4、C5、D6、B7、B8、C9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、7或-123、84、135°5、(-2,0)6、3三、解答题(本大题共6小题,共72分)1、(1)43x≤-,数轴表示见解析;(2)12x>,数轴表示见解析.2、23、(1)12b-≤≤;(2)24、(1)略;(2)S平行四边形ABCD=245、(1)略;(2)略.6、(1)A型学习用品20元,B型学习用品30元;(2)800.。

人教版2021年八年级数学上册期末测试卷及答案【通用】

人教版2021年八年级数学上册期末测试卷及答案【通用】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.一次函数()224y k x k =++-的图象经过原点,则k 的值为( )A .2B .2-C .2或2-D .32.到三角形三个顶点的距离相等的点是三角形( )的交点.A .三个内角平分线B .三边垂直平分线C .三条中线D .三条高 3.化简二次根式 22a a a +-的结果是( ) A .2a -- B .-2a --C .2a -D .-2a - 4.已知三角形三边长为a 、b 、c ,且满足247a b -=, 246b c -=-, 2618c a -=-,则此三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .无法确定5.若关于x 的一元二次方程(k -1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是( )A .k<5B .k<5,且k ≠1C .k ≤5,且k ≠1D .k>56. 如图,在周长为12的菱形ABCD 中,AE =1,AF =2,若P 为对角线BD 上一动点,则EP +FP 的最小值为( )A .1B .2C .3D .47.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC8.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°9.如图,能判定EB∥AC的条件是()A.∠C=∠1 B.∠A=∠2C.∠C=∠3 D.∠A=∠110.正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k的图象大致是()A. B.C. D.二、填空题(本大题共6小题,每小题3分,共18分)116________.2.计算1273-=___________.3.分解因式:3x-x=__________.4.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B 落在点B'处,当CEB'△为直角三角形时,BE的长为______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册数学期末达标训练题
一.选择题
1.下列运算不正确的是()
A.a2•a3=a5B.(y3)4=y12
C.(﹣2x)3=﹣8x3D.x3+x3=2x6
2.下列各分式中,是最简分式的是()
A.B.
C.D.
3.若一个多边形的内角和是1080度,则这个多边形的边数为()
A.6 B.7 C.8 D.10
4.如图,△ABC≌△A'B'C,∠BCB'=30°,则∠ACA'的度数为()
A.30°B.45°C.60°D.15°
5.如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()
A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB
6.等腰三角形一边长等于5,一边长等于9,则它的周长是()
A.14 B.23 C.19 D.19或23
7.计算﹣的结果是()
A.1 B.﹣1 C.2 D.﹣2
8.如果多项式x2+px+12可以分解成两个一次因式的积,那么整数p的值可取多少个()A.4 B.5 C.6 D.8
9.如图,在△ABC中,∠ACB=90°,分别以点A,点C为圆心,以大于的长为半径作弧,两弧相交于点M、点N,作直线MN交AB于点D,交AC于点E,连接CD.若AE=3,BC=8,则CD的长为()
A.4 B.5 C.6 D.7
10.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点G,过点G作EF∥BC交AB于E,交AC于F,过点G作GD⊥AC于D,下列四个结论:
①EF=BE+CF;
②∠BGC=90°+∠A;
③点G到△ABC各边的距离相等;
④设GD=m,AE+AF=n,则S△AEF=mn.
其中正确的结论有()
A.1个B.2个C.3个D.4个
二.填空题
11.已知a m=2,a n=5,则a m+n=.
12.如图,在△ABC中,∠C=46°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是.
13.已知点P(3,a)关于y轴的对称点为Q(b,2),则ab=.
14.若(x﹣4)x﹣1=1,则整数x=.
15.若关于x的方程是非负数,则m的取值范围是.
16.如图,在△ABC中,AB=AC,∠BAC=120°,点D为△ABC外一点,连接BD、AD、CD,∠ADC=60°,BD=5,DC=4,则AD=.
三.解答题
17.解下列方程:
(1)
(2)
18.计算题
(1)计算:
(2)先化简,再求值:,其中x=.
19.计算:
(1)[(x+y)2﹣y(2x+y)﹣8x]÷2x;
(2)已知:m﹣n=4,m2﹣n2=24,求(m+n)3的值.
(3)已知﹣2x3m+1y2n与7x n﹣6y﹣3﹣m的积与x4y是同类项,求m2+n的值.(4)先化简,再求值:(﹣2a4x2+4a3x3﹣a2x4)÷(﹣a2x2),其中a=,x=﹣4.
(5)分解因式:
①(x+y)2﹣9y2;
②10b(x﹣y)2﹣5a(y﹣x)2;
③(ab+b)2﹣(a+1)2;
20.如图,AB=AC,D、E分别为AC、AB边中点,连接BD、CE相交于点F.
求证:∠B=∠C.
21.某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A 型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等.
(1)每台A,B两种型号的机器每小时分别加工多少个零件?
(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?
22.问题1:如图①,在四边形ABCD中,∠B=∠C=90°,P是BC上一点,PA=PD,∠APD=90°.求证:AB+CD=BC.
问题2:如图②,在四边形ABCD中,∠B=∠C=45°,P是BC上一点,PA=PD,∠APD =90°.求的值.
23.(1)已知a﹣b=2,ab=5,求a2+b2﹣3ab的值;
(2)已知a2﹣a﹣1=0,求a3﹣2a2+3的值.
(3)如图,有A型、B型、C型三种不同类型的纸板,其中A型是边长为a的正方形,B型是长为a,宽为b的长方形,C型是边长为b的正方形.若想用这些纸板拼成一个长方形,使其面积为(a+b)(a+2b).
完成下列各题:
①填空(a+b)(a+2b)=;
②请问需要A型纸板、B型纸板、C型纸板各多少张?试说明理由.
24.如图1,P点从点A开始以2厘米/秒的速度沿A→B→C的方向移动,点Q从点C开始以1厘米/秒的速度沿C→A→B的方向移动,在直角三角形ABC中,∠A=90°,若AB=16厘米,AC=12厘米,BC=20厘米,如果P、Q同时出发,用t(秒)表示移动时间,那么:
(1)如图1,若P在线段AB上运动,Q在线段CA上运动,试求出t为何值时,QA =AP
(2)如图2,点Q在CA上运动,试求出t为何值时,三角形QAB的面积等于三角形ABC面积的;
(3)如图3,当P点到达C点时,P、Q两点都停止运动,试求当t为何值时,线段AQ 的长度等于线段BP的长的。

相关文档
最新文档