【压轴卷】初一数学下期中一模试题(带答案)
【压轴卷】初一数学下期中模拟试题(带答案)

【压轴卷】初一数学下期中模拟试题(带答案)一、选择题1.不等式x+1≥2的解集在数轴上表示正确的是( )A .B .C .D .2.如图,直线a b ∥,三角板的直角顶点放在直线b 上,两直角边与直线a 相交,如果160∠=︒,那么2∠等于( )A .30°B .︒40C .50︒D .60︒3.点M (2,-3)关于原点对称的点N 的坐标是: ( )A .(-2,-3)B .(-2, 3)C .(2, 3)D .(-3, 2)4.已知x 、y 满足方程组2827x y x y +=⎧⎨+=⎩,则x +y 的值是( ) A .3 B .5C .7D .9 5.设42-的整数部分为a ,小整数部分为b ,则1a b -的值为( ) A .2- B .2 C .212+ D .212- 6.如图所示,已知直线BF 、CD 相交于点O ,D 40∠=︒,下面判定两条直线平行正确的是( )A .当C 40∠=︒时,AB//CDB .当A 40∠=︒时,BC//DEC .当E 120∠=︒时,CD//EFD .当BOC 140∠=︒时,BF//DE 7.比较552、443、334的大小( )A .554433234<<B .334455432<<C .553344243<<D .443355342<< 8.下列现象中是平移的是( )A .将一张纸对折B .电梯的上下移动C .摩天轮的运动D .翻开书的封面 9.如图,数轴上表示25C ,B ,点C 是AB 的中点,则点A 表示的数是( )A .5-B .25-C .45-D .52-10.点P 为直线m 外一点,点A ,B ,C 为直线m 上三点,PA =4cm ,PB =5cm ,PC =2cm ,则点P 到直线m 的距离为( )A .4cmB .2cm ;C .小于2cmD .不大于2cm11.在平面直角坐标系内,线段CD 是由线段AB 平移得到的,点A (-2,3)的对应点为C (2,5),则点B (-4,-1)的对应点D 的坐标为()A .()8,3--B .()4,2C .()0,1D .()1,8 12.过一点画已知直线的垂线,可画垂线的条数是( )A .0B .1C .2D .无数 二、填空题13.如图,已知AM//CN ,点B 为平面内一点,AB ⊥BC 于B ,过点B 作BD ⊥AM 于点D ,点E 、F 在DM 上,连接BE 、BF 、CF ,BF 平分∠DBC ,BE 平分∠ABD ,若∠FCB +∠NCF =180︒,∠BFC =3∠DBE ,则∠EBC 的度数为______.14.若一个数的平方等于5,则这个数等于_____.15.如图,在平面直角坐标系xOy 中,点A ,点B 的坐标分别为(0,2),(-1,0),将线段AB 沿x 轴的正方向平移,若点B 的对应点的坐标为B'(2,0),则点A 的对应点A'的坐标为___.16.已知:m 、n 为两个连续的整数,且m 11<n mn _____.17.34330035.12=30.3512x =-,则x =_____________.18.如图,直线AB ,CD 交于点O ,OF ⊥AB 于点O ,CE ∥AB 交CD 于点C ,∠DOF =60°,则∠ECO 等于_________度.19.若一个正数x 的平方根是2a +1和4a -13,则a =____,x =____.20.不等式组0125x a x x ->⎧⎨->-⎩有3个整数解,则a 的取值范围是_____. 三、解答题21.为了增强学生的身体素质,西南大学附中七年级学生在每天晚自习之后进行夜跑.在学期末的体育考试中,七年级的同学们表现出很好的体育素养,并取得了良好的体育成绩.为了了解七年级学生的体育考试情况,小明抽取了部分同学的体育考试成绩进行分析,体育成绩优、良、中、差分别记为,,A B C D ,,并绘制了如下两幅不完整的统计表:(1)本次调查共调查了 名学生,并补全条形统计图;(2)扇形统计图中C 类所对应的扇形圆心角的度数是 度;(3)若七年级人数为800人,请你估计体育成绩优、良的总人数.22.某市教育行政部门为了了解初一学生每学期参加综合实践活动的情况,随机抽样调查了某校初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图)请你根据图中提供的信息,回答下列问题:(1)扇形统计图中a 的值为 ,“活动时间为4天”的扇形所对圆心角的度数为 °,该校初一学生的总人数为 ;(2)补全频数分布直方图;(3)如果该市共有初一学生6000人,请你估计“活动时间不少于4天”的大约有多少人?23.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有 人;(2)补全条形统计图,并在图上标明相应的数据;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.24.课题学习:平行线的“等角转化功能.(1)问题情景:如图1,已知点A 是BC 外一点,连接AB 、AC ,求BAC B C ∠+∠+∠的度数.天天同学看过图形后立即想出:180BAC B C ∠+∠+∠=︒,请你补全他的推理过程. 解:(1)如图1,过点A 作ED BC ∥,∴B ∠= ,C ∠= .又∵180EAB BAC CAD ∠+∠+∠=︒,∴180BAC B C ∠+∠+∠=︒.解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”功能,将BAC ∠,B Ð,C ∠“凑”在一起,得出角之间的关系,使问题得以解决.(2)问题迁移:如图2,AB ED P ,求B BCD D ∠+∠+∠的度数.(3)方法运用:如图3,AB CD ∥,点C 在D 的右侧,70ADC ∠=︒,点B 在A 的左侧,60ABC ∠=︒,BE 平分ABC ∠,DE 平分ADC ∠,BE 、DE 所在的直线交于点E ,点E 在AB 与CD 两条平行线之间,求BED ∠的度数.25.(1)请写出图形平移的两个特征或性质,①______________________________.②______________________________.(2)如图,平移扇形OAB ,使扇形上的点C 移动到点C ',画出平移后的扇形O A B '''.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】试题解析:∵x+1≥2,∴x ≥1.故选A .考点:解一元一次不等式;在数轴上表示不等式的解集.2.A解析:A【解析】【分析】先由直线a ∥b ,根据平行线的性质,得出∠3=∠1=60°,再由已知直角三角板得∠4=90°,然后由∠2+∠3+∠4=180°求出∠2.【详解】已知直线a ∥b ,∴∠3=∠1=60°(两直线平行,同位角相等),∠4=90°(已知),∠2+∠3+∠4=180°(已知直线),∴∠2=180°-60°-90°=30°.故选:A.【点睛】此题考查平行线性质的应用,解题关键是由平行线性质:两直线平行,同位角相等,求出∠3.3.B解析:B【解析】试题解析:已知点M(2,-3),则点M关于原点对称的点的坐标是(-2,3),故选B.4.B解析:B【解析】【分析】把两个方程相加可得3x+3y=15,进而可得答案.【详解】两个方程相加,得3x+3y=15,∴x+y=5,故选B.【点睛】本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.5.D解析:D【解析】【分析】【详解】解:∵1<2<4,∴12<2,∴﹣2<2-<﹣1,∴2<423,∴a=2,b=42222=22-∴1222 22122ab+-===-【点睛】本题考查估算无理数的大小.6.D解析:D【解析】【分析】选项A中,∠C和∠D是直线AC、DE被DC所截形成的内错角,内错角相等,判定两直线平行;选项B中,不符合三线八角,构不成平行;选项C中,∠E和∠D是直线DC、EF被DE所截形成的同旁内角,因为同旁内角不互补,所以两直线不平行;选项D中,∠BOC的对顶角和∠D是直线BF、DE被DC所截形成的同旁内角,同旁内角互补,判定两直线平行.【详解】解:A、错误,因为∠C=∠D,所以AC∥DE;B、错误,不符合三线八角构不成平行;C、错误,因为∠C+∠D≠180°,所以CD不平行于EF;D、正确,因为∠DOF=∠BOC=140°,所以∠DOF+∠D=180°,所以BF∥DE.故选:D.【点睛】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.7.C解析:C【解析】【分析】根据幂的乘方,底数不变指数相乘都转换成指数是11的幂,再根据底数的大小进行判断即可【详解】解:255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,∵32<64<81,∴255<433<344.故选:C.【点睛】本题考查了幂的乘方的性质,解题的关键在于都转化成以11为指数的幂的形式.8.B【解析】【分析】根据平移的概念,依次判断即可得到答案;【详解】解:根据平移的概念:把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,判断:A、将一张纸对折,不符合平移定义,故本选项错误;B、电梯的上下移动,符合平移的定义,故本选项正确;C、摩天轮的运动,不符合平移定义,故本选项错误;D、翻开的封面,不符合平移的定义,故本选项错误.故选B.【点睛】本题考查平移的概念,在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.9.C解析:C【解析】【分析】首先可以求出线段BC的长度,然后利用中点的性质即可解答.【详解】∵表示2C,B,,∵点C是AB的中点,则设点A的坐标是x,则∴点A表示的数是故选C.【点睛】本题主要考查了数轴上两点之间x1,x2的中点的计算方法.10.D解析:D【解析】【分析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案.【详解】当PC⊥l时,PC是点P到直线l的距离,即点P到直线l的距离2cm,当PC不垂直直线l时,点P到直线l的距离小于PC的长,即点P到直线l的距离小于综上所述:点P到直线l的距离不大于2cm,故选:D.【点睛】考查了点到直线的距离,利用了垂线段最短的性质.11.C解析:C【解析】【分析】根据点A(-2,3)的对应点为C(2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,以此规律可得D的对应点的坐标.【详解】点A(-2,3)的对应点为C(2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,于是B(-4,-1)的对应点D的横坐标为-4+4=0,点D的纵坐标为-1+2=1,故D(0,1).故选C.【点睛】此题考查了坐标与图形的变化----平移,根据A(-2,3)变为C(2,5)的规律,将点的变化转化为坐标的变化是解题的关键.12.B解析:B【解析】【分析】根据垂直的性质:过直线外或直线上一点画已知直线的垂线,可以画一条,据此解答.【详解】在平面内,过一点有且只有一条直线与已知直线垂直,故选:B【点睛】此题考查了直线的垂直的性质,注意基础知识的识记和理解.二、填空题13.105°【解析】【分析】先过点作根据同角的余角相等得出根据角平分线的定义得出再设根据可得根据可得最后解方程组即可得到进而得出【详解】解:如图过点作即又平分平分设则中由可得①由可得②由①②联立方程组解解析:105°【解析】【分析】先过点B 作//BG DM ,根据同角的余角相等,得出ABD CBG ∠=∠,根据角平分线的定义,得出ABF GBF ∠=∠,再设DBE α∠=,ABF β∠=,根据180CBF BFC BCF ∠+∠+∠=︒,可得(2)3(3)180αβααβ++++=︒,根据AB BC ⊥,可得290ββα++=︒,最后解方程组即可得到15ABE ∠=︒,进而得出1590105EBC ABE ABC ∠=∠+∠=︒+︒=︒.【详解】解:如图,过点B 作//BG DM ,BD AM ⊥Q ,DB BG ∴⊥,即90ABD ABG ∠+∠=︒,又AB BC ⊥Q ,90CBG ABG ∴∠+∠=︒,ABD CBG ∴∠=∠,BF Q 平分DBC ∠,BE 平分ABD ∠,DBF CBF ∴∠=∠,DBE ABE ∠=∠,ABF GBF ∴∠=∠,设DBE α∠=,ABF β∠=,则ABE α∠=,2ABD CBG α∠==∠,GBF AFB β∠==∠,33BFC DBE α∠=∠=,3AFC αβ∴∠=+,180AFC NCF ∠+∠=︒Q ,180FCB NCF ∠+∠=︒,3FCB AFC αβ∴∠=∠=+,BCF ∆中,由180CBF BFC BCF ∠+∠+∠=︒,可得(2)3(3)180αβααβ++++=︒,①由AB BC ⊥,可得290ββα++=︒,②由①②联立方程组,解得15α=︒,15ABE ∴∠=︒,1590105EBC ABE ABC ∴∠=∠+∠=︒+︒=︒.故答案为:105°.【点睛】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.14.【解析】【分析】根据平方根的定义即可求解【详解】若一个数的平方等于5则这个数等于:故答案为:【点睛】此题主要考查平方根的定义解题的关键是熟知平方根的性质解析:【解析】【分析】根据平方根的定义即可求解.【详解】若一个数的平方等于5,则这个数等于:故答案为:【点睛】此题主要考查平方根的定义,解题的关键是熟知平方根的性质.15.(32)【解析】【分析】根据平移的性质即可得到结论【详解】∵将线段AB沿x轴的正方向平移若点B的对应点B′的坐标为(20)∵-1+3=2∴0+3=3∴A′(32)故答案为:(32)【点睛】本题考查了解析:(3,2)【解析】【分析】根据平移的性质即可得到结论.【详解】∵将线段AB沿x轴的正方向平移,若点B的对应点B′的坐标为(2,0),∵-1+3=2,∴0+3=3∴A′(3,2),故答案为:(3,2)【点睛】本题考查了坐标与图形变化-平移.解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.16.【解析】【分析】利用无理数的估算先取出mn的值然后代入计算即可得到答案【详解】解:∵∴∵mn为两个连续的整数∴∴;故答案为:【点睛】本题考查了无理数的估算解题的关键是熟练掌握无理数的估算正确得到mn解析:【解析】【分析】利用无理数的估算,先取出m 、n 的值,然后代入计算,即可得到答案.【详解】<<,∴34<<,∵m 、n 为两个连续的整数,∴3m =,4n =,===;故答案为:【点睛】本题考查了无理数的估算,解题的关键是熟练掌握无理数的估算,正确得到m 、n 的值.17.-00433【解析】【分析】三次根式变化规律为:三次根号内的式子扩大或缩小1000倍则得到的结果扩大或缩小10倍根据规律可得x 的值【详解】从3512变为-03512缩小了100倍且添加了-∴根据规律解析:-0.0433【解析】【分析】三次根式变化规律为:三次根号内的式子扩大或缩小1000倍,则得到的结果扩大或缩小10倍,根据规律可得x 的值.【详解】从35.12变为-0.3512,缩小了100倍,且添加了“-”∴根据规律,三次根式内的式子应该缩小1000000倍,且添加“-”故答案为:-0.0433【点睛】本题考查三次根式的规律,二次根式规律类似:二次根号内的式子扩大或缩小100倍,则得到的结果扩大或缩小10倍.18.30【解析】【分析】先求出∠BOD 的大小再根据平行的性质得出同位角∠ECO 的大小【详解】∵OF⊥AB∴∠BOF=90°∵∠DOF=60°∴∠BOD=30°∵CE∥AB∴∠ECO=∠BOD=30°故答解析:30【解析】【分析】先求出∠BOD 的大小,再根据平行的性质,得出同位角∠ECO 的大小.【详解】∵OF ⊥AB ,∴∠BOF=90°∵∠DOF=60°,∴∠BOD=30°∵CE ∥AB∴∠ECO=∠BOD=30°故答案为:30【点睛】本题考查平行线的性质,平行线的性质有:同位角相等、内错角相等、同旁内角互补.19.25【解析】【分析】【详解】∵正数m的平方根是2a+1和4a−13∴2a+1+4a−13=0解得a=2∴2a+1=2×2+1=5∴m=5²=25故答案为225解析:25【解析】【分析】【详解】∵正数m的平方根是2a+1和4a−13,∴2a+1+4a−13=0,解得a=2,∴2a+1=2×2+1=5,∴m=5²=25.故答案为2, 25.20.﹣2≤a<﹣1【解析】【分析】先解不等式组确定不等式组的解集(利用含a的式子表示)根据整数解的个数就可以确定有哪些整数解根据解的情况可以得到关于a的不等式从而求出a的范围【详解】解不等式x﹣a>0得解析:﹣2≤a<﹣1.【解析】【分析】先解不等式组确定不等式组的解集(利用含a的式子表示),根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【详解】解不等式x﹣a>0,得:x>a,解不等式1﹣x>2x﹣5,得:x<2,∵不等式组有3个整数解,∴不等式组的整数解为﹣1、 0、1,则﹣2≤a<﹣1,故答案为:﹣2≤a<﹣1.【点睛】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.三、解答题21.(1)40,图形见详解;(2)72;(3)600【解析】【分析】(1)根据A级的有16人,所占的圆心角是144°,据此即可求得测试的总人数,之后先根据百分比算出B的人数,再根据D的人数算出C的人数,即可补全条形图;(2)利用360︒乘以对应的百分比求得所在扇形的圆心角的度数;(3)利用总人数乘以对应的比例即可求解.【详解】解:(1)1441640360︒÷=︒(名),所以本次调查共调查了40名学生;4035%14⨯=(名),所以B类学生有14名,可以求到C类学生有40-16-14-2=8(名),可以补全条形统计图如下:(2)83607240︒⨯=︒,所以扇形统计图中C类所对应的扇形圆心角的度数是72度;(3)161480060040+⨯=(名),答:体育成绩优、良的总人数约有600名.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(1)25%;108;200;(2)频数分布直方图见解析;(3)人数约是4500人【解析】【分析】(1)用总量1减去2天、3天、4天、6天、7天对应的比例,得到的即为5天的比例,即a的值;用4天的比例乘360°得到圆心角;用2天的人数÷2天的比例得到初一学生人数;(2)求出5天对应的人数,然后画图即可;(3)先求出不少于4天的比例,然后乘总人数得到.【详解】(1)a=1-10%-15%-30%-15%-5%=25%n=30%×360°=108°初一总人数=20200 10%人(2)5天的人数=200×25%=50人,图形如下:(3)不少于4天的比例=30%+25%+15%=5%=75%不少于4天的人数=6000×75%=4500人【点睛】本题考查调查与统计,解题关键是求出初一的总人数.23.(1)1000,(2)答案见解析;(3)900.【解析】【分析】(1)结合不剩同学的个数和比例,计算总体个数,即可.(2)结合总体个数,计算剩少数的个数,补全条形图,即可.(3)计算一餐浪费食物的比例,乘以总体个数,即可.【详解】解:(1)这次被调查的学生共有600÷60%=1000人,故答案为1000;(2)剩少量的人数为1000﹣(600+150+50)=200人,补全条形图如下:(3),答:估计该校18000名学生一餐浪费的食物可供900人食用一餐.【点睛】考查统计知识,考查扇形图的理解,难度较容易.24.(1)∠EAB ,∠DAC ; (2)360°;(3)65°【解析】【分析】(1)根据平行线性质“两直线平行,内错角相等”可得∠B+∠BCD+∠D ∠BCF+∠BCD+∠DCF ;(2)过C 作CF ∥AB ,根据平行线性质可得;(3)如图3,过点E 作EF ∥AB ,根据平行线性质和角平分线定义可得∠ABE=12∠ABC=30°,∠CDE=12∠ADC=35°,故∠BED=∠BEF+∠DEF. 【详解】(1)根据平行线性质可得:因为ED BC ∥,所以B ∠=∠EAB ,C ∠=∠DAC ;(2)过C 作CF ∥AB ,∵AB ∥DE ,∴CF ∥DE ∥AB ,∴∠D=∠FCD ,∠B=∠BCF ,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°,(3)如图3,过点E 作EF ∥AB ,∵AB ∥CD ,∴AB ∥CD ∥EF ,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,∴∠ABE=12∠ABC=30°,∠CDE=12∠ADC=35°∴∠BED=∠BEF+∠DEF=30°+35°=65°.【点睛】考核知识点:平行线性质和角平分线定义.作辅助线构造平行线是关键.25.(1)见解析(2)见解析【解析】【分析】(1)根据平移的性质解答即可;(2)将图形的各个顶点按平移条件找出它的对应点,顺次连接,即得到平移后的图形.【详解】(1)①平移不改变图形的形状和大小,②一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一直线上)且相等;(2)如图所示,扇形O A B'''即为所求:【点睛】本题考查了图形的平移,解题的关键是作各个关键点的对应点.。
【压轴卷】初一数学下期中一模试卷(及答案)

【压轴卷】初一数学下期中一模试卷(及答案)一、选择题1.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A (﹣2,1)和B (﹣2,﹣3),那么第一架轰炸机C 的平面坐标是( )A .(2,﹣1)B .(4,﹣2)C .(4,2)D .(2,0) 2.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是 A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-23.下列图中∠1和∠2是同位角的是( )A .(1)、(2)、(3)B .(2)、(3)、(4)C .(3)、(4)、(5)D .(1)、(2)、(5) 4.下列说法正确的是() A .一个数的算术平方根一定是正数 B .1的立方根是±1 C .255=±D .2是4的平方根5.不等式组2201x x +>⎧⎨-≥-⎩的解在数轴上表示为( )A .B .C .D .6.下列命题中,是真命题的是( )A .在同一平面内,垂直于同一直线的两条直线平行B .相等的角是对顶角C .两条直线被第三条直线所截,同旁内角互补D .过一点有且只有一条直线与已知直线平行7.请你观察、思考下列计算过程:因为112=12112111:,因为1112=12321所以12321=111…12345678987654321( )A .111111B .1111111C .11111111D .1111111118.如图所示,在ABC 中,点D 、E 、F 分别是AB ,BC ,AC 上,且EF ∥AB ,要使DF∥BC,还需添加条件是()A.∠1=∠2B.∠1=∠3C.∠3=∠4D.∠2=∠49.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有()A.1个B.2个C.3个D.4个10.如图,已知∠1+∠2=180°,∠3=55°,那么∠4的度数是()A.35°B.45°C.55°D.125°11.在直角坐标系中,若点P(2x-6,x-5)在第四象限,则x的取值范围是( )A.3<x<5B.-5<x<3C.-3<x<5D.-5<x<-3 12.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=()A.110°B.120°C.125°D.135°二、填空题13.如图,已知AM//CN,点B为平面内一点,AB⊥BC于B,过点B作BD⊥AM于点D,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180︒,∠BFC=3∠DBE,则∠EBC的度数为______.14.如图,把一长方形纸片ABCD沿EF折叠后ED与BC交于点G,D、C分别在M,N 的位置,若∠EFG=56°,则∠EGB =___________.15.已知方程3x +5y -3=0,用含x 的代数式表示y ,则y=________.16.已知ABC ∆的面积为16,其中两个顶点的坐标分别是()()7,0,1,0A B -,顶点C 在y 轴上,那么点C 的坐标为 ____________17.观察下列各式:111233+=,112344+=,113455+=,……请你将发现的规律用含自然数n (n≥1)的等式表示出来__________________. 18.已知:m 、n 为两个连续的整数,且m <11<n ,则mn =_____.19.在平面直角坐标系中,点(-5,-8)是由一个点沿x 轴向左平移3个单位长度得到的,则这个点的坐标为_______.20.若x +1是125的立方根,则x 的平方根是_________.三、解答题21.某校为迎接体育中考,了解学生的体育情况,学校随机调查了本校九年级50名学生“30秒跳绳”的次数,并将调查所得的数据整理如下:根据以上图表信息,解答下列问题: (1)表中的a = ,c = ;(2)请把频数分布直方图补充完整;(画图后请标注相应的数据)(3)若该校九年级共有500名学生,请你估计“30秒跳绳”的次数60次以上(含60次)的学生有多少人 22.解不等式(组): (1)解不等式5132x x -+>-,并把它的解集表示在数轴上; (2)解不等式组:253(2)1210.35x x x +≥+⎧⎪-⎨+>⎪⎩,23.类比学习:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位.用有理数加法表示为()321+-=.若坐标平面上的点做如下平移:沿x 轴方向平移的数量为a (向右为正,向左为负,平移a 个单位),沿y 轴方向平移的数量为b (向上为正,向下为负,平移b 个单位),则把有序数对{},a b 叫做这一平移的“平移量”;“平移量”{},a b 与“平移量”{},c d 的加法运算法则为{}{}{},,,a b c d a c b d +=++ 解决问题:(1)计算:{}{}3,11,2+;(2)动点P 从坐标原点O 出发,先按照“平移量”{}3,1平移到A ,再按照“平移量”{}1,2平移到B :若先把动点P 按照.“平移量”{}1,2平移到C ,再按照“平移量”{}3,1平移,最后的位置还是B 吗?在图1中画出四边形OABC .(3)如图2,一艘船从码头O 出发,先航行到湖心岛码头()2,3P ,再从码头P 航行到码头()5,5Q ,最后回到出发点O .请用“平移量”加法算式表示它的航行过程.解:(1){}{}3,11,2+______; (2)答:______; (3)加法算式:______.24.2020年的寒假是“不同寻常”的一个假期.在这个超长假期里,某中学随机对本校部分同学进行“抗疫有我,在家可以这么做”的问卷调查:A 扎实学习、B 经典阅读、C 分担劳动、D 乐享健康,(每位同学只能选一个),并根据调查结果绘制如下两幅不完整的统计图.根据统计图提供信息,解答问题: (1)本次一共调查了_______名同学;(2)请补全条形统计图;在扇形统计图中A 所对应的圆心角为 度; (3)若该校共有1600名同学,请你估计选择A 有多少名同学?25.△ABC 在平面直角坐标系中,且A (2,1)-、B (3,2)--、C (1,4)-,将其平移后得到111A B C ∆,若A ,B 的对应点是1A ,1B ,C 的对应点1C 的坐标是(3,1)-.(1)在平面直角坐标系中画出△ABC ;(2)写出点1A 的坐标是_____________;1B 坐标是___________;(3)此次平移也可看作111A B C ∆向____平移了______个单位长度,再向_____平移了____个单位长度得到△ABC .【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据A (﹣2,1)和B (﹣2,﹣3)的坐标以及与C 的关系进行解答即可. 【详解】解:因为A (﹣2,1)和B (﹣2,﹣3),所以建立如图所示的坐标系,可得点C 的坐标为(2,﹣1).故选:A . 【点睛】考查坐标问题,关键是根据A (﹣2,1)和B (﹣2,﹣3)的坐标以及与C 的关系解答.2.A解析:A 【解析】 【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可. 【详解】根据x 的不等式x -b >0恰有两个负整数解,可得x 的负整数解为-1和-20x b ->Q x b ∴>综合上述可得32b -≤<- 故选A. 【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.3.D解析:D 【解析】 【分析】根据同位角的定义,对每个图进行判断即可. 【详解】(1)图中∠1和∠2是同位角;故本项符合题意; (2)图中∠1和∠2是同位角;故本项符合题意; (3)图中∠1和∠2不是同位角;故本项不符合题意; (4)图中∠1和∠2不是同位角;故本项不符合题意; (5)图中∠1和∠2是同位角;故本项符合题意. 图中是同位角的是(1)、(2)、(5). 故选D . 【点睛】本题考查了同位角,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.4.D解析:D 【解析】 【分析】根据平方根、算术平方根、立方根的定义,即可解答. 【详解】A 、一个数的算术平方根一定是正数,错误,例如0的算术平方根是0;B 、1的立方根是1,错误;C 、255=,错误;D 、2是4的平方根,正确; 故选:D 【点睛】本题考查了立方根、平方根,解决本题的关键是熟记平方根、立方根的定义.5.D解析:D 【解析】 【分析】解不等式组求得不等式组的解集,再把其表示在数轴上即可解答. 【详解】2201x x ①②+>⎧⎨-≥-⎩, 解不等式①得,x >-1; 解不等式②得,x ≤1; ∴不等式组的解集是﹣1<x ≤1. 不等式组的解集在数轴上表示为:故选D. 【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解决问题的关键.6.A解析:A【解析】分析:根据平行线的判定与性质,对顶角的性质,平行线的作图,逐一判断即可. 详解:根据平行公理的推论,可知:在同一平面内,垂直于同一直线的两条直线平行,故正确;根据对顶角的定义,可知相等的角不一定是对顶角,故不正确;根据两条平行的直线被第三条直线所截,同旁内角互补,故不正确;根据平行公理,可知过直线外一点有且只有一条直线与已知直线平行,故不正确.故选:A.点睛:此题主要考查了平行线的判定与性质,关键是熟记公理的内容和特点,找到反例说明即可.7.D解析:D【解析】分析:被开方数是从1到n再到1(n≥1的连续自然数),算术平方根就等于几个1.=111…,…,.故选D.点睛:本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键.8.B解析:B【解析】【分析】根据平行线的性质,两直线平行同位角相等,得出∠1=∠2,再利用要使DF∥BC,找出符合要求的答案即可.【详解】解:∵EF∥AB,∴∠1=∠2(两直线平行,同位角相等),要使DF∥BC,只要∠3=∠2就行,∵∠1=∠2,∴还需要添加条件∠1=∠3即可得到∠3=∠2(等量替换),故选B.【点睛】此题主要考查了平行线的性质与判定、等量替换原则,根据已知找出符合要求的答案,是比较典型的开放题型.9.C解析:C【解析】【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C.【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.C解析:C【解析】【分析】利用平行线的判定和性质即可解决问题.【详解】如图,∵∠1+∠2=180°,∴a∥b,∴∠4=∠5,∵∠3=∠5,∠3=55°,∴∠4=∠3=55°,故选C.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识.11.A解析:A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:∵点P(2x-6,x-5)在第四象限,∴260 {50xx->-<,解得:3<x<5.故选:A.【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.12.D解析:D 【解析】 【分析】 【详解】如图所示,过E 作EG ∥AB .∵AB ∥CD ,∴EG ∥CD , ∴∠ABE +∠BEG =180°,∠CDE +∠DEG =180°, ∴∠ABE +∠BED +∠CDE =360°.又∵DE ⊥BE ,BF ,DF 分别为∠ABE ,∠CDE 的角平分线, ∴∠FBE +∠FDE =12(∠ABE +∠CDE )=12(360°﹣90°)=135°, ∴∠BFD =360°﹣∠FBE ﹣∠FDE ﹣∠BED =360°﹣135°﹣90°=135°. 故选D .【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.二、填空题13.105°【解析】【分析】先过点作根据同角的余角相等得出根据角平分线的定义得出再设根据可得根据可得最后解方程组即可得到进而得出【详解】解:如图过点作即又平分平分设则中由可得①由可得②由①②联立方程组解解析:105° 【解析】 【分析】先过点B 作//BG DM ,根据同角的余角相等,得出ABD CBG ∠=∠,根据角平分线的定义,得出ABF GBF ∠=∠,再设DBE α∠=,ABF β∠=,根据180CBF BFC BCF ∠+∠+∠=︒,可得(2)3(3)180αβααβ++++=︒,根据AB BC ⊥,可得290ββα++=︒,最后解方程组即可得到15ABE ∠=︒,进而得出1590105EBC ABE ABC ∠=∠+∠=︒+︒=︒.【详解】解:如图,过点B 作//BG DM ,BD AM ⊥Q ,DB BG ∴⊥,即90ABD ABG ∠+∠=︒,又AB BC ⊥Q ,90CBG ABG ∴∠+∠=︒,ABD CBG ∴∠=∠,BF Q 平分DBC ∠,BE 平分ABD ∠,DBF CBF ∴∠=∠,DBE ABE ∠=∠,ABF GBF ∴∠=∠,设DBE α∠=,ABF β∠=,则ABE α∠=,2ABD CBG α∠==∠,GBF AFB β∠==∠,33BFC DBE α∠=∠=,3AFC αβ∴∠=+,180AFC NCF ∠+∠=︒Q ,180FCB NCF ∠+∠=︒,3FCB AFC αβ∴∠=∠=+,BCF ∆中,由180CBF BFC BCF ∠+∠+∠=︒,可得(2)3(3)180αβααβ++++=︒,①由AB BC ⊥,可得290ββα++=︒,②由①②联立方程组,解得15α=︒,15ABE ∴∠=︒,1590105EBC ABE ABC ∴∠=∠+∠=︒+︒=︒.故答案为:105°.【点睛】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.14.112°【解析】【分析】根据折叠前后对应角相等得∠DEF=∠GEF 由AD∥BC 得∠EFG=∠DEF=56°进而求出∠DEG 的度数再由AD∥BC 求出∠DEG=∠EGB【详解】解:∵折叠根据折叠前后对应解析:112°【解析】根据折叠前后对应角相等得∠DEF=∠GEF ,由AD ∥BC 得∠EFG=∠DEF=56°,进而求出∠DEG 的度数,再由AD ∥BC ,求出∠DEG=∠EGB.【详解】解:∵折叠,根据折叠前后对应的角相等∴∠DEF=∠GEF∵AD ∥BC∴∠EFG=∠DEF=56°∴∠DEG=∠DEF+∠GEF=56°+56°=112°又∵AD ∥BC∴∠EGB=∠DEG=112°. 故答案为:112°【点睛】本题结合折叠考查了平行线的性质,熟记两直线平行时,内错角、同位角相等,同旁内角互补这个性质.15.;【解析】分析:将x 看作已知数求出y 即可详解:方程3x+5y-3=0解得:y=故答案为点睛:此题考查了解二元一次方程解题的关键是将x 看作已知数求出y 解析:335x -; 【解析】 分析: 将x 看作已知数求出y 即可.详解: 方程3x+5y-3=0,解得:y=335x -. 故答案为335x -. 点睛: 此题考查了解二元一次方程,解题的关键是将x 看作已知数求出y.16.或【解析】【分析】已知可知AB=8已知的面积为即可求出OC 长得到C 点坐标【详解】∵∴AB=8∵的面积为∴=16∴OC=4∴点的坐标为(04)或(0-4)故答案为:(04)或(0-4)【点睛】本题考查解析:(0,4)或(0,4) -【解析】【分析】已知()()7,0,1,0A B -,可知AB=8,已知ABC ∆的面积为16,即可求出OC 长,得到C 点坐标.【详解】∵()()7,0,1,0A B -∵ABC∆的面积为16∴12AB OC⨯⨯=16∴OC=4∴点C的坐标为(0,4)或(0,-4)故答案为:(0,4)或(0,-4)【点睛】本题考查了直角坐标系中坐标的性质,已知两点坐标可得出两点间距离长度,如果此两点在坐标轴上,求解距离很简单,如果不在坐标轴上,可通过两点间距离公式求解.17.【解析】【分析】观察分析可得则将此规律用含自然数n(n≥1)的等式表示出来是【详解】由分析可知发现的规律用含自然数n(n≥1)的等式表示出来是故答案为:【点睛】本题主要考查二次根式找出题中的规律是解(1)n n=+≥【解析】【分析】=(2=+(3=+n(n≥1)的等式表示出来是(1)n n=+≥【详解】由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是(1)n n=+≥(1)n n=+≥【点睛】本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n表示的等式即可.18.【解析】【分析】利用无理数的估算先取出mn的值然后代入计算即可得到答案【详解】解:∵∴∵mn为两个连续的整数∴∴;故答案为:【点睛】本题考查了无理数的估算解题的关键是熟练掌握无理数的估算正确得到mn解析:【解析】利用无理数的估算,先取出m 、n 的值,然后代入计算,即可得到答案.【详解】<<,∴34<<,∵m 、n 为两个连续的整数,∴3m =,4n =,===;故答案为:【点睛】本题考查了无理数的估算,解题的关键是熟练掌握无理数的估算,正确得到m 、n 的值.19.(-2-8)【解析】【分析】点A 向左平移3个单位得到点B(-5-8)则点B 向右移动3个单位得到点A 【详解】根据分析点B(-5-8)向右移动3个单位得到点A 向右平移3个单位则横坐标+3故A(-2-8)解析:(-2,-8)【解析】【分析】点A 向左平移3个单位得到点B(-5,-8),则点B 向右移动3个单位得到点A .【详解】根据分析,点B(-5,-8)向右移动3个单位得到点A向右平移3个单位,则横坐标“+3”故A(-2,-8)故答案为:(-2,-8)【点睛】本题考查平移时坐标点的变化规律,注意,向左右平移,是横坐标的变化,向上下平移,是纵坐标的变化.20.±2【解析】【分析】先根据立方根得出x 的值然后求平方根【详解】∵x+1是125的立方根∴x+1=解得:x=4∴x 的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根注意一个正数的平方根有2个算解析:±2【解析】【分析】先根据立方根得出x 的值,然后求平方根.【详解】∵x+1是125的立方根∴x=4∴x 的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正数的平方根有2个,算术平方根只有1个.三、解答题21.(1)0.2,16;(2)答案见解析;(3)280【解析】【分析】(1)由题意根据0≤x <20的频数除以频率求出总人数,进而求出a ,c 的值即可; (2)根据题意求出40≤x <60的频数,并补全条形统计图即可;(3)根据题意求出“30秒跳绳”的次数60次以上(含60次)的频率,乘以500即可得到结果.【详解】解:(1)根据题意得:a=10÷(5÷0.1)=0.2,b=0.14×(5÷0.1)=7,c=50-(5+10+7+12)=16.故答案为:0.2;16.(2)b=0.14×(5÷0.1)=7,如图所示,40≤x <60柱高为7;(3)161250028050+⨯=(人). 则“30秒跳绳”的次数60次以上(含60次)的学生约有280人.【点睛】本题考查频数(率)分布直方图以及利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(1)3x <,数轴见解析;(2)1x ≤-【解析】【分析】(1)先去分母再移项,再合并同类项,最后系数化为一即可得到答案;(2)对不等式组的第一个不等式先去括号再移项求解即可得到答案,对第二个不等式先去分母再求解即可得到,最后取两个不等式的公共部分解即可得到答案;【详解】解:(1)5132xx-+>-去分母,得5226x x-+>-移项,得2652x x->-+-合并同类项,得3x->-.两边都除以-1,得3x<.这个不等式的解集在数轴上的表示如图所示:(2)解:253(2)12135x xx+≥+⎧⎪-⎨+>⎪⎩化解为:23655(12)30x xx-≥-⎧⎨-+>⎩,即:145xx≤⎧⎪⎨<⎪⎩在同一数轴上表示不等式组的两个不等式的解集,如图.所以,原不等式组的解集是1x≤-;【点睛】本题主要考查了解不等式与解不等式组,熟记解不等式的步骤与解不等式组的步骤是解题的关键,解不等式组的时候注意的最后的结果取公共部分.23.(1){4,3};(2)B,图见解析;(3){0,0}.【解析】【分析】(1)根据平移量”{a,b}与“平移量”{c,d}的加法运算法则为{a,b}+{c,d}={a+c,b+d}计算;(2)根据题意画出图形、结合图形解答;(3)根据平移量的定义、加法法则表示即可.【详解】(1){}{}3,11,2+={3+1,1+2}={4,3},(2)如图.最后的位置仍是点B ,(3)从O 出发,先向右平移2个单位,再向上平移3个单位,可知平移量为{2,3}, 同理得到P 到Q 的平移量为{3,2},从Q 到O 的平移量为{-5,-5},故有{2,3}+{3,2}+{-5,-5}={0,0}.【点睛】本题考查的是几何变换,掌握“平移量”的定义、平移的性质是解题的关键.24.(1)200;(2)补全图形见解析,108 ;(3)选择A 有480名同学.【解析】【分析】(1)由B 组的信息可得总人数,(2)先求解C 组所占总体的百分比,再求A 组所占总体的百分比,进而求出A 所对的圆心角,,A D 两组的人数,补全条形图即可.(3)由A 组所占总体的百分比估计总体即可得到答案.【详解】解:(1)由题意得:本次一共调查了5628%200÷=(名),故答案为:200.(2)C Q 组占总体的44100%22%,200⨯= A ∴组占总体的128%20%22%30%,---= A ∴所对的圆心角为:30%360108,⨯︒=︒A ∴组人数为:20030%60⨯=(名),D 组人数为:20020%40⨯= (名),补全条形图如下:故答案为:108.(3)该校共有1600名同学,估计选择A 有:160030%480⨯=(名)答:选择A 的大概有480名同学.【点睛】本题考查的是统计调查的知识,考查了从条形图与扇形图中获取信息,以及利用样本来估计总体,掌握相关知识点是解题的关键.25.(1)答案见解析;(2)()1104A B ,, ()11-,;(3)下;3;左;2. 【解析】【分析】(1)直接根据点的坐标作图即可;(2)根据C 点坐标的变化规律可得横坐标+2,纵坐标+3,再把点A 、B 对应点的坐标横坐标+2,纵坐标+3计算即可;(3)根据(2)中的平移情况写出平移规律.【详解】解:(1)如图所示,(2)()1104A B ,, ()11-, (3)此次平移也可看作111A B C ∆向下平移了3个单位长度,再向左平移了2个单位长度得到△ABC故答案为:下;3;左;2.【点睛】本题主要考查了坐标与图形的变化,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.。
【压轴卷】七年级数学下期中一模试题(含答案)

【压轴卷】七年级数学下期中一模试题(含答案)一、选择题1.已知点P(3a ,a +2)在x 轴上,则P 点的坐标是( )A .(3,2)B .(6,0)C .(-6,0)D .(6,2)2.如图,已知a ∥b ,l 与a 、b 相交,若∠1=70°,则∠2的度数等于( )A .120°B .110°C .100°D .70° 3.点A 在x 轴的下方,y 轴的右侧,到x 轴的距离是3,到y 轴的距离是2,则点A 的坐标是( ) A .()23-, B .()23, C .()32,- D .()32--,4.已知∠A 、∠B 互余,∠A 比∠B 大30°,设∠A 、∠B 的度数分别为x°、y°,下列方程组中符合题意的是( )A .18030x y x y +=⎧⎨=-⎩B .180+30x y x y +=⎧⎨=⎩C .9030x y x y +=⎧⎨=-⎩D .90+30x y x y +=⎧⎨=⎩5.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度6.在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别减去正数a (a >1),那么所得的图案与原图案相比( )A .形状不变,大小扩大到原来的a 倍B .图案向右平移了a 个单位长度C .图案向左平移了a 个单位长度,并且向下平移了a 个单位长度D .图案向右平移了a 个单位长度,并且向上平移了a 个单位长度7.若10x x y -++=,则xy 的值为( )A .0B .1C .-1D .28.下列生活中的运动,属于平移的是( )A .电梯的升降B .夏天电风扇中运动的扇叶C .汽车挡风玻璃上运动的刮雨器D .跳绳时摇动的绳子9.如图,AB ∥CD ,∠1=45°,∠3=80°,则∠2的度数为( )A .30°B .35°C .40°D .45°10.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式为( )A .210x +90(15﹣x )≥1.8B .90x +210(15﹣x )≤1800C .210x +90(15﹣x )≥1800D .90x +210(15﹣x )≤1.811.如图,如果AB ∥CD ,那么下面说法错误的是( )A .∠3=∠7B .∠2=∠6C .∠3+∠4+∠5+∠6=180°D .∠4=∠8 12.过一点画已知直线的垂线,可画垂线的条数是( )A .0B .1C .2D .无数 二、填空题13.如图,已知AM//CN ,点B 为平面内一点,AB ⊥BC 于B ,过点B 作BD ⊥AM 于点D ,点E 、F 在DM 上,连接BE 、BF 、CF ,BF 平分∠DBC ,BE 平分∠ABD ,若∠FCB +∠NCF =180︒,∠BFC =3∠DBE ,则∠EBC 的度数为______.14.对非负实数x “四舍五入”到个位的值记为x ,即当n 为非负整数时,若1122n x n -≤<+,则x n =,如0.460=,3.674=,给出下列关于x 的结论: ①1.4931=; ②22x x =; ③若1142x -=,则实数x 的取值范围是911x ≤<;④当0x ≥,m 为非负整数时,有20182018m x m x +=+; ⑤x y x y +=+;其中,正确的结论有_________(填写所有正确的序号).15.如图,点,A B 的坐标分别是()1,0、()0,2,把线段AB 平移至11A B 时得到点1A 、1B 两点的坐标分别为()3,b ,(),4a ,则+a b 的值是__________.16.若x <0,则323x x +等于____________.17.如图,直线a 和b 被直线c 所截,∠1=110°,当∠2=_____时,直线a ∥b 成立18.用反证法证明命题“三角形中至少有一个内角大于或等于60°”,第一步应假设_____.19.在整数20200520中,数字“0”出现的频率是_________.20.知a ,b 为两个连续的整数,且5a b <<,则ba =______.三、解答题21.如图,AB CD ∥,OE 平分BOC ∠,OF OE ⊥,OP CD ⊥,40ABO ∠=︒,有下列结论:①70BOE ∠=︒;②OF 平分BOD ∠;③POE BOF ∠=∠;④2POB DOF ∠=∠. 请将正确结论的序号填写在空中,并选择其一证明.正确结论的序号是______,我选择证明的结论序号是______,证明:22.如图,AD//BC ,∠A=∠C .求证:AB//DC .23.若规定acbd=a﹣b+c﹣3d,计算:223223xy xx---2574xy xxy-+-+的值,其中x=2,y=﹣1.24.解下列不等式组:(1)35318xx+≥⎧⎨-<⎩(2)12(1)2235xxx x⎧+<-⎪⎪⎨+⎪>⎪⎩25.解不等式:121123x x+--≤,并把解集在数轴上表示出来.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据点P在x轴上,即y=0,可得出a的值,从而得出点P的坐标.【详解】∵点P(3a,a+2)在x轴上,∴y=0,即a+2=0,解得a=-2,∴3a=-6,∴点P的坐标为(-6,0).故选C.【点睛】此题考查平面直角坐标系中点的坐标,明确点在x轴上时纵坐标为0是解题的关键.2.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a∥b,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.3.A解析:A【解析】【分析】根据点A在x轴的下方,y轴的右侧,可知点A在第四象限,根据到x轴的距离是3,到y 轴的距离是2,可确定出点A的横坐标为2,纵坐标为-3,据此即可得.【详解】∵点A在x轴的下方,y轴的右侧,∴点A的横坐标为正,纵坐标为负,∵到x轴的距离是3,到y轴的距离是2,∴点A的横坐标为2,纵坐标为-3,故选A.【点睛】本题考查了点的坐标,熟知点到x轴的距离是点的纵坐标的绝对值,到y轴的距离是横坐标的绝对值是解题的关键.4.D解析:D【解析】试题解析:∠A比∠B大30°,则有x=y+30,∠A,∠B互余,则有x+y=90.故选D.5.B解析:B【解析】由点到直线的距离定义,即垂线段的长度可得结果,点P到直线l的距离是线段PB 的长度,故选B.6.C解析:C【解析】【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】解:在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别减去正数a(a>1),那么所得的图案与原图案相比,图案向左平移了a个单位长度,并且向下平移了a个单位长度.故选:C.【点睛】本题考查了坐标系中点、图形的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.7.C解析:C【解析】=,∴x﹣1=0,x+y=0,解得:x=1,y=﹣1,所以xy=﹣1.故选C.8.A解析:A【解析】【分析】平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动;旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的.然后根据平移与旋转定义判断即可.【详解】电梯的升降的运动属于平移,运动的刮雨器、摇动的绳子和吊扇在空中运动属于旋转;故选A.【点睛】此题考查了平移与旋转的意义及在实际当中的运用,关键是根据平移的定义解答.9.B解析:B【解析】分析:根据平行线的性质和三角形的外角性质解答即可.详解:如图,∵AB∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°,故选B.点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答.10.C解析:C【解析】【分析】根据题意,利用要在不超过15分钟的时间内从甲地到达乙地建立不等式即可解题.【详解】解:由题可知只需要小明在15分钟之内走过的路程大于1800即可,即210x+90(15﹣x)≥1800故选C.【点睛】本题考查了一次不等式的实际应用,属于简单题,建立不等关系是解题关键.11.D解析:D【解析】【分析】【详解】根据两直线平行,内错角相等得到∠3=∠7,∠2=∠6;根据两直线平行,同旁内角互补得到∠3+∠4+∠5+∠6=180°.而∠4与∠8是AD和BC被BD所截形成得内错角,则∠4=∠8错误,故选D.12.B解析:B【解析】【分析】根据垂直的性质:过直线外或直线上一点画已知直线的垂线,可以画一条,据此解答.【详解】在平面内,过一点有且只有一条直线与已知直线垂直,故选:B【点睛】此题考查了直线的垂直的性质,注意基础知识的识记和理解.二、填空题13.105°【解析】【分析】先过点作根据同角的余角相等得出根据角平分线的定义得出再设根据可得根据可得最后解方程组即可得到进而得出【详解】解:如图过点作即又平分平分设则中由可得①由可得②由①②联立方程组解 解析:105°【解析】【分析】先过点B 作//BG DM ,根据同角的余角相等,得出ABD CBG ∠=∠,根据角平分线的定义,得出ABF GBF ∠=∠,再设DBE α∠=,ABF β∠=,根据180CBF BFC BCF ∠+∠+∠=︒,可得(2)3(3)180αβααβ++++=︒,根据AB BC ⊥,可得290ββα++=︒,最后解方程组即可得到15ABE ∠=︒,进而得出1590105EBC ABE ABC ∠=∠+∠=︒+︒=︒.【详解】解:如图,过点B 作//BG DM ,BD AM ⊥Q ,DB BG ∴⊥,即90ABD ABG ∠+∠=︒,又AB BC ⊥Q ,90CBG ABG ∴∠+∠=︒,ABD CBG ∴∠=∠,BF Q 平分DBC ∠,BE 平分ABD ∠,DBF CBF ∴∠=∠,DBE ABE ∠=∠,ABF GBF ∴∠=∠,设DBE α∠=,ABF β∠=,则ABE α∠=,2ABD CBG α∠==∠,GBF AFB β∠==∠,33BFC DBE α∠=∠=,3AFC αβ∴∠=+,180AFC NCF ∠+∠=︒Q ,180FCB NCF ∠+∠=︒,3FCB AFC αβ∴∠=∠=+,BCF ∆中,由180CBF BFC BCF ∠+∠+∠=︒,可得(2)3(3)180αβααβ++++=︒,①由AB BC ⊥,可得290ββα++=︒,②由①②联立方程组,解得15α=︒,15ABE ∴∠=︒,1590105EBC ABE ABC ∴∠=∠+∠=︒+︒=︒.故答案为:105°.【点睛】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.14.①③④【解析】【分析】对于①可直接判断②⑤可用举反例法判断③④我们可以根据题意所述利用不等式判断【详解】∵1-<1493<1+∴故①正确当x=03时=12=0故②错误;∵∴4-≤x -1<4+解得:9解析:①③④【解析】【分析】对于①可直接判断,②、⑤可用举反例法判断,③、④我们可以根据题意所述利用不等式判断.【详解】∵1-12<1.493<1+12, ∴1.4931=,故①正确,当x=0.3时,2x =1,2x =0,故②错误; ∵1142x -=, ∴4-12≤12x-1<4+12, 解得:9≤x <11,故③正确,∵当m 为非负整数时,不影响“四舍五入”, ∴2018m x +=m+2018x ,故④正确,当x=1.4,y=1.3时,1.3 1.4+=3,1.3 1.4+=2,故⑤错误,综上所述:正确的结论为①③④,故答案为:①③④【点睛】本题考查了一元一次不等式组的应用和理解题意的能力,关键是看到所得值是个位数四舍五入后的值,问题可得解.15.4【解析】【分析】根据横坐标右移加左移减;纵坐标上移加下移减可得线段AB 向右平移2个单位向上平移2个单位进而可得ab 的值【详解】∵AB 两点的坐标分别为(10)(02)平移后A1(3b )B1(a4)∴解析:4【解析】【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得线段AB 向右平移2个单位,向上平移2个单位,进而可得a 、b 的值.【详解】∵A 、B 两点的坐标分别为(1,0)、(0,2),平移后A 1(3,b ),B 1(a ,4), ∴线段AB 向右平移2个单位,向上平移2个单位,∴a=0+2=2,b=0+2=2,∴a+b=2+2=4故答案为:4【点睛】此题主要考查了坐标与图形的变化--平移,关键是掌握点的坐标的变化规律.16.0【解析】【分析】分别利用平方根和立方根直接计算即可得到答案【详解】解:∵x<0∴故答案为:0【点睛】本题只要考查了平方根和立方很的性质;平方根的被开方数不能是负数开方的结果必须是非负数;立方根的符 解析:0【解析】【分析】分别利用平方根和立方根直接计算即可得到答案.【详解】解:∵x <0,0x x =-+=,故答案为:0.【点睛】本题只要考查了平方根和立方很的性质;平方根的被开方数不能是负数,开方的结果必须是非负数;立方根的符号与被开方的数的符号相同;解题的关键是正确判断符号.17.70°【解析】【分析】根据平行的判定要使直线a∥b成立则∠2=∠3再根据∠1=110°即可把∠2的度数求解出来【详解】解:要使直线a∥b成立则∠2=∠3(同位角相等两直线平行)∵∠1=110°∴∠3解析:70°【解析】【分析】根据平行的判定,要使直线a∥b成立,则∠2=∠3,再根据∠1=110°,即可把∠2的度数求解出来.【详解】解:要使直线a∥b成立,则∠2=∠3(同位角相等,两直线平行),∵∠1=110°,∴∠3=180°-∠1=180°-110°=70°,∴∠2=∠3=70°,故答案为:70°.【点睛】本题主要考查了平行的判定(同位角相等,两直线平行),掌握直线平行的判定方法是解题的关键.18.三角形的三个内角都小于60°【解析】【分析】熟记反证法的步骤直接填空即可【详解】第一步应假设结论不成立即三角形的三个内角都小于60°故答案为三角形的三个内角都小于60°【点睛】反证法的步骤是:(1)解析:三角形的三个内角都小于60°【解析】【分析】熟记反证法的步骤,直接填空即可.【详解】第一步应假设结论不成立,即三角形的三个内角都小于60°.故答案为三角形的三个内角都小于60°.【点睛】反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时,要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.19.5【解析】【分析】直接利用频率的定义分析得出答案【详解】解:∵在整数20200520中一共有8个数字数字0有4个故数字0出现的频率是故答案为:【点睛】此题主要考查了频率的求法正确把握定义是解题关键解析:5【解析】【分析】直接利用频率的定义分析得出答案.【详解】解:∵在整数20200520中,一共有8个数字,数字“0”有4个,故数字“0”出现的频率是12.故答案为:12.【点睛】此题主要考查了频率的求法,正确把握定义是解题关键.20.6【解析】【分析】直接利用的取值范围得出ab的值即可得出答案【详解】∵ab为两个连续的整数且∴a=2b=3∴3×2=6故答案为:6【点睛】此题考查估算无理数的大小正确得出ab的值是解题关键解析:6【解析】【分析】a,b的值,即可得出答案.【详解】∵a,b为两个连续的整数,且a b<<,∴a=2,b=3,∴ba=3×2=6.故答案为:6.【点睛】此题考查估算无理数的大小,正确得出a,b的值是解题关键.三、解答题21.①②③,①②③④.【解析】【分析】由于AB∥CD,则∠ABO=∠BOD=40°,利用平角等于得到∠BOC=140°,再根据角平分线定义得到∠BOE=70°;利用OF⊥OE,可计算出∠BOF=20°,则∠BOF=12∠BOD,即OF平分∠BOD;利用OP⊥CD,可计算出∠POE=20°,则∠POE=∠BOF;根据∠POB=70°-∠POE=50°,∠DOF=20°,可知④不正确.【详解】证明:∵AB∥CD,∴∠ABO=∠BOD=40°,∴∠BOC=180°-40°=140°,∵OE平分∠BOC,∴∠BOE=12×140°=70°,所以①正确;∵OF⊥OE,∴∠EOF=90°,∴∠BOF=90°-70°=20°,∴∠BOF=12∠BOD,所以②正确;∵OP⊥CD,∴∠COP=90°,∴∠POE=90°-∠EOC=20°,∴∠POE=∠BOF,所以③正确;∴∠POB=70°-∠POE=50°,而∠DOF=20°,所以④错误.综上所述,正确的结论为①②③.故答案为:①②③,①②③④.【点睛】此题考查平行线的性质,解题关键在于掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等.22.证明见解析.【解析】【分析】根据AD∥BC得到∠C=∠CDE,再根据∠A=∠C,利用等量替换得到∠A=∠CDE即可判定;【详解】证明:∵AD∥BC(已知),∴∠C=∠CDE(两直线平行,内错角相等),∵∠A=∠C(已知),∴∠A=∠CDE(等量代换),∴AB∥CD(同位角相等,两直线平行);【点睛】本题主要考查了平行四边形的性质和判定,掌握直线平行内错角相等的性质和同位角相等两直线平行的判定法则是解题的关键.23.﹣5x 2﹣4xy +18,6.【解析】【分析】将原式利用题中的新定义化简得到最简结果,把x 与y 的值代入计算即可求值.【详解】原式=(3xy ﹣2x 2)﹣(﹣5xy +x 2)+(﹣2x 2﹣3)﹣3(﹣7+4xy )=3xy ﹣2x 2+5xy ﹣x 2﹣2x 2﹣3+21﹣12xy=﹣5x 2﹣4xy +18,当x =2,y =﹣1时,原式=﹣20+8+18=6.【点睛】本题考查了整式的混合运算—化简求值,熟练掌握运算法则是解题的关键.24.(1)23x ≤<;(2)3x >.【解析】【分析】先求出两个不等式的解集,再求其公共解.【详解】解:(1)35,318x x ①②+≥⎧⎨-<⎩解不等式①,得2x ≥.解不等式②,得3x <.因此,原不等式组的解集为:23x ≤<.方法二:在同一条数轴上表示不等式①②的解集,如图所示:因此,原不等式组的解集为:23x ≤<.(评分标准:用口诀和数轴表示得出答案均给分) (2)()121,22,35x x x x ⎧+<-⎪⎪⎨+⎪>⎪⎩①② 解:解不等式①,得2x >.解不等式②,得3x >.因此,原不等式组的解集为:3x >.方法二:在同一条数轴上表示不等式①②的解集,如图所示:x>.因此,原不等式组的解集为:3【点睛】考查解一元一次不等式组,比较容易,分别解不等式,找出解集的公共部分即可.x≥-25.1【解析】【分析】当不等式有分母时,应先两边都乘6,去分母;然后去括号,移项及合并,系数化为1.【详解】解:去分母得,3(1+x)-2(2x-1)≤6去括号得,3+3x-4x+2≤6,移项得,3x-4x≤6-5,即-x≤1,∴x≥-1.解集在数轴上表示得:【点睛】本题考查解不等式的一般步骤,需注意;去分母时单独的一个数也必须乘各分母的最简公分母;在不等式两边都除以一个负数时,应只改变不等号的方向,余下该怎么除还怎么除.。
【压轴卷】七年级数学下期中一模试卷(带答案)

【压轴卷】七年级数学下期中一模试卷(带答案)一、选择题1.点A 在x 轴的下方,y 轴的右侧,到x 轴的距离是3,到y 轴的距离是2,则点A 的坐标是( )A .()23-,B .()23,C .()32,-D .()32--,2.如图,将一张长方形纸条折叠,如果∠1=130°,则,∠2=( )A .100°B .130°C .150°D .80° 3.若点(),P a b 在第四象限,则( ) A .0a >,0b >B .0a <,0b <C .0a <,0b >D .0a >,0b <4.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度5.下列图形中,1∠和2∠的位置关系不属于同位角的是( )A .B .C .D .6.下列说法正确的是()A .一个数的算术平方根一定是正数B .1的立方根是±1C .255=±D .2是4的平方根 7.不等式组213312x x +⎧⎨+≥-⎩<的解集在数轴上表示正确的是( ) A .B .C .D .8.下列运算正确的是( )A .42=±B .222()-=-C .382-=-D .|2|2--= 9.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )A .20°B .30°C .40°D .50°10.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm 11.我们定义a c ⎛ ⎝ b ad bc d ⎫=-⎪⎭,例如:24⎛ ⎝ 3253425⎫=⨯-⨯=-⎪⎭,若x 满足423⎛-≤ ⎝ 22x ⎫<⎪⎭,则x 的整数解有( ) A .0个 B .1个 C .2个 D .3个12.下列调查方式,你认为最合适的是( )A .调查市场上某种白酒的塑化剂的含量,采用普查方式B .调查鞋厂生产的鞋底能承受的弯折次数,采用普查方式C .旅客上飞机前的安检,采用抽样调查方式D .了解我市每天的流动人口数,采用抽样调查方式二、填空题13.如图,已知AM//CN ,点B 为平面内一点,AB ⊥BC 于B ,过点B 作BD ⊥AM 于点D ,点E 、F 在DM 上,连接BE 、BF 、CF ,BF 平分∠DBC ,BE 平分∠ABD ,若∠FCB +∠NCF =180︒,∠BFC =3∠DBE ,则∠EBC 的度数为______.14.命题“对顶角相等”的逆命题是_______.15.如图,AB ∥CD ,∠1=64°,FG 平分∠EFD ,则∠2=_____度.16.如果一个正数的两个平方根为a+1和2a-7,则这个正数为_____________.17.如图,直线a 和b 被直线c 所截,∠1=110°,当∠2=_____时,直线a ∥b 成立18.若x +1是125的立方根,则x 的平方根是_________.19.如图,给出了直线外一点作已知直线平行线的一种方法,它的依据是_________。
【压轴卷】初一数学下期中一模试卷(含答案)

【压轴卷】初一数学下期中一模试卷(含答案)一、选择题1.已知点P(3a ,a +2)在x 轴上,则P 点的坐标是( )A .(3,2)B .(6,0)C .(-6,0)D .(6,2)2.在平面直角坐标系xOy 中,对于点(),P a b 和点(),Q a b ',给出下列定义:若()()11b a b b a ⎧≥⎪=<'⎨-⎪⎩,则称点Q 为点P 的限变点,例如:点()2,3的限变点的坐标是()2,3,点()2,5-的限变点的坐标是()2,5--,如果一个点的限变点的坐标是()3,1-,那个这个点的坐标是( )A .()1,3-B .()3,1--C .()3,1-D .()3,1 3.将点A (1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B ,则点B 的坐标为( )A .(2,1)B .(﹣2,﹣1)C .(﹣2,1)D .(2,﹣1)4.如图所示,下列说法不正确的是( )A .∠1和∠2是同旁内角B .∠1和∠3是对顶角C .∠3和∠4是同位角D .∠1和∠4是内错角 5.下列说法正确的是()A .一个数的算术平方根一定是正数B .1的立方根是±1C .255=±D .2是4的平方根6.如图,AB∥CD,BC∥DE,∠A=30°,∠BCD=110°,则∠AED 的度数为( )A .90°B .108°C .100°D .80°7.下列命题中,是真命题的是( )A .在同一平面内,垂直于同一直线的两条直线平行B .相等的角是对顶角C .两条直线被第三条直线所截,同旁内角互补D .过一点有且只有一条直线与已知直线平行8.若x y <,则下列不等式中成立的是( )A .11x y ->-B .22x y -<-C .22xy < D .3232x y -<- 9.已知关于x 的不等式组3211230x x x a --⎧≤-⎪⎨⎪-<⎩恰有3个整数解,则a 的取值范围为( ) A .12a <≤ B .12a << C .12a ≤< D .12a ≤≤10.在平面直角坐标系内,线段CD 是由线段AB 平移得到的,点A (-2,3)的对应点为C (2,5),则点B (-4,-1)的对应点D 的坐标为()A .()8,3-- B .()4,2 C .()0,1 D .()1,811.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm 12.过一点画已知直线的垂线,可画垂线的条数是( )A .0B .1C .2D .无数 二、填空题13.有下列命题:①无理数是无限不循环小数;②平方根与立方根相等的数有1和0;③若a ⊥b ,b ⊥c ,则a ⊥c ;④邻补角是互补的角;⑤无理数包括正无理数、零、负无理数.其中正确的有___个.14.已知AB ∥x 轴,A (-2,4),AB =5,则B 点横纵坐标之和为______.15.直线l 1:y=k 1x+b 与直线l 2:y=k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 2x <k 1x+b 的解集为______.16.不等式332x a a -≤-的正整数解为1,2,则a 的取值范围是____________________.17.有50个数据,共分成6组,第1~4组的频数分别为10,8,7,11.第5组的频率是0.16,则第6组的频数是__________.18.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.19.若264a =,则3a =______.20.不等式组0125x a x x ->⎧⎨->-⎩有3个整数解,则a 的取值范围是_____. 三、解答题21.我们规定以下三种变换:(1)()(),,f a b a b =-.如:()()1,31,3f =-; (2)()(),,g a b b a =.如:()()1,33,1g =;(3)()(),,h a b a b =--.如:()()1,31,3h =--.按照以上变换有:()()()()2,33,23,2f g f -=-=,求()()5,3f h -的值.22.某体育用品专卖店销售7个篮球和9个排球的总利润为355元,销售10个篮球和20个排球的总利润为650元.(1)求每个篮球和每个排球的销售利润;(2)已知每个篮球的进价为200元,每个排球的进价为160元,若该专卖店计划用不超过17400元购进篮球和排球共100个,且要求篮球数量不少于排球数量的一半,请你为专卖店设计符合要求的进货方案.23.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,∠C =∠EFG ,∠CED =∠GHD .(1)求证:CE ∥GF ;(2)试判断∠AED 与∠D 之间的数量关系,并说明理由;(3)若∠EHF =80°,∠D =30°,求∠AEM 的度数.24.下列不等式组313112123x x x x +<-⎧⎪++⎨≤+⎪⎩,把解集在数轴上表示出来,且求出其整数解. 25.某校为学生开展拓展性课程,拟在一块长比宽多6 m 的长方形场地内建造由两个大棚组成的植物养殖区,如图(1),要求两个大棚之间有间隔4 m 的路,设计方案如图(2),已知每个大棚的周长为44 m.(1)求每个大棚的长和宽各是多少?(2)现有两种大棚造价的方案,方案一是每平方米60元,超过100平方米优惠500元,方案二是每平方米70元,超过100平方米优惠总价的20%,试问选择哪种方案更优惠?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据点P在x轴上,即y=0,可得出a的值,从而得出点P的坐标.【详解】∵点P(3a,a+2)在x轴上,∴y=0,即a+2=0,解得a=-2,∴3a=-6,∴点P的坐标为(-6,0).故选C.【点睛】此题考查平面直角坐标系中点的坐标,明确点在x轴上时纵坐标为0是解题的关键.2.C解析:C【解析】【分析】根据新定义的叙述可知:这个点和限变点的横坐标不变,当横坐标a≥1时,这个点和限变点的纵坐标不变;当横坐标a<1时,纵坐标是互为相反数;据此可做出判断.【详解】313-1)故选:C.此题考查点的坐标,解题关键在于准确找出这个点与限变点的横、纵坐标与a的关系即可.3.C解析:C【解析】分析:让A点的横坐标减3,纵坐标加2即为点B的坐标.详解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,∴点B的坐标是(-2,1).故选:C.点睛:本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.4.A解析:A【解析】【分析】根据对顶角、邻补角、同位角、内错角定义判断即可.【详解】A. ∠1和∠2是邻补角,故此选项错误;B. ∠1和∠3是对顶角,此选项正确;C. ∠3和∠4是同位角,此选项正确;D. ∠1和∠4是内错角,此选项正确;故选:A.【点睛】此题考查对顶角,邻补角,同位角,内错角,同旁内角,解题关键在于掌握各性质定义. 5.D解析:D【解析】【分析】根据平方根、算术平方根、立方根的定义,即可解答.【详解】A、一个数的算术平方根一定是正数,错误,例如0的算术平方根是0;B、1的立方根是1,错误;C5,错误;D、2是4的平方根,正确;故选:D【点睛】本题考查了立方根、平方根,解决本题的关键是熟记平方根、立方根的定义.6.C【解析】【分析】在图中过E 作出BA 平行线EF ,根据平行线性质即可推出∠AEF 及∠DEF 度数,两者相加即可.【详解】过E 作出BA 平行线EF ,∠AEF=∠A =30°,∠DEF=∠ABC AB ∥CD ,BC ∥DE ,∠ABC=180°-∠BCD =180°-110°=70°, ∠AED=∠AEF+∠DEF=30°+70°=100°【点睛】 本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.7.A解析:A【解析】分析:根据平行线的判定与性质,对顶角的性质,平行线的作图,逐一判断即可. 详解:根据平行公理的推论,可知:在同一平面内,垂直于同一直线的两条直线平行,故正确;根据对顶角的定义,可知相等的角不一定是对顶角,故不正确;根据两条平行的直线被第三条直线所截,同旁内角互补,故不正确;根据平行公理,可知过直线外一点有且只有一条直线与已知直线平行,故不正确. 故选:A.点睛:此题主要考查了平行线的判定与性质,关键是熟记公理的内容和特点,找到反例说明即可.8.C解析:C【解析】【分析】各项利用不等式的基本性质判断即可得到结果.【详解】由x <y ,可得:x-1<y-1,-2x >-2y ,3232x y -->,22x y <, 故选:C .【点睛】此题考查不等式的性质,熟练掌握不等式的性质是解题的关键. 9.A【解析】【分析】先根据一元一次不等式组解出x 的取值范围,再根据不等式组只有三个整数解,求出实数a 的取值范围即可.【详解】3211230x x x a --⎧≤-⎪⎨⎪-<⎩①②, 解不等式①得:x≥-1,解不等式②得:x<a , ∵不等式组3211230x x x a --⎧≤-⎪⎨⎪-<⎩有解, ∴-1≤x<a ,∵不等式组只有三个整数解,∴不等式的整数解为:-1、0、1,∴1<a≤2,故选:A【点睛】本题考查一元一次不等式组的整数解,解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.10.C解析:C【解析】【分析】根据点A (-2,3)的对应点为C (2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,以此规律可得D 的对应点的坐标.【详解】点A (-2,3)的对应点为C (2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,于是B (-4,-1)的对应点D 的横坐标为-4+4=0,点D 的纵坐标为-1+2=1,故D (0,1).故选C .【点睛】此题考查了坐标与图形的变化----平移,根据A (-2,3)变为C (2,5)的规律,将点的变化转化为坐标的变化是解题的关键.11.C解析:C试题分析:已知,△ABE向右平移2cm得到△DCF,根据平移的性质得到EF=AD=2cm,AE=DF,又因△ABE的周长为16cm,所以AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm.故答案选C.考点:平移的性质.12.B解析:B【解析】【分析】根据垂直的性质:过直线外或直线上一点画已知直线的垂线,可以画一条,据此解答.【详解】在平面内,过一点有且只有一条直线与已知直线垂直,故选:B【点睛】此题考查了直线的垂直的性质,注意基础知识的识记和理解.二、填空题13.2【解析】【分析】根据无理数平方根和立方根的概念两直线的位置关系邻补角的概念分别判断后即可得到答案【详解】解::①无理数是无限不循环小数本说法正确;②平方根与立方根相等的数是0本说法错误;③若a b解析:2【解析】【分析】根据无理数、平方根和立方根的概念、两直线的位置关系、邻补角的概念分别判断后即可得到答案.【详解】解::①无理数是无限不循环小数,本说法正确;②平方根与立方根相等的数是0,本说法错误;a,本说法错误;③若a⊥b,b⊥c,则∥c④邻补角是互补的角,本说法正确;⑤无理数包括正无理数、负无理数,本说法错误;故答案为:2.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫假命题.14.-3或7【解析】【分析】由AB∥x轴可知B点的纵坐标和A点的纵坐标相同再根据线段AB的长度为5B点在A点的坐标或右边分别求出B点的坐标即可得到答案【详解】解:∵AB∥x轴∴B点的纵坐标和A点的纵坐标解析:-3或7【分析】由AB ∥x 轴可知B 点的纵坐标和A 点的纵坐标相同,再根据线段AB 的长度为5,B 点在A 点的坐标或右边,分别求出B 点的坐标,即可得到答案.【详解】解:∵AB ∥x 轴,∴B 点的纵坐标和A 点的纵坐标相同,都是4,又∵A (-2,4),AB =5,∴当B 点在A 点左侧的时候,B (-7,4),此时B 点的横纵坐标之和是-7+4=-3,当B 点在A 点右侧的时候,B (3,4),此时B 点的横纵坐标之和是3+4=7;故答案为:-3或7.【点睛】本题考查了与坐标轴平行的线上点的坐标特征以及分情况讨论的思想,要注意根据B 点位置的不确定得出两种情况分别求解.15.【解析】【分析】由图象可以知道当x=-1时两个函数的函数值是相等的再根据函数的增减性可以判断出不等式k2x <k1x+b 解集【详解】两条直线的交点坐标为(-12)且当x >-1时直线l2在直线l1的下方解析:1x >-【解析】【分析】由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k 2x <k 1x+b 解集.【详解】两条直线的交点坐标为(-1,2),且当x >-1时,直线l 2在直线l 1的下方,故不等式k 2x <k 1x+b 的解集为x >-1.故答案为:x >-1.【点睛】此题考查一次函数与一元一次不等式,解题关键在于掌握两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.16.【解析】【分析】根据不等式的性质求出不等式的解集根据不等式的正整数解得出2≤<3求出不等式的解集即可【详解】解答:解:3x −3a≤−2a 移项得:3x≤−2a +3a 合并同类项得:3x≤a∴不等式的解集解析:69a ≤<.【解析】【分析】根据不等式的性质求出不等式的解集,根据不等式的正整数解得出2≤3a <3,求出不等式的解集即可.【详解】解答:解:3x−3a≤−2a ,移项得:3x≤−2a +3a ,合并同类项得:3x≤a ,∴不等式的解集是x≤3a , ∵不等式3x−3a≤−2a 的正整数解为1,2,∴2≤3a <3, 解得:6≤a <9.故答案为:6≤a <9.【点睛】本题主要考查对解一元一次不等式,一元一次不等式的整数解,不等式的性质等知识点的理解和掌握,能根据不等式的解集得出2≤3a <3是解此题的关键. 17.【解析】【分析】首先根据频率=频数÷数据总数求得第5组的频数然后根据6个组的频数和等于数据总数即可求得第6组的频数【详解】解:∵有50个数据共分成6组第5组的频率是016∴第5组的频数为50×016解析:【解析】【分析】首先根据频率=频数÷数据总数求得第5组的频数,然后根据6个组的频数和等于数据总数即可求得第6组的频数.【详解】解:∵有50个数据,共分成6组,第5组的频率是0.16,∴第5组的频数为50×0.16=8;又∵第1~4组的频数分别为10,8,7,11,∴第6组的频数为50﹣(10+8+7+11+8)=6.故答案为6.【点睛】本题考查频数与频率.18.【解析】【分析】设代入原式化简即可得出结果【详解】原式故答案为:【点睛】本题考查了整式的混合运算设将式子进行合理变形是解题的关键 解析:12020【解析】【分析】设1120182019m =+,代入原式化简即可得出结果. 【详解】 原式()111120202020m m m m ⎛⎫⎛⎫=-+--- ⎪ ⎪⎝⎭⎝⎭ 221202*********m m m m m m =-+--++ 12020= 故答案为:12020. 【点睛】 本题考查了整式的混合运算,设1120182019m =+将式子进行合理变形是解题的关键. 19.±2【解析】【分析】根据平方根立方根的定义解答【详解】解:∵∴a=±8∴=±2故答案为±2【点睛】本题考查平方根立方根的定义解题关键是一个正数的平方根有两个他们互为相反数解析:±2【解析】【分析】根据平方根、立方根的定义解答.【详解】解:∵264a =,∴a=±8.2 故答案为±2 【点睛】本题考查平方根、立方根的定义,解题关键是一个正数的平方根有两个,他们互为相反数..20.﹣2≤a <﹣1【解析】【分析】先解不等式组确定不等式组的解集(利用含a 的式子表示)根据整数解的个数就可以确定有哪些整数解根据解的情况可以得到关于a 的不等式从而求出a 的范围【详解】解不等式x ﹣a >0得解析:﹣2≤a <﹣1.【解析】【分析】先解不等式组确定不等式组的解集(利用含a 的式子表示),根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】解不等式x ﹣a >0,得:x >a ,解不等式1﹣x >2x ﹣5,得:x <2,∵不等式组有3个整数解,∴不等式组的整数解为﹣1、 0、1,则﹣2≤a <﹣1,故答案为:﹣2≤a <﹣1.【点睛】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.三、解答题21.(5,3)【解析】【分析】根据f 、g 、h 的变换方法解答即可.【详解】f (h (5,-3))=f (-5,3)=(5,3).【点睛】此题考查点的坐标,理解新定义的运算方法是解题的关键.22.(1)每个篮球和每个排球的销售利润分别为25元,20元(2)购进篮球34个排球66个,或购进篮球35个排球65个两种购买方案.【解析】【分析】(1)设每个篮球和每个排球的销售利润分别为x 元,y 元,根据题意列方程组,解方程即可得到结果;(2)设购进篮球m 个,排球(100﹣m )个,根据题意得不等式组即可得到结果.【详解】解:(1)设每个篮球和每个排球的销售利润分别为x 元,y 元,根据题意得:793551020650x y x y +=+=⎧⎨⎩,解得:2520x y ⎧⎨⎩==. 答:每个篮球和每个排球的销售利润分别为25元,20元;(2)设购进篮球m 个,排球(100﹣m )个,根据题意得:200160(100)174001002m m m m ⎪+-≤-⎧⎪⎨⎩≥, 解得:100353m ≤≤, ∴m=34或m=35, ∴购进篮球34个排球66个,或购进篮球35个排球65个两种购买方案.【点睛】本题考查一元一次不等式的应用;二元一次方程组的应用;方案型.23.(1)证明见解析;(2)∠AED+∠D=180°,理由见解析;(3)110°【解析】【分析】(1)依据同位角相等,即可得到两直线平行;(2)依据平行线的性质,可得出∠FGD=∠EFG,进而判定AB∥CD,即可得出∠AED+∠D=180°;(3)依据已知条件求得∠CGF的度数,进而利用平行线的性质得出∠CEF的度数,依据对顶角相等即可得到∠AEM的度数.【详解】(1)∵∠CED=∠GHD,∴CB∥GF;(2)∠AED+∠D=180°;理由:∵CB∥GF,∴∠C=∠FGD,又∵∠C=∠EFG,∴∠FGD=∠EFG,∴AB∥CD,∴∠AED+∠D=180°;(3)∵∠GHD=∠EHF=80°,∠D=30°,∴∠CGF=80°+30°=110°,又∵CE∥GF,∴∠C=180°﹣110°=70°,又∵AB∥CD,∴∠AEC=∠C=70°,∴∠AEM=180°﹣70°=110°.【点睛】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.24.不等式组的解集为-5≤x<-2;整数解为:-5,-4,-3,数轴表示见解析.【解析】【分析】分别求出两个不等式的解集,再找出两个解集的公共部分即可得不等式组的解集,根据解集画出数轴并找出整数解即可答案.【详解】313112123x x x x ①②+<-⎧⎪⎨++≤+⎪⎩解不等式①得:x <-2,解不等式②得:x≥-5,∴不等式组得解集为-5≤x <-2,数轴表示如下:不等式组的整数解为:-5,-4,-3,【点睛】本题考查解一元一次不等式组、在数轴上表示不等式组的解集,正确得出各不等式的解集是解题关键.25.(1)大棚的宽为14米,长为8米;(2)选择方案二更好.【解析】分析:(1)设大棚的宽为a 米,长为b 米,分别利用大棚的周长为44米,长比宽多6米,分别得出等式求出答案;(2)分别求出两种方案的造价进而得出答案.详解:(1)设大棚的宽为a 米,长为b 米,根据题意可得:22246a b a b +=⎧⎨+-=⎩,解得:814a b =⎧⎨=⎩, 答:大棚的宽为14米,长为8米;(2)大棚的面积为:2×14×8=224(平方米),若按照方案一计算,大棚的造价为:224×60−500=12940(元),若按照方案二计算,大棚的造价为:224×70(1−20%)=12544(元)显然:12544<12940,所以选择方案二更好.点睛:考查二元一次方程组的应用,解题的关键是找出题目中的等量关系.。
【压轴题】初一数学下期中一模试题(及答案)

【压轴题】初一数学下期中一模试题(及答案)一、选择题 1.无理数23的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.如图,已知a ∥b ,l 与a 、b 相交,若∠1=70°,则∠2的度数等于( )A .120°B .110°C .100°D .70°3.下列说法一定正确的是( )A .若直线a b ∥,a c P ,则b c ∥B .一条直线的平行线有且只有一条C .若两条线段不相交,则它们互相平行D .两条不相交的直线叫做平行线4.为了了解天鹅湖校区2019-2020学年1600名七年级学生的体重情况,从中抽取了100名学生的体重,就这个问题,下面说法正确的是( )A .1600名学生的体重是总体B .1600名学生是总体C .每个学生是个体D .100名学生是所抽取的一个样本 5.已知x 、y 满足方程组2827x y x y +=⎧⎨+=⎩,则x +y 的值是( ) A .3 B .5C .7D .9 6.对于两个不相等的实数,a b ,我们规定符号{}max ,a b 表示,a b 中较大的数,如{}max 2,44=,按这个规定,方程{}21max ,x x x x +-=的解为 ( ) A .1-2 B .2-2 C .1-212+或D .1+2或-1 7.如图所示,下列说法不正确的是( )A .∠1和∠2是同旁内角B .∠1和∠3是对顶角C .∠3和∠4是同位角D .∠1和∠4是内错角8.如图,点E 在AB 的延长线上,则下列条件中,不能判定AD BC ∥的是( )A .180D DCB ∠+∠=︒B .13∠=∠C .24∠∠=D .CBE DAE ∠=∠ 9.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限 10.把一张50元的人民币换成10元或5元的人民币,共有( )A .4种换法B .5种换法C .6种换法D .7种换法 11.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的度数是( )A .第一次右拐50°,第二次左拐130°B .第一次左拐50°,第二次右拐50°C .第一次左拐50°,第二次左拐130°D .第一次右拐50°,第二次右拐50° 12.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )A .20°B .30°C .40°D .50°二、填空题13.直线l 1:y=k 1x+b 与直线l 2:y=k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 2x <k 1x+b 的解集为______.14.不等式2(1-x )-4<0的解集是____________15.请设计一个解为51x y =⎧⎨=⎩的二元一次方程组________________. 16.在平面直角坐标系中,点(-5,-8)是由一个点沿x 轴向左平移3个单位长度得到的,则这个点的坐标为_______.17.下列说法: ① ()210-10-=;②数轴上的点与实数成一一对应关系;③两条直线被第三条直线所截,同位角相等;④垂直于同一条直线的两条直线互相平行;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有 ___________18.比较大小:-2____-3,5____2.19.在整数20200520中,数字“0”出现的频率是_________.20.如图,直线a 、b 被直线l 所截,a ∥b ,∠1=70°,则∠2= .三、解答题21.3127012100-22.我们规定以下三种变换:(1)()(),,f a b a b =-.如:()()1,31,3f =-; (2)()(),,g a b b a =.如:()()1,33,1g =;(3)()(),,h a b a b =--.如:()()1,31,3h =--.按照以上变换有:()()()()2,33,23,2f g f -=-=,求()()5,3f h -的值.23.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A .仅学生自己参与;B .家长和学生一起参与;C .仅家长自己参与;D .家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.24.甲、乙两名同学在解方程组5{213mx yx ny+=-=时,甲解题时看错了m,解得7{22xy==-;乙解题时看错了n,解得3{7xy==-.请你以上两种结果,求出原方程组的正确解.25.某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活的情况进行调查统计,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题:(1)这种树苗成活的频率稳定在___________,成活的概率估计值为___________.(2)该地区已经移植这种树苗5万棵.①估计这种树苗成活___________万棵.②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】先确定3的范围,然后再确定23的取值范围即可.【详解】∵1.52=2.25,22=4,2.25<3<4,<<,∴1.532<<,∴3234故选B.【点睛】本题考查了无理数的估算,熟练掌握和灵活运用相关知识是解题的关键.2.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a∥b,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.3.A解析:A【解析】【分析】根据平行线的定义、性质、判定方法判断,排除错误答案.【详解】A、在同一平面内,平行于同一直线的两条直线平行.故正确;B、过直线外一点,有且只有一条直线与已知直线平行.故错误;C、根据平行线的定义知是错误的.D、平行线的定义:在同一平面内,两条不相交的直线叫做平行线.故错误;故选:A.此题考查平行线的定义、性质及平行公理,熟练掌握公理和概念是解题的关键.4.A解析:A【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A 、1600名学生的体重是总体,故A 正确;B 、1600名学生的体重是总体,故B 错误;C 、每个学生的体重是个体,故C 错误;D 、从中抽取了100名学生的体重是一个样本,故D 错误;故选:A .【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.5.B解析:B【解析】【分析】把两个方程相加可得3x+3y=15,进而可得答案.【详解】两个方程相加,得3x+3y=15,∴x+y=5,故选B.【点睛】本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.6.D解析:D【解析】【分析】分x x <-和x x >-两种情况将所求方程变形,求出解即可.【详解】当x x <-,即0x <时,所求方程变形为21x x x+-=,去分母得:2210x x ++=,即210x +=(),解得:121x x ==-,经检验1x =-是分式方程的解;当x x >-,即0x >时,所求方程变形为21x x x +=,去分母得:2210x x --=,代入公式得:1x ==解得:3411x x ==经检验1x =综上,所求方程的解为1+-1.故选D.【点睛】本题考查的知识点是分式方程的解,解题关键是弄清题中的新定义. 7.A解析:A【解析】【分析】根据对顶角、邻补角、同位角、内错角定义判断即可.【详解】A. ∠1和∠2是邻补角,故此选项错误;B. ∠1和∠3是对顶角,此选项正确;C. ∠3和∠4是同位角,此选项正确;D. ∠1和∠4是内错角,此选项正确;故选:A.【点睛】此题考查对顶角,邻补角,同位角,内错角, 同旁内角,解题关键在于掌握各性质定义.8.C解析:C【解析】【分析】根据平行线的判定方法一一判断即可:A.同旁内角互补,两直线平行;B 、C 内错角相等,两直线平行;D.同位角相等,两直线平行,再根据结果是否能判断//AD BC ,即可得到答案.【详解】解:A. Q 180D DCB ∠+∠=︒,∴//AD BC ,此项正确,不合题意;B. Q 13∠=∠,∴//AD BC ,此项正确,不合题意;C. ∵∠2=∠4,∴CD ∥AB ,∴不能判定//AD BC ,此项错误,符合题意;D. Q CBE DAE ∠=∠,∴//AD BC ,此项正确,不合题意.故选:C .【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.9.B解析:B【解析】∵−2<0,3>0,∴(−2,3)在第二象限,故选B.10.C解析:C【解析】【分析】用二元一次方程组解决问题的关键是找到2个合适的等量关系.由于10元和5元的数量都是未知量,可设出10元和5元的数量.本题中等量关系为:10元的总面值+5元的总面值=50元.【详解】设10元的数量为x ,5元的数量为y .则1055000x y x y ⎧⎨≥≥⎩+=,, 解得010x y ⎧⎨⎩==,18x y ⎧⎨⎩==,26x y ⎧⎨⎩==,34x y ⎧⎨⎩==,42x y ⎧⎨⎩==,50x y ⎧⎨⎩==. 所以共有6种换法.故选C .【点睛】本题考查的知识点是二元一次方程组的应用,解题关键是弄清题意,找出合适的等量关系,列出方程组.11.B解析:B【解析】【分析】根据两条直线平行的性质:两条直线平行,同位角相等.再根据题意得:两次拐的方向不相同,但角度相等.【详解】解:如图,第一次拐的角是∠1,第二次拐的角是∠2,由于平行前进,可以得到∠1=∠2.因此,第一次与第二次拐的方向不相同,角度要相同,故只有B选项符合,故选B.【点睛】此题主要考查了平行线的性质,注意要想两次拐弯后,仍在原来的方向上平行前进,则拐的方向应相反,角度应相等.12.C解析:C【解析】【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°−50°=40°.故选C.【点睛】本题主要考查平行线的性质,熟悉掌握性质是关键.二、填空题13.【解析】【分析】由图象可以知道当x=-1时两个函数的函数值是相等的再根据函数的增减性可以判断出不等式k2x<k1x +b解集【详解】两条直线的交点坐标为(-12)且当x>-1时直线l2在直线l1的下方解析:1x>-【解析】【分析】由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k2x<k1x+b解集.【详解】两条直线的交点坐标为(-1,2),且当x >-1时,直线l 2在直线l 1的下方,故不等式k 2x <k 1x+b 的解集为x >-1.故答案为:x >-1.【点睛】此题考查一次函数与一元一次不等式,解题关键在于掌握两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.14.x>-1【解析】【分析】先将不等式左边去括号进行整理再利用不等式的基本性质将两边不等式同时加2再除以-2不等号的方向改变【详解】解:2(1-x)-4<02-2x-4<0-2x-2<0-2x<2x>-解析:x >-1【解析】【分析】先将不等式左边去括号进行整理,再利用不等式的基本性质,将两边不等式同时加2再除以-2,不等号的方向改变.【详解】解:2(1-x)-4<02-2x-4<0-2x-2<0-2x<2x>-1.故答案为:x>-1.【点睛】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.15.(答案不唯一)【解析】【分析】由写出方程组即可【详解】解:∵二元一次方程组的解为∴即所求方程组为:故答案为:(答案不唯一)【点睛】此题考查二元一次方程组的解的概念:使方程左右两边相等的未知数的值叫做 解析:64x y x y +=⎧⎨-=⎩(答案不唯一) 【解析】【分析】由516+=,514-=写出方程组即可.【详解】解:∵二元一次方程组的解为51x y =⎧⎨=⎩, ∴6x y +=,4x y -=,即所求方程组为:64x y x y +=⎧⎨-=⎩,故答案为:64x yx y+=⎧⎨-=⎩.(答案不唯一)【点睛】此题考查二元一次方程组的解的概念:使方程左右两边相等的未知数的值叫做方程的解.16.(-2-8)【解析】【分析】点A向左平移3个单位得到点B(-5-8)则点B向右移动3个单位得到点A【详解】根据分析点B(-5-8)向右移动3个单位得到点A向右平移3个单位则横坐标+3故A(-2-8)解析:(-2,-8)【解析】【分析】点A向左平移3个单位得到点B(-5,-8),则点B向右移动3个单位得到点A.【详解】根据分析,点B(-5,-8)向右移动3个单位得到点A向右平移3个单位,则横坐标“+3”故A(-2,-8)故答案为:(-2,-8)【点睛】本题考查平移时坐标点的变化规律,注意,向左右平移,是横坐标的变化,向上下平移,是纵坐标的变化.17.2个【解析】【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定解析:2个【解析】【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即可判断.【详解】①10=,故①错误;②数轴上的点与实数成一一对应关系,故说法正确;③两条平行直线被第三条直线所截,同位角相等;故原说法错误;④在同一平面内,垂直于同一条直线的两条直线互相平行,故原说法错误;与的和是0,是有理数,故说法错误;⑥无理数都是无限小数,故说法正确.故正确的是②⑥共2个.故答案为:2个.【点睛】此题主要考查了有理数、无理数、实数的定义及其关系.有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无π也是无理数.18.>>【解析】【分析】【详解】∵∴;∵5>4∴故答案为(1)>;(2)>解析:>>【解析】【分析】【详解】<,∴>∵22=5,2=4,5>4,2>.故答案为(1). >;(2). >.19.5【解析】【分析】直接利用频率的定义分析得出答案【详解】解:∵在整数20200520中一共有8个数字数字0有4个故数字0出现的频率是故答案为:【点睛】此题主要考查了频率的求法正确把握定义是解题关键解析:5【解析】【分析】直接利用频率的定义分析得出答案.【详解】解:∵在整数20200520中,一共有8个数字,数字“0”有4个,故数字“0”出现的频率是12.故答案为:12.【点睛】此题主要考查了频率的求法,正确把握定义是解题关键.20.110°【解析】∵a∥b∴∠3=∠1=70°∵∠2+∠3=180°∴∠2=110°解析:110°【解析】∵a∥b,∴∠3=∠1=70°,∵∠2+∠3=180°,∴∠2=110°三、解答题21.9-3+210 【解析】【分析】根据立方根,二次根式的性质,绝对值的性质进行计算即可.【详解】原式=19-302-1=-3+21010-++【点睛】此题考查实数的运算,解题关键在于掌握运算法则.22.(5,3)【解析】【分析】根据f 、g 、h 的变换方法解答即可.【详解】f (h (5,-3))=f (-5,3)=(5,3).【点睛】此题考查点的坐标,理解新定义的运算方法是解题的关键.23.(1)400;(2)补全条形图见解析;C 类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.【解析】分析:(1)根据A 类别人数及其所占百分比可得总人数;(2)总人数减去A 、C 、D 三个类别人数求得B 的人数即可补全条形图,再用360°乘以C 类别人数占被调查人数的比例可得;(3)用总人数乘以样本中D 类别人数所占比例可得.详解:(1)本次调查的总人数为80÷20%=400人; (2)B 类别人数为400-(80+60+20)=240,补全条形图如下:C 类所对应扇形的圆心角的度数为360°×60400=54°; (3)估计该校2000名学生中“家长和学生都未参与”的人数为2000×0N F N ==100人.点睛:本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出进一步解题的信息.24.n = 3 , m = 4, 2{3x y ==-【解析】试题分析: 由题意可知722x y ⎧=⎪⎨⎪=-⎩是方程213x ny -=的解,由此即可求得n 的值;37x y =⎧⎨=-⎩是方程5mx y +=的解,由此看求得m 的值;这样即可得到正确的原方程组,再解方程组,即可求得原方程组的正确解;试题解析: 由题意可知722x y ⎧=⎪⎨⎪=-⎩是方程213x ny -=的解, ∴72(2)132n ⨯--=,解得n=3; 37x y =⎧⎨=-⎩是方程5mx y +=的解, ∴375m -=,解得m=4;∴原方程组为:452313x y x y +=⎧⎨-=⎩,解此方程组得23x y =⎧⎨=-⎩, ∴m=4,n=3,原方程组的解为:23x y =⎧⎨=-⎩. 点睛:在本题中“甲、乙两名同学在解方程组5213mx y x ny +=⎧⎨-=⎩时,甲解题时看错了m ,解得722x y ⎧=⎪⎨⎪=-⎩ ”这句话的含义是:“722x y ⎧=⎪⎨⎪=-⎩”是关于x y 、的二元一次方程“213x ny -=”的解.25.(1)0.9附近,0.9;(2)①4.5,15万棵.【解析】【分析】(1)由图可知,成活概率在0.9上下波动,故可估计这种树苗成活的频率稳定在0.9,成活的概率估计值为0.9;(2)①5×成活率即为所求的成活的树苗棵树;②利用成活率求得需要树苗棵树,减去已移植树苗数即为所求的树苗的棵树.【详解】(1)0.9 0.9(2)①4.5估计该地区已经移植的这种树苗能成活5×0.9=4.5(万棵).②18÷0.9-5=15(万棵).答:该地区还需移植这种树苗约15万棵.。
【压轴题】初一数学下期中一模试卷含答案
【压轴题】初一数学下期中一模试卷含答案一、选择题1.点(),A m n 满足0mn =,则点A 在( )A .原点B .坐标轴上C .x 轴上D .y 轴上2.为了了解天鹅湖校区2019-2020学年1600名七年级学生的体重情况,从中抽取了100名学生的体重,就这个问题,下面说法正确的是( )A .1600名学生的体重是总体B .1600名学生是总体C .每个学生是个体D .100名学生是所抽取的一个样本3.甲、乙、丙、丁一起研究一道数学题,如图,已知 EF ⊥AB ,CD ⊥AB ,甲说:“如果还知道∠CDG=∠BFE ,则能得到∠AGD=∠ACB .”乙说:“如果还知道∠AGD=∠ACB ,则能得到∠CDG=∠BFE .”丙说:“∠AGD 一定大于∠BFE .”丁说:“如果连接 GF ,则 GF ∥AB .”他们四人中,正确的是( )A .0 个B .1 个C .2 个D .3 个4.不等式组324323x x x +⎧⎪-⎨≥⎪⎩<的解集,在数轴上表示正确的是( ) A .B .C .D .5.已知m=4+3,则以下对m 的估算正确的( )A .2<m <3B .3<m <4C .4<m <5D .5<m <66.不等式组213312x x +⎧⎨+≥-⎩<的解集在数轴上表示正确的是( ) A .B .C .D .7.下列所示的四个图形中,∠1=∠2是同位角的是( )A .②③B .①④C .①②③D .①②④8.如图所示,在ABC 中,点D 、E 、F 分别是AB ,BC ,AC 上,且EF ∥AB ,要使DF ∥BC ,还需添加条件是( )A .∠1=∠2B .∠1=∠3C .∠3=∠4D .∠2=∠49.如果a >b ,那么下列各式中正确的是( )A .a ﹣2<b ﹣2B .22ab p C .﹣2a <﹣2b D .﹣a >﹣b10.已知关于x 的不等式组3211230x x x a --⎧≤-⎪⎨⎪-<⎩恰有3个整数解,则a 的取值范围为( )A .12a <≤B .12a <<C .12a ≤<D .12a ≤≤11.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm 12.已知关于x ,y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则n-m 的值是( ) A .6 B .3 C .-2 D .1二、填空题13.已知12x y =⎧⎨=⎩是关于x 、y 的二元一次方程3210mx y --=的解,则m=__________. 14.直线l 1:y=k 1x+b 与直线l 2:y=k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 2x <k 1x+b 的解集为______.15.命题“对顶角相等”的逆命题是_______.16.m 的3倍与n 的差小于10,用不等式表示为______________.17.用反证法证明命题“三角形中至少有一个内角大于或等于60°”,第一步应假设_____.18.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x +y >0,则m 的取值范围是____.19.如图,已知AB ∥CD ,∠B=25°,∠D=45°,则∠E=__度.20.若2(2)9x m x +-+是一个完全平方式,则m 的值是_______. 三、解答题21.如图,点A B ,的坐标分别为()()2,00,1,,将线段AB 直接平移到MN ,使点A 移至点M 的位置,点B 移至点N 的位置,设平移过程中线段AB 扫过的面积为S ,(1)如图1,若点N 的坐标是()3,1,则点M 的坐标为_____________,请画出平移后的线段MN ;(2)如图2,若点M 的坐标是()3,1,请画出平移后的线段MN ,则S 的值为_____________;(3)若 2.5S =,且点M 在坐标轴上,请直接写出所有满足条件的M 点的坐标.22.课题学习:平行线的“等角转化功能.(1)问题情景:如图1,已知点A 是BC 外一点,连接AB 、AC ,求BAC B C ∠+∠+∠的度数.天天同学看过图形后立即想出:180BAC B C ∠+∠+∠=︒,请你补全他的推理过程. 解:(1)如图1,过点A 作ED BC ∥,∴B ∠= ,C ∠= . 又∵180EAB BAC CAD ∠+∠+∠=︒,∴180BAC B C ∠+∠+∠=︒.解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”功能,将BAC ∠,B Ð,C ∠“凑”在一起,得出角之间的关系,使问题得以解决.(2)问题迁移:如图2,AB ED P ,求B BCD D ∠+∠+∠的度数.(3)方法运用:如图3,AB CD ∥,点C 在D 的右侧,70ADC ∠=︒,点B 在A 的左侧,60ABC ∠=︒,BE 平分ABC ∠,DE 平分ADC ∠,BE 、DE 所在的直线交于点E ,点E 在AB 与CD 两条平行线之间,求BED ∠的度数.23.探索与应用.先填写下表,通过观察后再回答问题:a … 0.0001 0.01 1 100 10000 … a … 0.01 x 1 y 100 … (1)表格中x= ;y= ;(2)从表格中探究a 与a 数位的规律,并利用这个规律解决下面两个问题: ①已知10≈3.16,则1000≈ ;②已知 3.24=1.8,若a =180,则a= ; (3)拓展:已知312 2.289≈,若3b 0.2289=,则b= .24.解二元一次方程组:(1)23532x y x y +=⎧⎨-=-⎩(2)25411x y x y -=⎧⎨+=⎩25.如图,α∠和β∠的度数满足方程组3260100αββα∠+∠=︒⎧⎨∠-∠=︒⎩,且//CD EF ,AC AE ⊥.AB EF;(1)求证//的度数.(2)求C【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】应先判断出所求的点的横纵坐标的可能值,进而判断点所在的位置.【详解】∵点A(m,n)满足mn=0,∴m=0或n=0,∴点A在x轴或y轴上.即点在坐标轴上.故选:B.【点睛】本题主要考查了平面直角坐标系中点在坐标轴上时点的坐标的特点:横坐标或纵坐标为0.2.A解析:A【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A、1600名学生的体重是总体,故A正确;B、1600名学生的体重是总体,故B错误;C、每个学生的体重是个体,故C错误;D、从中抽取了100名学生的体重是一个样本,故D错误;故选:A.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.3.C解析:C【解析】【分析】根据EF ⊥AB ,CD ⊥AB ,可得EF//CD ,①根据∠CDG=∠BFE 结合两直线平行,同位角相等可得∠CDG=∠BCD ,由此可得DG//BC ,再根据两直线平行,同位角相等可得甲的结论;②根据∠AGD=∠ACB 可得DG//BC ,再根据平行线的性质定理可得乙的结论; ③根据已知条件无法判断丙的说法是否正确;④根据已知条件无法判断丁的说法是否正确.【详解】解:∵CD ⊥AB ,FE ⊥AB ,∴CD ∥EF ,∴∠BFE=∠BCD ,①∵∠CDG=∠BFE ,∴∠CDG=∠BCD ,∴DG ∥BC ,∴∠AGD=∠ACB ,∴甲正确;②∵∠AGD=∠ACB ,∴DG ∥BC ,∴∠CDG=∠BCD ,∴∠CDG=∠BFE ,∴乙正确;③DG 不一定平行于BC ,所以∠AGD 不一定大于∠BFE ;④如果连接GF ,则只有GF ⊥EF 时丁的结论才成立;∴丙错误,丁错误;故选:C .【点睛】本题考查平行线的性质和判定.熟记定理,并能正确识图,依据定理完成角度之间的转换是解决此题的关键.4.A解析:A【解析】【分析】【详解】324{32? 3x x x <+-≥①②,由①,得x <4,由②,得x≤﹣3,由①②得,原不等式组的解集是x≤﹣3;故选A .5.B解析:B【解析】【分析】 直接化简二次根式,得出3的取值范围,进而得出答案. 【详解】 ∵m=4+3=2+3,1<3<2,∴3<m <4,故选B .【点睛】此题主要考查了估算无理数的大小,正确得出3的取值范围是解题关键.6.A解析:A【解析】【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】213312x x +⎧⎨+≥-⎩<①② ∵解不等式①得:x <1,解不等式②得:x≥-1,∴不等式组的解集为-1≤x <1,在数轴上表示为:,故选A .【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键. 7.D解析:D【解析】【分析】根据同位角的定义(在截线的同侧,并且在被截线的同一方的两个角是同位角),即可得到答案;【详解】解:图①、②、④中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角;图③中,∠1与∠2的两条边都不在同一条直线上,不是同位角.故选D.【点睛】本题主要考查了同位角的概念,判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.8.B解析:B【解析】【分析】根据平行线的性质,两直线平行同位角相等,得出∠1=∠2,再利用要使DF∥BC,找出符合要求的答案即可.【详解】解:∵EF∥AB,∴∠1=∠2(两直线平行,同位角相等),要使DF∥BC,只要∠3=∠2就行,∵∠1=∠2,∴还需要添加条件∠1=∠3即可得到∠3=∠2(等量替换),故选B.【点睛】此题主要考查了平行线的性质与判定、等量替换原则,根据已知找出符合要求的答案,是比较典型的开放题型.9.C解析:C【解析】A.不等式的两边都减2,不等号的方向不变,故A错误;B.不等式的两边都除以2,不等号的方向不变,故B错误;C.不等式的两边都乘以−2,不等号的方向改变,故C正确;D.不等式的两边都乘以−1,不等号的方向改变,故D错误.故选C.10.A解析:A【解析】【分析】先根据一元一次不等式组解出x的取值范围,再根据不等式组只有三个整数解,求出实数a的取值范围即可.【详解】3211230x x x a --⎧≤-⎪⎨⎪-<⎩①②, 解不等式①得:x≥-1,解不等式②得:x<a , ∵不等式组3211230x x x a --⎧≤-⎪⎨⎪-<⎩有解, ∴-1≤x<a ,∵不等式组只有三个整数解,∴不等式的整数解为:-1、0、1,∴1<a≤2,故选:A【点睛】本题考查一元一次不等式组的整数解,解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.C解析:C【解析】试题分析:已知,△ABE 向右平移2cm 得到△DCF ,根据平移的性质得到EF=AD=2cm ,AE=DF ,又因△ABE 的周长为16cm ,所以AB+BC+AC=16cm ,则四边形ABFD 的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm .故答案选C .考点:平移的性质.12.B解析:B【解析】【分析】把12x y =⎧⎨=⎩代入方程组3526x my x ny -=⎧⎨+=⎩,求出m 、n 的值,再代入要求的代数式求值即可. 【详解】把12x y =⎧⎨=⎩代入3526x my x ny -=⎧⎨+=⎩得:325226m n -=⎧⎨+=⎩, 解得:m=-1,n=2,∴n-m=2-(-1)=3.故选:B.【点睛】本题考查了二元一次方程组的解,能得出m ,n 的值是解此题的关键.二、填空题13.【解析】【分析】把与的值代入方程计算即可求出的值【详解】解:把代入二元一次方程得:解得:故答案为:【点睛】此题考查了二元一次方程的解方程的解即为能使方程左右两边相等的未知数的值解析:5 3【解析】【分析】把x与y的值代入方程计算即可求出m的值.【详解】解:把12xy=⎧⎨=⎩代入二元一次方程3210mx y--=,得:32210m-?=,解得:53 m=.故答案为:5 3【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.【解析】【分析】由图象可以知道当x=-1时两个函数的函数值是相等的再根据函数的增减性可以判断出不等式k2x<k1x+b解集【详解】两条直线的交点坐标为(-12)且当x>-1时直线l2在直线l1的下方解析:1x>-【解析】【分析】由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k2x<k1x+b解集.【详解】两条直线的交点坐标为(-1,2),且当x>-1时,直线l2在直线l1的下方,故不等式k2x <k1x+b的解集为x>-1.故答案为:x>-1.【点睛】此题考查一次函数与一元一次不等式,解题关键在于掌握两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.15.如果两个角相等那么它们是对顶角【解析】【分析】将原命题的条件及结论进行交换即可得到其逆命题【详解】∵原命题的条件是:如果两个角是对顶角结论是:那么这两个角相等;∴其逆命题应该为:如两个角相等那么这两解析:如果两个角相等,那么它们是对顶角【解析】【分析】将原命题的条件及结论进行交换即可得到其逆命题.【详解】∵原命题的条件是:如果两个角是对顶角,结论是:那么这两个角相等;∴其逆命题应该为:如两个角相等,那么这两个角是对顶角,简化后即为:相等的角是对顶角.【点睛】考查命题与定理,解题的关键是明确逆命题的定义,可以写出一个命题的逆命题.16.3m-n<10【解析】【分析】根据题意利用不等符号进行连接即可得出答案【详解】解:由题意可得:3m-n<10故答案为:3m-n<10【点睛】本题考查不等式的书写解析:3m-n<10.【解析】【分析】根据题意利用不等符号进行连接即可得出答案.【详解】解:由题意可得:3m-n<10故答案为:3m-n<10.【点睛】本题考查不等式的书写.17.三角形的三个内角都小于60°【解析】【分析】熟记反证法的步骤直接填空即可【详解】第一步应假设结论不成立即三角形的三个内角都小于60°故答案为三角形的三个内角都小于60°【点睛】反证法的步骤是:(1)解析:三角形的三个内角都小于60°【解析】【分析】熟记反证法的步骤,直接填空即可.【详解】第一步应假设结论不成立,即三角形的三个内角都小于60°.故答案为三角形的三个内角都小于60°.【点睛】反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时,要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.18.m>-2【解析】【分析】首先解关于x和y的方程组利用m表示出x+y代入x+y>0即可得到关于m的不等式求得m的范围【详解】解:①+②得2x+2y=2m+4则x+y=m+2根据题意得m+2>0解得m>解析:m>-2【解析】【分析】首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.【详解】解:2133x y mx y-=+⎧⎨+=⎩①②,①+②得2x+2y=2m+4,则x+y=m+2,根据题意得m+2>0,解得m>﹣2.故答案是:m>﹣2.【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.19.【解析】【分析】首先过点E作EF∥AB由AB∥CD可得AB∥CD∥EF然后根据两直线平行内错角相等即可求出答案【详解】解:过点E作EF∥AB∵AB∥CD∴AB∥CD∥EF∵∠B=25°∠D=45°∴解析:【解析】【分析】首先过点E作EF∥AB,由AB∥CD可得AB∥CD∥EF,然后根据两直线平行,内错角相等即可求出答案.【详解】解:过点E作EF∥AB∵AB∥CD∴AB∥CD∥EF∵∠B=25°,∠D=45°∴∠1=∠B=25°,∠2=∠D=45°∴∠BED=∠1+∠2=25°+45°=70°故答案为70.【点睛】本题考查了平行线的性质.掌握辅助线的作法是解题的关键,注意数形结合思想的应用. 20.8或﹣4【解析】解:∵x2+(m-2)x+9是一个完全平方式∴x2+(m-2)x+9=(x±3)2而(x±3)2=x2±6x+9∴m -2=±6∴m=8或m=-4故答案为8或-4 解析:8或﹣4【解析】解:∵x 2+(m -2)x +9是一个完全平方式,∴x 2+(m -2)x +9=(x ±3)2. 而(x ±3)2=x 2±6x +9,∴m -2=±6,∴m =8或m =-4.故答案为8或-4. 三、解答题21.(1)()5,0,画图见详解;(2)3,画图见详解;(3)()0.5,0-或(4.5,0)或()0,0.25-或(0,2.25)【解析】【分析】(1)根据坐标系内点B 到点N 的移动规律,即可得出点M 的坐标;(2)根据点的平移规律先找出点N 的坐标,再计算四边形面积即可;(3)分点M 在x 轴和y 轴上两种情况分析即可.【详解】解:(1)点M 的坐标为()5,0,∵N 的坐标为()3,1,即B 向右平移3个单位,∴A 向右平移3个单位得到M 的坐标为()5,0;故答案为:()5,0;(2)∵点M 的坐标是()3,1,即A 先向右平移1个单位,再向上平移1个单位, ∴点B 先向右平移1个单位,再向上平移1个单位得到点N 的坐标为()1,2,∴S 即为四边形ABNM 的面积,如下图,∴111313322BNM ABM ABNM S S S =+=⨯⨯+⨯⨯=V V 四边形 故答案为:3;(3)当点M 在x 轴上时,设点(),0M m ,则21 2.5S AM OB m =⋅=-⨯=,解得:0.5m =-或 4.5m =,此时,点M 的坐标为()0.5,0-或(4.5,0);当点M 在y 轴上时,设点M (0,)d ,则12212 2.52ABM S S d ==⨯⨯-⨯=V , 解得:0.25d =-或 2.25d =, 此时,点M 的坐标为()0,0.25-或(0,2.25);综上所述,所有满足条件的M 点的坐标为()0.5,0-或(4.5,0)或()0,0.25-或(0,2.25).【点睛】本题考查的知识点是坐标与图形变化-平移,掌握平移变化与坐标变化之间的关系是解此题的关键.22.(1)∠EAB ,∠DAC ; (2)360°;(3)65°【解析】【分析】(1)根据平行线性质“两直线平行,内错角相等”可得∠B+∠BCD+∠D ∠BCF+∠BCD+∠DCF ;(2)过C 作CF ∥AB ,根据平行线性质可得;(3)如图3,过点E 作EF ∥AB ,根据平行线性质和角平分线定义可得∠ABE=12∠ABC=30°,∠CDE=12∠ADC=35°,故∠BED=∠BEF+∠DEF. 【详解】(1)根据平行线性质可得:因为ED BC ∥,所以B ∠=∠EAB ,C ∠=∠DAC ;(2)过C作CF∥AB,∵AB∥DE,∴CF∥DE∥AB,∴∠D=∠FCD,∠B=∠BCF,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°,(3)如图3,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,∴∠ABE=12∠ABC=30°,∠CDE=12∠ADC=35°∴∠BED=∠BEF+∠DEF=30°+35°=65°.【点睛】考核知识点:平行线性质和角平分线定义.作辅助线构造平行线是关键.23.(1)0.1,10;(2)31.6,32400;(3)0.012.【解析】【分析】(1)由表格得出规律,求出x与y的值即可;(2)根据算术平方根的被开方数扩大100倍,算术平方根扩大10倍,可得答案;(3)根据立方根的被开方数缩小1000倍,立方根缩小10倍,可得答案.【详解】(1)x=0.1,y=10,故答案为:0.1,10;(210,1000,② 3.24Q,∴a=32400,故答案为:31.6,32400;(4312 2.289,∴b=0.012,故答案为:0.012.【点睛】考查了算术平方根和立方根,注意被开方数扩大100(1000)倍,算术平方根(立方根)扩大10倍.24.(1)11x y =⎧⎨=⎩;(2)31x y =⎧⎨=-⎩【解析】【分析】(1)利用加减消元法,先消去y ,解出x ,再代入原式解出y 即可;(2)先将411x y +=两边同时乘2,得8222x y +=与25x y -=相加,消去y ,解出x ,再代入原式解出y 即可.【详解】 解:(1)23532x y x y +=⎧⎨-=-⎩①②, ①+②得:33x =,解得:1x =,将1x =代入①得:1y =,所以方程组的解为:11x y =⎧⎨=⎩, 故答案为:11x y =⎧⎨=⎩; (2)25411x y x y -=⎧⎨+=⎩①②, ②×2得:8222x y +=③, ①+③得:927x =,解得:3x =,将3x =代入①中解得:1y =-,所以方程组的解为:31x y =⎧⎨=-⎩, 故答案为:31x y =⎧⎨=-⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:加减消元法与代入消元法,此题运用加减消元法.25.(1)详见解析;(2)50°.【解析】【分析】(1)解方程组求出α,β即可判断.(2)证明//AB CD ,利用平行线的性质解决问题即可.【详解】(1)由3260100αββα∠+∠=︒⎧⎨∠-∠=︒⎩,解得:40140αβ=︒⎧⎨=︒⎩,180αβ∴+=︒,//AB EF ∴. (2)//CD EF Q ,//EF AB ,//AB CD ∴,180BAC C ∴∠+∠=︒,AC AE ⊥Q ,90EAC ∴∠=︒,40BAE ∠=︒Q ,130BAC ∴∠=︒,50C ∴∠=︒.【点睛】本题考查了平行线的性质和判定,解题的关键是熟练掌握基本知识,属于中考常考题型.。
【压轴题】初一数学下期中一模试卷及答案
【压轴题】初一数学下期中一模试卷及答案一、选择题1.如图,将△ABC沿直线AB向右平移后到达△BDE的位置,若∠CAB=50º,∠ABC=100º,则∠CBE的度数为()A.45°B.30°C.20°D.15°2.为了了解天鹅湖校区2019-2020学年1600名七年级学生的体重情况,从中抽取了100名学生的体重,就这个问题,下面说法正确的是()A.1600名学生的体重是总体B.1600名学生是总体C.每个学生是个体D.100名学生是所抽取的一个样本3.如图所示,点P到直线l的距离是()A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段PD的长度4.汽车的“燃油效率”是指汽车每消耗1升汽油最多可行驶的公里数,如图描述了A、B两辆汽车在不同速度下的燃油效率情况.根据图中信息,下面4个推断中,合理的是()①消耗1升汽油,A车最多可行驶5千米;②B车以40千米/小时的速度行驶1小时,最多消耗4升汽油;③对于A车而言,行驶速度越快越省油;④某城市机动车最高限速80千米/小时,相同条件下,在该市驾驶B车比驾驶A车更省油.A.①④B.②③C.②④D.①③④5.下列图中∠1和∠2是同位角的是( )A .(1)、(2)、(3)B .(2)、(3)、(4)C .(3)、(4)、(5)D .(1)、(2)、(5) 6.如图所示,已知直线BF 、CD 相交于点O ,D 40∠=︒,下面判定两条直线平行正确的是( )A .当C 40∠=︒时,AB//CDB .当A 40∠=︒时,BC//DEC .当E 120∠=︒时,CD//EFD .当BOC 140∠=︒时,BF//DE7.下列图形中,1∠和2∠的位置关系不属于同位角的是( )A .B .C .D .8.比较552、443、334的大小( )A .554433234<<B .334455432<<C .553344243<<D .443355342<< 9.不等式组213312x x +⎧⎨+≥-⎩<的解集在数轴上表示正确的是( ) A .B .C .D .10.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限 D .第四象限11.下列运算正确的是( ) A .42=± B .222()-=- C .382-=- D .|2|2--= 12.已知两个不等式的解集在数轴上如右图表示,那么这个解集为( )A .≥-1B .>1C .-3<≤-1D .>-3二、填空题13.如图,直线a 平移后得到直线b ,∠1=60°,∠B =130°,则∠2=________°.14.下面是二元一次方程组的不同解法,请你把下列消元的过程填写完整:对于二元一次方程组 24326x y x y +=⎧⎨+=⎩L L L L ①② (1)方法一:由 ①,得 24y x =-L L ③把 ③ 代入 ②,得________________.(2)方法二:3⨯①,得3612x y +=L L ④ -④②,得________________.(3)方法三:()1⨯-① ,得 24x y --=-L L ⑤+⑤②,得________________.(4)方法四:由 ②,得 ()226x x y ++=L L ⑥把 ① 代入⑥,得________________.15.已知方程3x +5y -3=0,用含x 的代数式表示y ,则y=________.16.如图,在平面直角坐标系xOy 中,点A ,点B 的坐标分别为(0,2),(-1,0),将线段AB 沿x 轴的正方向平移,若点B 的对应点的坐标为B'(2,0),则点A 的对应点A'的坐标为___.17.运动会上裁判员测量跳远成绩时,先在距离踏板最近的跳远落地点上插上作为标记的小旗,再以小旗的位置为赤字的零点,将尺子拉直,并与踏板边缘所在直线垂直,把尺子上垂足点表示的数作为跳远成绩.这实质上是数学知识____________在生活中的应用.18.如图,直线AB ,CD 交于点O ,OF ⊥AB 于点O ,CE ∥AB 交CD 于点C ,∠DOF =60°,则∠ECO 等于_________度.19.比较大小1-5______ 12-.(填“>”、“<”或“=”) 20.若264a =,则3a =______.三、解答题21.为了增强学生的身体素质,西南大学附中七年级学生在每天晚自习之后进行夜跑.在学期末的体育考试中,七年级的同学们表现出很好的体育素养,并取得了良好的体育成绩.为了了解七年级学生的体育考试情况,小明抽取了部分同学的体育考试成绩进行分析,体育成绩优、良、中、差分别记为,,A B C D ,,并绘制了如下两幅不完整的统计表:(1)本次调查共调查了 名学生,并补全条形统计图;(2)扇形统计图中C 类所对应的扇形圆心角的度数是 度;(3)若七年级人数为800人,请你估计体育成绩优、良的总人数.22.王老师为学校购买运动会的奖品后,回学校向后勤处赵主任交账说:我买了两种书共105本,单价分别为8元和12元,买书前我领了1600元,现在还余518元.赵主任算了一下说:你肯定搞错了.(1)赵主任为什么说他搞错了,请你用方程组的知识给予解释;(2)王老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本,但笔记本的单价已模糊不清,只能辨认出应为小于5元的整数,笔记本的单价可能为多少?23.解下列不等式组:(1)35318x x +≥⎧⎨-<⎩ (2)12(1)2235x x x x ⎧+<-⎪⎪⎨+⎪>⎪⎩ 24.解方程组:(1)45()2()1x y x y x y +=⎧⎨--+=-⎩(2)2()()134123()2()3x y x y x y x y -+⎧-=-⎪⎨⎪+--=⎩25.如图,已知//BC GE 、//AF DE 、150∠=︒.(1)AFG ∠=________°.(2)若AQ 平分FAC ∠,交直线BC 于点Q ,且15Q ∠=︒,求ACQ ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据平移的性质得出AC ∥BE ,以及∠CAB=∠EBD=50°,∠ABC=100º,进而求出∠CBE 的度数.【详解】解:∵将△ABC 沿直线AB 向右平移后到达△BDE 的位置,∴AC ∥BE ,∴∠CAB=∠EBD=50°(两直线平行,同位角相等),∵∠ABC=100°,∴∠CBE 的度数为:180°-50°-100°=30°.故选B .【点睛】此题主要考查了平移的性质以及直线平行的性质,得出∠CAB=∠EBD=50°是解决问题的关键.2.A解析:A【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A、1600名学生的体重是总体,故A正确;B、1600名学生的体重是总体,故B错误;C、每个学生的体重是个体,故C错误;D、从中抽取了100名学生的体重是一个样本,故D错误;故选:A.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.3.B解析:B【解析】由点到直线的距离定义,即垂线段的长度可得结果,点P到直线l的距离是线段PB 的长度,故选B.4.C解析:C【解析】【分析】折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.【详解】解:①由图象可知,当A车速度超过40km时,燃油效率大于5km/L,所以当速度超过40km时,消耗1升汽油,A车行驶距离大于5千米,故此项错误;②B车以40千米/小时的速度行驶1小时,路程为40km,40km÷10km/L=4L,最多消耗4升汽油,此项正确;③对于A车而言,行驶速度在0﹣80km/h时,越快越省油,故此项错误;④某城市机动车最高限速80千米/小时,相同条件下,在该市驾驶B车比驾驶A车燃油效率更高,所以更省油,故此项正确.故②④合理,故选:C.【点睛】本题考查了折线统计图,熟练读懂折线统计图是解题思的关键.5.D解析:D【解析】根据同位角的定义,对每个图进行判断即可.【详解】(1)图中∠1和∠2是同位角;故本项符合题意;(2)图中∠1和∠2是同位角;故本项符合题意;(3)图中∠1和∠2不是同位角;故本项不符合题意;(4)图中∠1和∠2不是同位角;故本项不符合题意;(5)图中∠1和∠2是同位角;故本项符合题意.图中是同位角的是(1)、(2)、(5).故选D.【点睛】本题考查了同位角,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.6.D解析:D【解析】【分析】选项A中,∠C和∠D是直线AC、DE被DC所截形成的内错角,内错角相等,判定两直线平行;选项B中,不符合三线八角,构不成平行;选项C中,∠E和∠D是直线DC、EF被DE所截形成的同旁内角,因为同旁内角不互补,所以两直线不平行;选项D中,∠BOC的对顶角和∠D是直线BF、DE被DC所截形成的同旁内角,同旁内角互补,判定两直线平行.【详解】解:A、错误,因为∠C=∠D,所以AC∥DE;B、错误,不符合三线八角构不成平行;C、错误,因为∠C+∠D≠180°,所以CD不平行于EF;D、正确,因为∠DOF=∠BOC=140°,所以∠DOF+∠D=180°,所以BF∥DE.故选:D.【点睛】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.7.D解析:D【解析】【分析】根据同位角的特征:两条直线被第三条直线所截形成的角中,两个角都在两条被截直线的同侧,并且在第三条直线(截线)的同旁,由此判断即可.解:A .根据根据同位角的特征得,∠1和∠2是同位角.B .根据根据同位角的特征得,∠1和∠2是同位角.C .根据根据同位角的特征得,∠1和∠2是同位角.D .由图可得,∠1和∠2不是同位角.故选:D .【点睛】本题主要考查了同位角,同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.8.C解析:C【解析】【分析】根据幂的乘方,底数不变指数相乘都转换成指数是11的幂,再根据底数的大小进行判断即可【详解】解:255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,∵32<64<81,∴255<433<344.故选:C .【点睛】本题考查了幂的乘方的性质,解题的关键在于都转化成以11为指数的幂的形式.9.A解析:A【解析】【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】213312x x +⎧⎨+≥-⎩<①② ∵解不等式①得:x <1,解不等式②得:x≥-1,∴不等式组的解集为-1≤x <1, 在数轴上表示为:,故选A .【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.10.B解析:B【解析】∵−2<0,3>0,∴(−2,3)在第二象限,故选B.11.C解析:C【解析】【分析】分别计算四个选项,找到正确选项即可.【详解】 A. 42=,故选项A 错误; B. 2(2)42-==,故选项B 错误;C. 3338(2)=2-=--,故选项C 正确;D. |2|2--=-,故选项D 错误;故选C .【点睛】本题主要考查了开平方、开立方和绝对值的相关知识,熟练掌握各知识点是解题的关键.12.A解析:A【解析】>-3 ,≥-1,大大取大,所以选A二、填空题13.【解析】【分析】【详解】解:过B 作BD ∥a ∵直线a 平移后得到直线b ∴a ∥b ∴BD ∥b ∴∠4=∠2∠3=∠1=60°∴∠2=∠ABC-∠3=70°故答案为:70 解析:【解析】【分析】【详解】解:过B 作BD ∥a ,∵直线a 平移后得到直线b ,∴a ∥b ,∴BD ∥b ,∴∠4=∠2,∠3=∠1=60°,∴∠2=∠ABC-∠3=70°,故答案为:70.14.【解析】【分析】根据代入消元法和加减消元法的步骤解二元一次方程组即可得出相应的过程【详解】解:(1)方法一:由①得③把③代入②得;(2)方法二:①×3得④④-②得;(3)方法三:①×(﹣1)得⑤⑤+ 解析:346x x +-= 46y = 22x = 246x +=【解析】【分析】根据代入消元法和加减消元法的步骤解二元一次方程组即可得出相应的过程.【详解】解:24326x y x y +=⎧⎨+=⎩①②, (1)方法一:由①,得24y x =-③,把③代入②,得346x x +-=;(2)方法二:①×3,得3612x y +=④ ④-②,得46y =;(3)方法三:①×(﹣1),得24x y --=-⑤⑤+②,得22x =;(4)方法四:由②,得()226x x y ++=⑥,把①代入⑥,得246x +=.故答案为:(1)346x x +-=;(2)46y =;(3)22x =;(4)246x +=.【点睛】此题考查运用加减消元和代入消元解二元一次方程组的方法,实际上是运用等式的性质来进行消元.15.;【解析】分析:将x 看作已知数求出y 即可详解:方程3x+5y-3=0解得:y=故答案为点睛:此题考查了解二元一次方程解题的关键是将x 看作已知数求出y 解析:335x -; 【解析】 分析: 将x 看作已知数求出y 即可.详解:方程3x+5y-3=0,解得:y=335x -.故答案为33 5x -.点睛: 此题考查了解二元一次方程,解题的关键是将x看作已知数求出y.16.(32)【解析】【分析】根据平移的性质即可得到结论【详解】∵将线段A B沿x轴的正方向平移若点B的对应点B′的坐标为(20)∵-1+3=2∴0+3=3∴A′(32)故答案为:(32)【点睛】本题考查了解析:(3,2)【解析】【分析】根据平移的性质即可得到结论.【详解】∵将线段AB沿x轴的正方向平移,若点B的对应点B′的坐标为(2,0),∵-1+3=2,∴0+3=3∴A′(3,2),故答案为:(3,2)【点睛】本题考查了坐标与图形变化-平移.解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.17.垂线段最短【解析】【分析】根据题干跳远落点视为一个点直尺垂直踏板边缘可理解为作垂线然后用数学语言描述出来即可【详解】根据题意可知答案为:垂线段最短【点睛】本题考查点到直线距离在生活中的实际应用注意在解析:垂线段最短【解析】【分析】根据题干,跳远落点视为一个点,直尺垂直踏板边缘可理解为作垂线,然后用数学语言描述出来即可.【详解】根据题意,可知答案为:垂线段最短【点睛】本题考查点到直线距离在生活中的实际应用,注意在书写答案时,尽量用“数学化”的语言来描述.18.30【解析】【分析】先求出∠BOD的大小再根据平行的性质得出同位角∠ECO的大小【详解】∵OF⊥AB∴∠BOF=90°∵∠DOF=60°∴∠BOD=30°∵CE∥AB∴∠ECO=∠BOD=30°故答解析:30【解析】【分析】先求出∠BOD 的大小,再根据平行的性质,得出同位角∠ECO 的大小.【详解】∵OF ⊥AB ,∴∠BOF=90°∵∠DOF=60°,∴∠BOD=30°∵CE ∥AB∴∠ECO=∠BOD=30°故答案为:30【点睛】本题考查平行线的性质,平行线的性质有:同位角相等、内错角相等、同旁内角互补.19.<【解析】【分析】首先比较进而得出答案【详解】解:∵∴∴故答案为:【点睛】此题主要考查了实数比较大小正确比较与是解题关键解析:<【解析】【分析】首先比较11<-,进而得出答案 .【详解】2>,∴2-,∴11<-,∴1122-<-. 故答案为:<.【点睛】此题主要考查了实数比较大小, 正确比较1-1-是解题关键 .20.±2【解析】【分析】根据平方根立方根的定义解答【详解】解:∵∴a=±8∴=±2故答案为±2【点睛】本题考查平方根立方根的定义解题关键是一个正数的平方根有两个他们互为相反数解析:±2【解析】【分析】根据平方根、立方根的定义解答.【详解】解:∵264a=,∴a=±8.∴3a=±2故答案为±2【点睛】本题考查平方根、立方根的定义,解题关键是一个正数的平方根有两个,他们互为相反数..三、解答题21.(1)40,图形见详解;(2)72;(3)600【解析】【分析】(1)根据A级的有16人,所占的圆心角是144°,据此即可求得测试的总人数,之后先根据百分比算出B的人数,再根据D的人数算出C的人数,即可补全条形图;(2)利用360︒乘以对应的百分比求得所在扇形的圆心角的度数;(3)利用总人数乘以对应的比例即可求解.【详解】解:(1)1441640360︒÷=︒(名),所以本次调查共调查了40名学生;4035%14⨯=(名),所以B类学生有14名,可以求到C类学生有40-16-14-2=8(名),可以补全条形统计图如下:(2)83607240︒⨯=︒,所以扇形统计图中C类所对应的扇形圆心角的度数是72度;(3)161480060040+⨯=(名),答:体育成绩优、良的总人数约有600名.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(1)见详解;(2)2【解析】【分析】(1)设单价为8元的书买了x 本,单价为12元的书买了y 本,根据题意列二元一次方程组求解即可;(2)设单价为8元的书买了y 本,笔记本的单价为a 元,根据题意列一元一次不等式求解即可【详解】解:(1)设单价为8元的书买了x 本,单价为12元的书买了y 本,根据题意得:1058121600518x y x y +=⎧⎨+=-⎩解得:44.560.5x y =⎧⎨=⎩(不符合题意) ∴赵主任说王老师肯定搞错了.(2)设单价为8元的书买了y 本,笔记本的单价为a 元,根据题意得:01600812(105)5185y y <--⨯--<整理得:041785y <-<即44.545.75y <<∴单价为8元的书买了45本,∴160084512(10545)5182a =-⨯-⨯--=∴笔记本的单价为2元.【点睛】本题考查的知识点是一元一次方程以及一元一次不等式的应用,找准题目中的数量关系是解此题的关键.23.(1)23x ≤<;(2)3x >.【解析】【分析】先求出两个不等式的解集,再求其公共解.【详解】解:(1)35,318x x ①②+≥⎧⎨-<⎩解不等式①,得2x ≥.解不等式②,得3x <.因此,原不等式组的解集为:23x ≤<.方法二:在同一条数轴上表示不等式①②的解集,如图所示:因此,原不等式组的解集为:23x ≤<.(评分标准:用口诀和数轴表示得出答案均给分) (2)()121,22,35x x x x ⎧+<-⎪⎪⎨+⎪>⎪⎩①② 解:解不等式①,得2x >.解不等式②,得3x >.因此,原不等式组的解集为:3x >.方法二:在同一条数轴上表示不等式①②的解集,如图所示:因此,原不等式组的解集为:3x >.【点睛】考查解一元一次不等式组,比较容易,分别解不等式,找出解集的公共部分即可.24.(1)27101310x y ⎧=⎪⎪⎨⎪=⎪⎩,(2)7949x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】【分析】(1)将x+y=4整体代入第②个式子,得出x -y=75,再与第①个式子加减消元可求得; (2)设x+y=m ,x -y=n ,先算m 、n 的一元二次方程,然后再求解x 、y 的值.【详解】(1)45()2()1x y x y x y +=⎧⎨--+=-⎩①②将①代入②得:5(x-y)-8=-1,化简得:x -y=75③ ①+③得:2x=275,解得:x=2710将x=2710代入①得:y=1310∴27101310x y ⎧=⎪⎪⎨⎪=⎪⎩(2)2()()134123()2()3x y x y x y x y -+⎧-=-⎪⎨⎪+--=⎩①②①×12得:8(x-y)-3(x+y)=-1 令x+y=m ,x-y=n则831323n m m n -=-⎧⎨-=⎩③④ ③+④得:6n=2,解得:n=13将n=13代入③得:m=119∴11913x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩再利用加减消元法,解得:7949x y ⎧=⎪⎪⎨⎪=⎪⎩【点睛】本题考查解一元二次方程组,常见的消元方法为:代入消元法和加减消元法,特殊情况,如本题还可用整体消元法.25.(1)50;(2)100°【解析】【分析】(1)根据//AF DE 可知∠AFG=∠E ,再根据//BC GE 即可求得∠AFG=∠1=50°, (2)先根据三角形内角和求出∠DHQ ,再根据//AF DE 求出∠FAH ,根据角平分线可知∠CAQ ,再根据三角形内角和即可求出ACQ ∠.【详解】解:(1)∵//AF DE ,∴∠AFG=∠E ,∵//BC GE ,∴∠E=∠1,又150∠=︒,∴∠AFG=∠1=50°.(2)解:在HDQ ∆中∵1180Q DHQ ∠+∠+∠=︒,15Q ∠=︒,150∠=︒,∴18011801550115DHQ Q ∠=︒-∠-∠=︒-︒-︒=︒;∵AEE ∠与DHQ ∠为对顶角,∴115AHE DHQ ∠=∠=︒,∵//AF EH ,∴180FAQ AHE ∠+∠=︒,∴65FAQ ∠=︒;∵AQ 平分FAC ∠,∴65CAQ FAQ ∠=∠=︒,∴1801806515100ACQ CAQ Q ∠=︒-∠-∠=︒-︒-︒=︒.【点睛】本题考查的平行线的性质,用到的知识点为:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补等.。
【压轴卷】七年级数学下期中第一次模拟试题(附答案)
【压轴卷】七年级数学下期中第一次模拟试题(附答案)一、选择题1.如图,将△ABC 沿BC 方向平移3cm 得到△DEF,若△ABC 的周长为20cm ,则四边形ABFD 的周长为( )A .20cmB .22cmC .24cmD .26cm 2.若点(),P a b 在第四象限,则( )A .0a >,0b >B .0a <,0b <C .0a <,0b >D .0a >,0b <3.点M (2,-3)关于原点对称的点N 的坐标是: ( )A .(-2,-3)B .(-2, 3)C .(2, 3)D .(-3, 2)4.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-2 5.如图所示,已知直线BF 、CD 相交于点O ,D 40∠=︒,下面判定两条直线平行正确的是( )A .当C 40∠=︒时,AB//CDB .当A 40∠=︒时,BC//DEC .当E 120∠=︒时,CD//EFD .当BOC 140∠=︒时,BF//DE 6.比较552、443、334的大小( )A .554433234<<B .334455432<<C .553344243<<D .443355342<< 7.如图,下列条件中,能判断AB//CD 的是( )A .∠BAC=∠ACDB .∠1=∠2C .∠3=∠4D .∠BAD=∠BCD 8.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式为( )A .210x +90(15﹣x )≥1.8B .90x +210(15﹣x )≤1800C .210x +90(15﹣x )≥1800D .90x +210(15﹣x )≤1.89.在平面直角坐标系内,线段CD 是由线段AB 平移得到的,点A (-2,3)的对应点为C (2,5),则点B (-4,-1)的对应点D 的坐标为()A .()8,3--B .()4,2C .()0,1D .()1,810.如图,△ABC 经平移得到△EFB ,则下列说法正确的有 ( )①线段AC 的对应线段是线段EB ;②点C 的对应点是点B ;③AC ∥EB ;④平移的距离等于线段BF 的长度.A .1B .2C .3D .411.我们定义a c ⎛ ⎝ b ad bc d ⎫=-⎪⎭,例如:24⎛ ⎝ 3253425⎫=⨯-⨯=-⎪⎭,若x 满足423⎛-≤ ⎝ 22x ⎫<⎪⎭,则x 的整数解有( ) A .0个B .1个C .2个D .3个 12.把等宽的一张长方形纸片折叠,得到如图所示的图象,若170∠=︒,则a 的度数为( )A .50°B .55°C .60°D .70°二、填空题13.如图,已知AM//CN ,点B 为平面内一点,AB ⊥BC 于B ,过点B 作BD ⊥AM 于点D ,点E 、F 在DM 上,连接BE 、BF 、CF ,BF 平分∠DBC ,BE 平分∠ABD ,若∠FCB +∠NCF =180︒,∠BFC =3∠DBE ,则∠EBC 的度数为______.14.若3a ++(b-2)2=0,则a b =______.15.一副直角三角尺叠放如图 1 所示,现将 45°的三角尺ADE 固定不动,将含 30°的三角尺 ABC 绕顶点 A 顺时针转动(旋转角不超过 180 度),使两块三角尺至少有一组边互相平行.如图 2:当∠BAD=15°时,BC ∥DE .则∠BAD (0°<∠BAD <180°)其它所有可能符合条件的度数为________.16.观察下列各式:111233+=,112344+=,113455+=,……请你将发现的规律用含自然数n (n≥1)的等式表示出来__________________.17.如图,点,A B 的坐标分别是()1,0、()0,2,把线段AB 平移至11A B 时得到点1A 、1B 两点的坐标分别为()3,b ,(),4a ,则+a b 的值是__________.18.已知M 是满足不等式36a <<N 是满足不等式x 372-的最大整数,则M +N 的平方根为________.1910的整数部分是_____.20.如图,将边长为6cm 的正方形ABCD 先向上平移3cm ,再向右平移1cm ,得到正方形A ′B ′C ′D ′,此时阴影部分的面积为______cm 2.三、解答题21.A,B两种型号的空调,已知购进3台A型号空调和5台B型号空调共用14500元;购进4台A型号空调和10台B型号空调共用25000元.(1)求A,B两种型号空调的进价;(2)若超市准备用不超过54000元的资金再购进这两种型号的空调共30台,求最多能购进A种型号的空调多少台?22.国家自2016年1月1日起实行全面放开二胎政策,某计生组织为了解该市家庭对待这项政策的态度,准备采用以下调查方式中的一种进行调查:A.从一个社区随机选取1 000户家庭调查;B.从一个城镇的不同住宅楼中随机选取1 000户家庭调查;C.从该市公安局户籍管理处随机抽取1 000户城乡家庭调查.(1)在上述调查方式中,你认为比较合理的一个是.(填“A”、“B”或“C”)(2)将一种比较合理的调查方式调查得到的结果分为四类:(A)已有两个孩子;(B)决定生二胎;(C)考虑之中;(D)决定不生二胎.将调查结果绘制成如下两幅不完整的统计图.请根据以上不完整的统计图提供的信息,解答下列问题:①补全条形统计图.②估计该市100万户家庭中决定不生二胎的家庭数.23.课题学习:平行线的“等角转化功能.(1)问题情景:如图1,已知点A是BC外一点,连接AB、AC,求∠+∠+∠的度数.BAC B C天天同学看过图形后立即想出:180BAC B C ∠+∠+∠=︒,请你补全他的推理过程. 解:(1)如图1,过点A 作ED BC ∥,∴B ∠= ,C ∠= .又∵180EAB BAC CAD ∠+∠+∠=︒,∴180BAC B C ∠+∠+∠=︒.解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”功能,将BAC ∠,B Ð,C ∠“凑”在一起,得出角之间的关系,使问题得以解决.(2)问题迁移:如图2,AB ED P ,求B BCD D ∠+∠+∠的度数.(3)方法运用:如图3,AB CD ∥,点C 在D 的右侧,70ADC ∠=︒,点B 在A 的左侧,60ABC ∠=︒,BE 平分ABC ∠,DE 平分ADC ∠,BE 、DE 所在的直线交于点E ,点E 在AB 与CD 两条平行线之间,求BED ∠的度数.24.补全解答过程:已知:如图,直线//AB CD ,直线EF 与直线AB ,CD 分别交于点G ,H ;GM 平分FGB ∠,360∠=︒.求1∠的度数.解:EF Q 与CD 交于点H ,(已知)34∴∠=∠.(_______________)360∠=︒Q ,(已知)460∴∠=︒.(______________)//AB CD Q ,EF 与AB ,CD 交于点G ,H ,(已知)4180FGB ∴∠+∠=︒(_____________)FGB ∴∠=_______︒GM Q 平分FGB ∠,(已知)1∴∠=_______︒.(角平分线的定义)25.已知:如图,//AD BE ,12∠=∠,求证:A E ∠=∠.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】平移不改变图形的形状和大小,对应线段平行且相等,平移的距离等于对应点的连线段的长,则有AD=BE=3,DF=AC,DE=AB,EF=BC,所以:四边形ABFD的周长为:AB+BF+FD+DA=AB+BE+EF+DF+AD=AB+BC+CA+2AD=20+2×3=26.故选D.点睛:本题考查了平移的性质,理解平移不改变图形的形状和大小,只改变图形的位置,对应线段平行(或在同一条直线上)且相等,平移的距离即是对应点的连线段的长度是解题的关键,将四边形的周长作相应的转化即可求解.2.D解析:D【解析】【分析】根据第四象限内点的横坐标大于零,纵坐标小于零,可得答案.【详解】由点P(a,b)在第四象限内,得a>0,b<0,故选:D.【点睛】此题考查各象限内点的坐标,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.B解析:B【解析】试题解析:已知点M(2,-3),则点M关于原点对称的点的坐标是(-2,3),故选B.4.A解析:A【解析】【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.【详解】根据x 的不等式x -b >0恰有两个负整数解,可得x 的负整数解为-1和-20x b ->Qx b ∴>综合上述可得32b -≤<-故选A.【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.5.D解析:D【解析】【分析】选项A 中,∠C 和∠D 是直线AC 、DE 被DC 所截形成的内错角,内错角相等,判定两直线平行;选项B 中,不符合三线八角,构不成平行;选项C 中,∠E 和∠D 是直线DC 、EF 被DE 所截形成的同旁内角,因为同旁内角不互补,所以两直线不平行;选项D 中,∠BOC 的对顶角和∠D 是直线BF 、DE 被DC 所截形成的同旁内角,同旁内角互补,判定两直线平行.【详解】解:A 、错误,因为∠C =∠D ,所以AC ∥DE ;B 、错误,不符合三线八角构不成平行;C 、错误,因为∠C +∠D ≠180°,所以CD 不平行于EF ;D 、正确,因为∠DOF =∠BOC =140°,所以∠DOF +∠D =180°,所以BF ∥DE . 故选:D .【点睛】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.6.C解析:C【解析】【分析】根据幂的乘方,底数不变指数相乘都转换成指数是11的幂,再根据底数的大小进行判断即可【详解】解:255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,∵32<64<81,∴255<433<344.故选:C.【点睛】本题考查了幂的乘方的性质,解题的关键在于都转化成以11为指数的幂的形式.7.A解析:A【解析】【分析】根据直线平行的判定:内错角相等,两直线平行;同旁内角互补,两直线平行;同位角相等,两直线平行进行判断即可.【详解】解:A. ∠BAC=∠ACD能判断AB//CD(内错角相等,两直线平行),故A正确;B. ∠1=∠2得到AD∥BC,不能判断AB//CD,故B错误;C. ∠3=∠4得到AD∥BC,不能判断AB//CD,故C错误;D. ∠BAD=∠BCD,不能判断AB//CD,故D错误;故选A.【点睛】本题主要考查了平行线的判定的运用,解题时注意:内错角相等,两直线平行;同旁内角互补,两直线平行;同位角相等,两直线平行.8.C解析:C【解析】【分析】根据题意,利用要在不超过15分钟的时间内从甲地到达乙地建立不等式即可解题.【详解】解:由题可知只需要小明在15分钟之内走过的路程大于1800即可,即210x+90(15﹣x)≥1800故选C.【点睛】本题考查了一次不等式的实际应用,属于简单题,建立不等关系是解题关键.9.C解析:C【解析】【分析】根据点A(-2,3)的对应点为C(2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,以此规律可得D的对应点的坐标.【详解】点A(-2,3)的对应点为C(2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,于是B(-4,-1)的对应点D的横坐标为-4+4=0,点D的纵坐标为-1+2=1,故D(0,1).故选C.【点睛】此题考查了坐标与图形的变化----平移,根据A(-2,3)变为C(2,5)的规律,将点的变化转化为坐标的变化是解题的关键.10.D解析:D【解析】【分析】根据平移的特点分别判断各选项即可.【详解】∵△ABC经平移得到△EFB∴点A、B、C的对应点分别为E、F、B,②正确∴BE是AC的对应线段,①正确∴AC∥EB,③正确平移距离为对应点连线的长度,即BF的长度,④正确故选:D【点睛】本题考查平移的特点,注意,在平移过程中,一定要把握住对应点,仅对应点的连线之间才有平行、相等的一些关系.11.B解析:B【解析】【分析】先根据题目的定义新运算,得到关于x的不等式组,再得到不等式组的解集即可.【详解】解:结合题意可知423⎛-≤⎝22x⎫<⎪⎭可化为42324232xx-⨯≥-⎧⎨-⨯⎩<,解不等式可得1x<2≤,故x的整数解只有1;故选:B.【点睛】本题考查的是一元一次不等式组的求解,根据题意得到不等式组并正确求解即可.12.B解析:B【解析】【分析】先根据矩形对边平行得出∠1=∠CDE=70°,再由折叠的性质可以得出答案.【详解】解:如图,∵AB ∥CD ,∠1=70°,∴∠1=∠CDE=70°,由折叠性质知∠α= (180°-∠CDE)÷2==55°,故选:B .【点睛】本题主要考查平行线的性质,解题的关键是掌握两直线平行同位角相等的性质和折叠的性质.二、填空题13.105°【解析】【分析】先过点作根据同角的余角相等得出根据角平分线的定义得出再设根据可得根据可得最后解方程组即可得到进而得出【详解】解:如图过点作即又平分平分设则中由可得①由可得②由①②联立方程组解 解析:105°【解析】【分析】先过点B 作//BG DM ,根据同角的余角相等,得出ABD CBG ∠=∠,根据角平分线的定义,得出ABF GBF ∠=∠,再设DBE α∠=,ABF β∠=,根据180CBF BFC BCF ∠+∠+∠=︒,可得(2)3(3)180αβααβ++++=︒,根据AB BC ⊥,可得290ββα++=︒,最后解方程组即可得到15ABE ∠=︒,进而得出1590105EBC ABE ABC ∠=∠+∠=︒+︒=︒.【详解】解:如图,过点B 作//BG DM ,BD AM ⊥Q ,DB BG ∴⊥,即90ABD ABG ∠+∠=︒,又AB BC ⊥Q ,90CBG ABG ∴∠+∠=︒,ABD CBG ∴∠=∠,BF Q 平分DBC ∠,BE 平分ABD ∠,DBF CBF ∴∠=∠,DBE ABE ∠=∠,ABF GBF ∴∠=∠,设DBE α∠=,ABF β∠=,则ABE α∠=,2ABD CBG α∠==∠,GBF AFB β∠==∠,33BFC DBE α∠=∠=,3AFC αβ∴∠=+,180AFC NCF ∠+∠=︒Q ,180FCB NCF ∠+∠=︒,3FCB AFC αβ∴∠=∠=+,BCF ∆中,由180CBF BFC BCF ∠+∠+∠=︒,可得(2)3(3)180αβααβ++++=︒,①由AB BC ⊥,可得290ββα++=︒,②由①②联立方程组,解得15α=︒,15ABE ∴∠=︒,1590105EBC ABE ABC ∴∠=∠+∠=︒+︒=︒.故答案为:105°.【点睛】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.14.9【解析】【分析】根据非负数的性质列式求出ab 的值然后代入代数式进行计算即可得解【详解】解:根据题意得a+3=0b-2=0解得a=-3b=2所以ab=(-3)2=9故答案为:9【点睛】本题考查了非负解析:9【解析】【分析】根据非负数的性质列式求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得,a+3=0,b-2=0,解得a=-3,b=2,所以,a b =(-3)2=9.故答案为:9.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.15.45°60°105°135°【解析】分析:根据题意画出图形再由平行线的判定定理即可得出结论详解:如图当AC ∥DE 时∠BAD=∠DAE=45°;当BC ∥AD 时∠DAE=∠B=60°;当BC ∥AE 时∵∠解析:45°,60°,105°,135°.【解析】分析:根据题意画出图形,再由平行线的判定定理即可得出结论.详解:如图,当AC ∥DE 时,∠BAD =∠DAE =45°;当BC ∥AD 时,∠DAE =∠B =60°;当BC ∥AE 时,∵∠EAB =∠B =60°,∴∠BAD =∠DAE +∠EAB =45°+60°=105°;当AB ∥DE 时,∵∠E =∠EAB =90°, ∴∠BAD =∠DAE +∠EAB =45°+90°=135°. 故答案为:45°,60°,105°,135°. 点睛:本题考查了平行线的判定与性质.要证明两直线平行,需使其所构成的同位角、内错角相等(或同旁内角是否互补).16.【解析】【分析】观察分析可得则将此规律用含自然数n(n≥1)的等式表示出来是【详解】由分析可知发现的规律用含自然数n(n≥1)的等式表示出来是故答案为:【点睛】本题主要考查二次根式找出题中的规律是解 11(1)1)22n n n n n +=+≥++ 【解析】【分析】 111(1+1)312+=+112(21)422+=++113(31)532+=++n(n ≥1)的等式表示出来是(1)n n =+≥ 【详解】由分析可知,发现的规律用含自然数n(n ≥1)的等式表示出来是(1)n n =+≥(1)n n =+≥ 【点睛】本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n 表示的等式即可.17.4【解析】【分析】根据横坐标右移加左移减;纵坐标上移加下移减可得线段AB 向右平移2个单位向上平移2个单位进而可得ab 的值【详解】∵AB 两点的坐标分别为(10)(02)平移后A1(3b )B1(a4)∴解析:4【解析】【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得线段AB 向右平移2个单位,向上平移2个单位,进而可得a 、b 的值.【详解】∵A 、B 两点的坐标分别为(1,0)、(0,2),平移后A 1(3,b ),B 1(a ,4), ∴线段AB 向右平移2个单位,向上平移2个单位,∴a=0+2=2,b=0+2=2,∴a+b=2+2=4故答案为:4【点睛】此题主要考查了坐标与图形的变化--平移,关键是掌握点的坐标的变化规律.18.±2【解析】【分析】首先估计出a 的值进而得出M 的值再得出N 的值再利用平方根的定义得出答案【详解】解:∵M 是满足不等式-的所有整数a 的和∴M=-1+0+1+2=2∵N 是满足不等式x≤的最大整数∴N=2解析:±2【解析】【分析】首先估计出a 的值,进而得出M 的值,再得出N 的值,再利用平方根的定义得出答案.【详解】解:∵M a <<a 的和,∴M =-1+0+1+2=2,∵N是满足不等式x≤22的最大整数,∴N=2,∴M+N2.故答案为:±2.【点睛】此题主要考查了估计无理数的大小,得出M,N的值是解题关键.19.3【解析】【分析】根据实数的估算由平方数估算出的近似值可得到整数部分【详解】∵3<<4∴的整数部分是3故答案为:3【点睛】此题考查实数的估算熟记常见的平方数解析:3【解析】【分析】的近似值可得到整数部分【详解】∵3<4,3.故答案为:3.【点睛】此题考查实数的估算,熟记常见的平方数20.15【解析】【分析】由题意可知阴影部分为长方形根据平移的性质求出阴影部分长方形的长和宽即可求得阴影部分的面积【详解】∵边长为6cm的正方形ABCD先向上平移3cm∴阴影部分的宽为6-3=3cm∵向右解析:15【解析】【分析】由题意可知,阴影部分为长方形,根据平移的性质求出阴影部分长方形的长和宽,即可求得阴影部分的面积.【详解】∵边长为6cm的正方形ABCD先向上平移3cm,∴阴影部分的宽为6-3=3cm,∵向右平移1cm,∴阴影部分的长为6-1=5cm,∴阴影部分的面积为3×5=15cm2.故答案为15.【点睛】本题主要考查了平移的性质及长方形的面积公式,解决本题的关键是利用平移的性质得到阴影部分的长和宽.三、解答题21.(1)A 种型号空调的进价为2000元,B 种型号空调的进价为1700元;(2)10台【解析】【分析】(1)设A 种型号空调的进价为x 元,B 种型号空调的进价为y 元,根据题目意思列二元一次方程组求解即可得到答案;(2)设能购进A 种型号的空调m 台,则购进B 种型号的空调30-m 台,根据题意列不等式求解再取取整数的最大值即可得到答案;【详解】解:(1)设A 种型号空调的进价为x 元,B 种型号空调的进价为y 元,根据题意,可列方程组为351450*********.x y x y +=⎧⎨+=⎩, 解得:20001700.x y =⎧⎨=⎩, 答:A 种型号空调的进价为2000元,B 种型号空调的进价为1700元;(2)设能购进A 种型号的空调m 台,则购进B 种型号的空调30-m 台,根据题意,可列不等式为20001700(30)54000m m +-≤解不等式,得10m ≤∵m 取最大正整数,∴m=10.答:最多能购进A 种型号的空调10台【点睛】本题主要考查了二元一次方程与一元一次不等式的应用,等根据题目意思列出正确的式子求解是解题的关键.22.(1)C ;(2)①作图见解析;②35万户.【解析】【分析】(1)C 项涉及的范围更广;(2)①求出B ,D 的户数补全统计图即可;①100万乘以不生二胎的百分比即可.【详解】解:(1)A 、B 两种调查方式具有片面性,故C 比较合理;故答案为:C ;(2)①B :100030%300⨯=户1000-100-300-250=350户补全统计图如图所示:(3)因为350100351000⨯=(万户), 所以该市100万户家庭中决定不生二胎的家庭数约为35万户.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.(1)∠EAB ,∠DAC ; (2)360°;(3)65°【解析】【分析】(1)根据平行线性质“两直线平行,内错角相等”可得∠B+∠BCD+∠D ∠BCF+∠BCD+∠DCF ;(2)过C 作CF ∥AB ,根据平行线性质可得;(3)如图3,过点E 作EF ∥AB ,根据平行线性质和角平分线定义可得∠ABE=12∠ABC=30°,∠CDE=12∠ADC=35°,故∠BED=∠BEF+∠DEF. 【详解】 (1)根据平行线性质可得:因为ED BC ∥,所以B ∠=∠EAB ,C ∠=∠DAC ;(2)过C 作CF ∥AB ,∵AB ∥DE ,∴CF ∥DE ∥AB ,∴∠D=∠FCD ,∠B=∠BCF ,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°,(3)如图3,过点E 作EF ∥AB ,∵AB ∥CD ,∴AB ∥CD ∥EF ,∴∠ABE=∠BEF ,∠CDE=∠DEF ,∵BE 平分∠ABC ,DE 平分∠ADC ,∠ABC=60°,∠ADC=70°,∴∠ABE=12∠ABC=30°,∠CDE=12∠ADC=35° ∴∠BED=∠BEF+∠DEF=30°+35°=65°.【点睛】 考核知识点:平行线性质和角平分线定义.作辅助线构造平行线是关键.24.对顶角相等,等量代换,两直线平行,同旁内角互补,120°,60.【解析】【分析】依据对顶角相等以及平行线的性质,即可得到∠4=60°,∠FGB=120°,再根据角平分线的定义,即可得出∠1=60°.【详解】解:∵EF 与CD 交于点H ,(已知)∴∠3=∠4.(对顶角相等)∵∠3=60°,(已知)∴∠4=60°.(等量代换)∵AB ∥CD ,EF 与AB ,CD 交于点G ,H ,(已知)∴∠4+∠FGB=180°.(两直线平行,同旁内角互补)∴∠FGB=120°.∵GM 平分∠FGB ,(已知)∴∠1=60°.(角平分线的定义)故答案为:对顶角相等,等量代换,两直线平行,同旁内角互补,120°,60.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.25.详见解析.【解析】【分析】根据平行线的性质,得到3A ∠=∠.根据12∠=∠,得到DE AC P ,再根据平行线的性质,得到3E ∠=∠,根据等量代换即可证明.【详解】因为AD //BE ,所以3A ∠=∠.因为12∠=∠,所以DE //AC ,所以3E ∠=∠,所以A E ∠=∠.。
【压轴题】七年级数学下期中第一次模拟试题(附答案)
【压轴题】七年级数学下期中第一次模拟试题(附答案)一、选择题1.点M (2,-3)关于原点对称的点N 的坐标是: ( )A .(-2,-3)B .(-2, 3)C .(2, 3)D .(-3, 2)2.如图,AB ∥CD ,∠C=80°,∠CAD=60°,则∠BAD 的度数等于( )A .60°B .50°C .45°D .40°3.已知m=4+3,则以下对m 的估算正确的( )A .2<m <3B .3<m <4C .4<m <5D .5<m <6 4.若x y <,则下列不等式中成立的是( ) A .11x y ->-B .22x y -<-C .22x y < D .3232x y -<- 5.在平面直角坐标系中,将点(0,1)A 做如下的连续平移,第1次向右平移得到点1(1,1)A , 第2次向下平移得到点()21,1A -,第3次向右平移得到点()341A -,第4次向下平移得到点()44,5?·····A -按此规律平移下去,则15A 的点坐标是( )A .()64,55-B .()65,53-C .()66,56-D .()67,58-6.下列运算正确的是( )A .42=±B .222()-=-C .382-=-D .|2|2--=7.如果a >b ,那么下列各式中正确的是( )A .a ﹣2<b ﹣2B .22a b pC .﹣2a <﹣2bD .﹣a >﹣b8.如图,△ABC 经平移得到△EFB ,则下列说法正确的有 ( )①线段AC 的对应线段是线段EB ;②点C 的对应点是点B ;③AC ∥EB ;④平移的距离等于线段BF的长度.A.1B.2C.3D.49.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.21cm10.一个图形的各点的纵坐标乘以2,横坐标不变,这个图形发生的变化是()A.横向拉伸为原来的2倍B.纵向拉伸为原来的2倍C.横向压缩为原来的12D.纵向压缩为原来的1211.在直角坐标系中,若点P(2x-6,x-5)在第四象限,则x的取值范围是( )A.3<x<5B.-5<x<3C.-3<x<5D.-5<x<-3 12.下列各组数中互为相反数的是()A.3和2(3)-B.﹣|﹣2|和﹣(﹣2)C.﹣38和38-D.﹣2和12二、填空题13.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x<k1x+b的解集为______.14.对于x y,定义一种新运算“☆”,x y ax by=+☆,其中a b,是常数,等式右边是通常的加法和乘法运算.已知3515=☆,4728=☆,则11☆的值为____.15.下面是二元一次方程组的不同解法,请你把下列消元的过程填写完整:对于二元一次方程组24326x yx y+=⎧⎨+=⎩L LL L①②(1)方法一:由①,得24y x=-L L③把③代入②,得________________.(2)方法二:3⨯①,得3612x y+=L L④-④②,得________________.(3)方法三:()1⨯-① ,得 24x y --=-L L ⑤+⑤②,得________________.(4)方法四:由 ②,得 ()226x x y ++=L L ⑥把 ① 代入⑥,得________________.16.在平面直角坐标系内,点P (m-3,m-5)在第四象限中,则m 的取值范围是_____17.如图,数轴上表示1、3的对应点分别为点A 、点B ,若点A 是BC 的中点,则点C 表示的数为______.18.运动会上裁判员测量跳远成绩时,先在距离踏板最近的跳远落地点上插上作为标记的小旗,再以小旗的位置为赤字的零点,将尺子拉直,并与踏板边缘所在直线垂直,把尺子上垂足点表示的数作为跳远成绩.这实质上是数学知识____________在生活中的应用.19.比较大小1-5______ 12-.(填“>”、“<”或“=”) 20.9的算术平方根是________.三、解答题21.课题学习:平行线的“等角转化功能.(1)问题情景:如图1,已知点A 是BC 外一点,连接AB 、AC ,求BAC B C ∠+∠+∠的度数.天天同学看过图形后立即想出:180BAC B C ∠+∠+∠=︒,请你补全他的推理过程. 解:(1)如图1,过点A 作ED BC ∥,∴B ∠= ,C ∠= .又∵180EAB BAC CAD ∠+∠+∠=︒,∴180BAC B C ∠+∠+∠=︒.解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”功能,将BAC ∠,B Ð,C ∠“凑”在一起,得出角之间的关系,使问题得以解决.(2)问题迁移:如图2,AB ED P ,求B BCD D ∠+∠+∠的度数.(3)方法运用:如图3,AB CD ∥,点C 在D 的右侧,70ADC ∠=︒,点B 在A 的左侧,60ABC ∠=︒,BE 平分ABC ∠,DE 平分ADC ∠,BE 、DE 所在的直线交于点E ,点E 在AB 与CD 两条平行线之间,求BED ∠的度数.22.某校为学生开展拓展性课程,拟在一块长比宽多6 m 的长方形场地内建造由两个大棚组成的植物养殖区,如图(1),要求两个大棚之间有间隔4 m 的路,设计方案如图(2),已知每个大棚的周长为44 m.(1)求每个大棚的长和宽各是多少?(2)现有两种大棚造价的方案,方案一是每平方米60元,超过100平方米优惠500元,方案二是每平方米70元,超过100平方米优惠总价的20%,试问选择哪种方案更优惠?23.甲、乙两人同解方程组232Ax By Cx y +=⎧⎨-=-⎩,甲正确解得11x y =⎧⎨=-⎩,乙因抄错C 解得26x y =⎧⎨=-⎩,求A 、B 、C 的值. 24.真假命题的思考.一天,老师在黑板上写下了下列三个命题:①垂直于同一条直线的两条直线平行;②若22a b =,则a b =③若α∠和β∠的两边所在直线分别平行,则αβ∠=∠.小明和小丽对话如下,小明:“命题①是真命题,好像可以证明.”小丽:“命题①是假命题,好像少了一些条件.”(1)结合小明和小丽的对话,谈谈你的观点.如果你认为是真命题,请证明:如果你认为是假命题,请增加一个适当的条件,使之成真命题.(2)请在命题②、命题③中选一个,如果你认为它是真命题,请证明:如果你认为它是假命题,请举出反例.25.如图,已知//AB CD ,//AB EG .(1)求证:360BED B D ++=︒∠∠∠.(2)若145D ∠=︒,EF 平分BED ∠,20GEF ∠=︒,求B Ð.【参考答案】***试卷处理标记,请不要删除1.B解析:B【解析】试题解析:已知点M (2,-3),则点M 关于原点对称的点的坐标是(-2,3),故选B .2.D解析:D【解析】【分析】【详解】∵∠C=80°,∠CAD=60°,∴∠D=180°﹣80°﹣60°=40°,∵AB ∥CD ,∴∠BAD=∠D=40°.故选D .3.B解析:B【解析】【分析】【详解】∵12,∴3<m <4,故选B .【点睛】的取值范围是解题关键.4.C解析:C【解析】【分析】各项利用不等式的基本性质判断即可得到结果.【详解】由x <y ,可得:x-1<y-1,-2x >-2y ,3232x y -->,22x y <,【点睛】此题考查不等式的性质,熟练掌握不等式的性质是解题的关键.5.A解析:A【解析】【分析】根据题中条件可得到奇数次时,平移的方向和单位长度;偶数次时,平移的方向和单位长度的规律,按照该规律即可得解.【详解】解:由题意得第1次向右平移1个单位长度,第2次向下平移2个单位长度,第3次向右平移3个单位长度,第4次向下平移4个单位长度,……根据规律得第n 次移动的规律是:当n 为奇数时,向右平移n 个单位长度,当n 为偶数时,向下平移n 个单位长度,∴15A 的横坐标为0+1+3+5+7+9+11+13+15=64纵坐标为1-(2+4+6+8+10+12+14)=-55∴15A ()64,55-故选A .【点睛】本题考查了坐标与图形变化——平移. 解题的关键是分析出题目的规律,找出题目中点的坐标的规律.6.C解析:C【解析】【分析】分别计算四个选项,找到正确选项即可.【详解】2=,故选项A 错误;2==,故选项B 错误;2=-,故选项C 正确;D. |2|2--=-,故选项D 错误;故选C .【点睛】本题主要考查了开平方、开立方和绝对值的相关知识,熟练掌握各知识点是解题的关键.解析:C【解析】A.不等式的两边都减2,不等号的方向不变,故A错误;B.不等式的两边都除以2,不等号的方向不变,故B错误;C.不等式的两边都乘以−2,不等号的方向改变,故C正确;D.不等式的两边都乘以−1,不等号的方向改变,故D错误.故选C.8.D解析:D【解析】【分析】根据平移的特点分别判断各选项即可.【详解】∵△ABC经平移得到△EFB∴点A、B、C的对应点分别为E、F、B,②正确∴BE是AC的对应线段,①正确∴AC∥EB,③正确平移距离为对应点连线的长度,即BF的长度,④正确故选:D【点睛】本题考查平移的特点,注意,在平移过程中,一定要把握住对应点,仅对应点的连线之间才有平行、相等的一些关系.9.C解析:C【解析】试题分析:已知,△ABE向右平移2cm得到△DCF,根据平移的性质得到EF=AD=2cm,AE=DF,又因△ABE的周长为16cm,所以AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm.故答案选C.考点:平移的性质.10.B解析:B【解析】【分析】根据横坐标不变,纵坐标变为原来的2倍得到整个图形将沿y轴变长,即可得出结论.【详解】如果将一个图形上各点的横坐标不变,纵坐标乘以2,则这个图形发生的变化是:纵向拉伸为原来的2倍.故选:B.本题考查了坐标与图形性质:利用点的坐标计算相应的线段的长和判断线段与坐标轴的关系.11.A解析:A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:∵点P(2x-6,x-5)在第四象限,∴260 {50xx->-<,解得:3<x<5.故选:A.【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.12.B解析:B【解析】【分析】根据相反数的定义,找到只有符号不同的两个数即可.【详解】解:A3,3B、﹣||=﹣,﹣||)两数互为相反数,故本选项正确;C22D、﹣2和12两数不互为相反数,故本选项错误.故选:B.【点睛】考查了相反数的定义:要知道,只有符号不同的两个数互为相反数.二、填空题13.【解析】【分析】由图象可以知道当x=-1时两个函数的函数值是相等的再根据函数的增减性可以判断出不等式k2x<k1x+b解集【详解】两条直线的交点坐标为(-12)且当x>-1时直线l2在直线l1的下方解析:1x>-【分析】由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k 2x <k 1x+b 解集.【详解】两条直线的交点坐标为(-1,2),且当x >-1时,直线l 2在直线l 1的下方,故不等式k 2x <k 1x+b 的解集为x >-1.故答案为:x >-1.【点睛】此题考查一次函数与一元一次不等式,解题关键在于掌握两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.14.-11【解析】【分析】利用题中的新定义化简椅子等式求出a 与b 的值即可确定出所求【详解】解:根据题中的新定义得:解得:所以;故答案为:【点睛】本题考查的是二元一次方程组以及有理数的混合运算熟练掌握运算 解析:-11【解析】【分析】利用题中的新定义化简椅子等式求出a 与b 的值,即可确定出所求.【详解】解:根据题中的新定义得:35154728a b a b +=⎧⎨+=⎩, 解得:3524a b =-⎧⎨=⎩, 所以111(35)12411☆=⨯-+⨯=-;故答案为:11-.【点睛】本题考查的是二元一次方程组以及有理数的混合运算,熟练掌握运算法则是解本题的关键.15.【解析】【分析】根据代入消元法和加减消元法的步骤解二元一次方程组即可得出相应的过程【详解】解:(1)方法一:由①得③把③代入②得;(2)方法二:①×3得④④-②得;(3)方法三:①×(﹣1)得⑤⑤+ 解析:346x x +-= 46y = 22x = 246x +=【解析】【分析】根据代入消元法和加减消元法的步骤解二元一次方程组即可得出相应的过程.【详解】解:24326x y x y +=⎧⎨+=⎩①②, (1)方法一:由①,得24y x =-③,把③代入②,得346x x +-=;(2)方法二:①×3,得3612x y +=④ ④-②,得46y =;(3)方法三:①×(﹣1),得24x y --=-⑤⑤+②,得22x =;(4)方法四:由②,得()226x x y ++=⑥,把①代入⑥,得246x +=.故答案为:(1)346x x +-=;(2)46y =;(3)22x =;(4)246x +=.【点睛】此题考查运用加减消元和代入消元解二元一次方程组的方法,实际上是运用等式的性质来进行消元.16.3<m <5【解析】【分析】根据点所处的位置可以判定其横纵坐标的正负进而能得到关于m 的一元一次不等式组求解即可【详解】解:∵点P (m ﹣3m ﹣5)在第四象限∴解得:3<m <5故答案为3<m <5【点睛】本解析:3<m <5【解析】【分析】根据点所处的位置可以判定其横纵坐标的正负,进而能得到关于m 的一元一次不等式组,求解即可.【详解】解:∵点P (m ﹣3,m ﹣5)在第四象限,∴3050m m ->⎧⎨-<⎩解得:3<m <5.故答案为3<m <5.【点睛】本题考查了点的坐标及一元一次不等式组的解法,解题的关键是根据点所处的位置得到有关m 的一元一次不等式组.17.2﹣【解析】【分析】设点C 表示的数是x 再根据中点坐标公式即可得出x 的值【详解】解:设点C 表示的数是x∵数轴上表示1的对应点分别为点A 点B 点A 是BC 的中点∴=1解得x=2﹣故答案为2﹣【点评】本题考查解析:2【解析】设点C 表示的数是x ,再根据中点坐标公式即可得出x 的值.【详解】解:设点C 表示的数是x ,∵数轴上表示1的对应点分别为点A 、点B ,点A 是BC 的中点,=1,解得x=2故答案为2【点评】本题考查的是实数与数轴,熟知数轴上的点与实数是一一对应关系是解答此题的关键.18.垂线段最短【解析】【分析】根据题干跳远落点视为一个点直尺垂直踏板边缘可理解为作垂线然后用数学语言描述出来即可【详解】根据题意可知答案为:垂线段最短【点睛】本题考查点到直线距离在生活中的实际应用注意在 解析:垂线段最短【解析】【分析】根据题干,跳远落点视为一个点,直尺垂直踏板边缘可理解为作垂线,然后用数学语言描述出来即可.【详解】根据题意,可知答案为:垂线段最短【点睛】本题考查点到直线距离在生活中的实际应用,注意在书写答案时,尽量用“数学化”的语言来描述.19.<【解析】【分析】首先比较进而得出答案【详解】解:∵∴∴故答案为:【点睛】此题主要考查了实数比较大小正确比较与是解题关键解析:<【解析】【分析】首先比较11<-,进而得出答案 .【详解】2>,∴2-,∴11<-,∴1122-<-. 故答案为:<.此题主要考查了实数比较大小, 正确比较15-与1-是解题关键 . 20.【解析】【分析】根据算术平方根的性质求出=3再求出3的算术平方根即可【详解】解:∵=33的算术平方根是∴的算术平方根是故答案为:【点睛】本题考查算术平方根的概念和求法正数的算术平方根是正数0的算术平 解析:3【解析】【分析】根据算术平方根的性质求出9=3,再求出3的算术平方根即可.【详解】解:∵9=3,3的算术平方根是3,∴9的算术平方根是3.故答案为:3.【点睛】本题考查算术平方根的概念和求法,正数的算术平方根是正数,0的算术平方根是0,负数没有平方根.三、解答题21.(1)∠EAB ,∠DAC ; (2)360°;(3)65°【解析】【分析】(1)根据平行线性质“两直线平行,内错角相等”可得∠B+∠BCD+∠D ∠BCF+∠BCD+∠DCF ;(2)过C 作CF ∥AB ,根据平行线性质可得;(3)如图3,过点E 作EF ∥AB ,根据平行线性质和角平分线定义可得∠ABE=12∠ABC=30°,∠CDE=12∠ADC=35°,故∠BED=∠BEF+∠DEF. 【详解】 (1)根据平行线性质可得:因为ED BC ∥,所以B ∠=∠EAB ,C ∠=∠DAC ;(2)过C 作CF ∥AB ,∵AB ∥DE ,∴CF ∥DE ∥AB ,∴∠D=∠FCD ,∠B=∠BCF ,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°,(3)如图3,过点E 作EF ∥AB ,∵AB ∥CD ,∴AB ∥CD ∥EF ,∴∠ABE=∠BEF ,∠CDE=∠DEF ,∵BE 平分∠ABC ,DE 平分∠ADC ,∠ABC=60°,∠ADC=70°,∴∠ABE=12∠ABC=30°,∠CDE=12∠ADC=35° ∴∠BED=∠BEF+∠DEF=30°+35°=65°.【点睛】考核知识点:平行线性质和角平分线定义.作辅助线构造平行线是关键.22.(1)大棚的宽为14米,长为8米;(2)选择方案二更好.【解析】分析:(1)设大棚的宽为a 米,长为b 米,分别利用大棚的周长为44米,长比宽多6米,分别得出等式求出答案;(2)分别求出两种方案的造价进而得出答案.详解:(1)设大棚的宽为a 米,长为b 米,根据题意可得:22246a b a b +=⎧⎨+-=⎩,解得:814a b =⎧⎨=⎩, 答:大棚的宽为14米,长为8米;(2)大棚的面积为:2×14×8=224(平方米),若按照方案一计算,大棚的造价为:224×60−500=12940(元),若按照方案二计算,大棚的造价为:224×70(1−20%)=12544(元)显然:12544<12940,所以选择方案二更好.点睛:考查二元一次方程组的应用,解题的关键是找出题目中的等量关系.23. 2.5,0.5,5A B C ===-【解析】分析:根据方程组的解的定义得到关于A 、B 、C 的方程组,再进一步运用加减消元法求解.详解:把11x y =⎧⎨=-⎩代入原方程组,得25A B C -=⎧⎨=-⎩, 把26x y =⎧⎨=-⎩代入Ax+By=2,得:2A ﹣6B=2.可组成方程组25262A B C A B -=⎧⎪=-⎨⎪-=⎩,解得 2.50.55A B C =⎧⎪=⎨⎪=-⎩.点睛:此题较简单,只要明白二元一次方程组的解的定义以及方程组的解法就可.24.(1)见解析 (2)见解析【解析】【分析】是假命题,②是假命题,③是假命题;【详解】解:(1)命题①为假命题,可增加“在同一平面内”这一条件,可使该命题成为真命题, 即:在同一平面内,垂直于同一直线的两条直线平行;(2)命题②为假命题,举反例如下:当1a =,1b =-时,221a b ==,但a b ¹. 命题③为假命题,举反例如下:α∠和β∠的两边所在直线分别平行,如图180αβ∠+∠=︒,但αβ∠≠∠.【点睛】本题考查了命题的相关知识;熟练掌握命题的定义及涉及到的相关知识是解题的关键25.(1)见解析 (2)105°【解析】【分析】(1)由平行公理的推论可得////AB EG CD ,由平行线的性质可求解;(2)由角的数量关系可得55DEF ∠=︒,由角平分线的性质可得110BED ∠=︒,即可求B Ð的度数.【详解】(1)证明://AB CD ,//AB EG ,∴//CD EG .∴180D DEG ︒∠+∠=.∵//AB EG ,∴180B BEG ︒∠+∠=.∴360B D DEG BEG ∠+∠+∠+∠=︒即360B D BED ∠+∠+∠=︒.(2)由(1)可知180D DEG ︒∠+∠=.∴180********DEG D ∠︒︒︒=-∠=-=︒. ∵20GEF ∠=︒,∴352055DEF DEG GEF ∠=∠+∠=︒+︒=︒. ∵EF 平分BED ∠,∴2255110BED DEF ∠=∠=⨯︒=︒. 由(1)可知360B D BED ∠+∠+∠=︒, ∴360360145110105B D BED ∠=︒-∠-∠=︒-︒-︒=︒.【点睛】本题考查了平行线的性质,角平分线的定义,熟练运用平行线的性质是本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【压轴卷】初一数学下期中一模试题(带答案)一、选择题1.如图,将△ABC 沿BC 方向平移3cm 得到△DEF,若△ABC 的周长为20cm ,则四边形ABFD 的周长为( )A .20cmB .22cmC .24cmD .26cm2.为了了解天鹅湖校区2019-2020学年1600名七年级学生的体重情况,从中抽取了100名学生的体重,就这个问题,下面说法正确的是( )A .1600名学生的体重是总体B .1600名学生是总体C .每个学生是个体D .100名学生是所抽取的一个样本 3.若x y >,则下列变形正确的是( )A .2323x y +>+B .x b y b -<-C .33x y ->-D .33x y ->- 4.如图所示,已知直线BF 、CD 相交于点O ,D 40∠=︒,下面判定两条直线平行正确的是( )A .当C 40∠=︒时,AB//CDB .当A 40∠=︒时,BC//DEC .当E 120∠=︒时,CD//EFD .当BOC 140∠=︒时,BF//DE5.如图,点E 在AB 的延长线上,则下列条件中,不能判定AD BC ∥的是( )A .180D DCB ∠+∠=︒B .13∠=∠C .24∠∠=D .CBE DAE ∠=∠6.在平面直角坐标系中,点A 的坐标()0,1,点B 的坐标()3,3,将线段AB 平移,使得A 到达点()4,2C ,点B 到达点D ,则点D 的坐标是( )A .()7,3B .()6,4C .()7,4D .()8,47.不等式组2201x x +>⎧⎨-≥-⎩的解在数轴上表示为( ) A .B .C .D .8.下列生活中的运动,属于平移的是( )A .电梯的升降B .夏天电风扇中运动的扇叶C .汽车挡风玻璃上运动的刮雨器D .跳绳时摇动的绳子9.如图,在Rt ABC △中,90,BAC ︒∠=3,AB cm =4AC cm =,把ABC V 沿着直线BC 的方向平移2.5cm 后得到DEF V ,连接AE ,AD ,有以下结论:①//AC DF ;②//AD BE ;③ 2.5CF cm =;④DE AC ⊥.其中正确的结论有( )A .1个B .2个C .3个D .4个10.如果a >b ,那么下列各式中正确的是( )A .a ﹣2<b ﹣2B .22a b pC .﹣2a <﹣2bD .﹣a >﹣b11.如图,下列能判断AB ∥CD 的条件有 ( )①∠B +∠BCD =180°②∠1 = ∠2 ③∠3 =∠4 ④∠B = ∠5 A .1B .2C .3D .4 12.在平面直角坐标系中,点P(1,-2)在( )A .第一象限B .第二象限C .第三象限D .第四象限 二、填空题 13.对非负实数x “四舍五入”到个位的值记为x ,即当n 为非负整数时,若1122n x n -≤<+,则x n =,如0.460=,3.674=,给出下列关于x 的结论: ①1.4931=;②22x x =;③若1142x -=,则实数x 的取值范围是911x ≤<; ④当0x ≥,m 为非负整数时,有20182018m x m x +=+;⑤x y x y +=+;其中,正确的结论有_________(填写所有正确的序号).14.一副直角三角尺叠放如图 1 所示,现将 45°的三角尺ADE 固定不动,将含 30°的三角尺 ABC 绕顶点 A 顺时针转动(旋转角不超过 180 度),使两块三角尺至少有一组边互相平行.如图 2:当∠BAD=15°时,BC ∥DE .则∠BAD (0°<∠BAD <180°)其它所有可能符合条件的度数为________.15.若关于x 、y 的二元一次方程组2212x y a x y a +=⎧⎨+=-⎩的解互为相反数,则a 的值是_______________.16.在平面直角坐标系内,点P (m-3,m-5)在第四象限中,则m 的取值范围是_____17.如图,将周长为20个单位的ABC V 沿边BC 向右平移4个单位得到DEF V ,则四边形ABFD 的周长为__________.18.若34330035.12=,30.3512x =-,则x =_____________.19.比较大小:23- _____________ 32-.20.如图,直线a 、b 被直线l 所截,a ∥b ,∠1=70°,则∠2= .三、解答题21.计算:(1)()()232018311216642⎛⎫-+-⨯+-⨯ ⎪⎝⎭ (2)535323-+-+-22.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,商店考虑继续按之前的降价率再次降价,请你算一算第三次降价后出售的商品是否会亏本.23.某校学生会向全校1900名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(1)求本次接受随机抽样调查的学生人数及图①中m 的值;(2)本次调查获取的样本数据的平均数是 ,众数是 ,中位数是 ; (3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.24.甲、乙两人同解方程组232Ax By Cx y +=⎧⎨-=-⎩,甲正确解得11x y =⎧⎨=-⎩,乙因抄错C 解得26x y =⎧⎨=-⎩,求A 、B 、C 的值. 25.解方程组215233x y x y +=⎧⎪⎨-=⎪⎩①②【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】平移不改变图形的形状和大小,对应线段平行且相等,平移的距离等于对应点的连线段的长,则有AD=BE=3,DF=AC,DE=AB,EF=BC,所以:四边形ABFD的周长为:AB+BF+FD+DA=AB+BE+EF+DF+AD=AB+BC+CA+2AD=20+2×3=26.故选D.点睛:本题考查了平移的性质,理解平移不改变图形的形状和大小,只改变图形的位置,对应线段平行(或在同一条直线上)且相等,平移的距离即是对应点的连线段的长度是解题的关键,将四边形的周长作相应的转化即可求解.2.A解析:A【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A、1600名学生的体重是总体,故A正确;B、1600名学生的体重是总体,故B错误;C、每个学生的体重是个体,故C错误;D、从中抽取了100名学生的体重是一个样本,故D错误;故选:A.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.3.A解析:A【解析】【分析】根据不等式的性质逐个判断即可.【详解】解: A 、两边都乘2再加3,不等号的方向不变,故A 正确;B 、两边都减,b 不等号的方向不变,故B 错误;C 、两边都乘以3-,不等号的方向改变,故C 错误;D 、两边都除以3-,不等号的方向改变,故D 错误;故选:A【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.4.D解析:D【解析】【分析】选项A 中,∠C 和∠D 是直线AC 、DE 被DC 所截形成的内错角,内错角相等,判定两直线平行;选项B 中,不符合三线八角,构不成平行;选项C 中,∠E 和∠D 是直线DC 、EF 被DE 所截形成的同旁内角,因为同旁内角不互补,所以两直线不平行;选项D 中,∠BOC 的对顶角和∠D 是直线BF 、DE 被DC 所截形成的同旁内角,同旁内角互补,判定两直线平行.【详解】解:A 、错误,因为∠C =∠D ,所以AC ∥DE ;B 、错误,不符合三线八角构不成平行;C 、错误,因为∠C +∠D ≠180°,所以CD 不平行于EF ;D 、正确,因为∠DOF =∠BOC =140°,所以∠DOF +∠D =180°,所以BF ∥DE . 故选:D .【点睛】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.5.C解析:C【解析】【分析】根据平行线的判定方法一一判断即可:A.同旁内角互补,两直线平行;B 、C 内错角相等,两直线平行;D.同位角相等,两直线平行,再根据结果是否能判断//AD BC ,即可得到答案.【详解】解:A. Q 180D DCB ∠+∠=︒,∴//AD BC ,此项正确,不合题意;B. Q 13∠=∠,∴//AD BC ,此项正确,不合题意;C. ∵∠2=∠4,∴CD ∥AB ,∴不能判定//AD BC ,此项错误,符合题意;D. Q CBE DAE ∠=∠,∴//AD BC ,此项正确,不合题意.故选:C .【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.6.C解析:C【解析】【分析】根据A 和C 的坐标可得点A 向右平移4个单位,向上平移1个单位,点B 的平移方法与A 的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D 的坐标.【详解】解:∵点A (0,1)的对应点C 的坐标为(4,2),即(0+4,1+1),∴点B (3,3)的对应点D 的坐标为(3+4,3+1),即D (7,4);故选:C.【点睛】此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.7.D解析:D【解析】【分析】解不等式组求得不等式组的解集,再把其表示在数轴上即可解答.【详解】2201x x ①②+>⎧⎨-≥-⎩, 解不等式①得,x >-1;解不等式②得,x ≤1;∴不等式组的解集是﹣1<x ≤1.不等式组的解集在数轴上表示为:故选D.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解决问题的关键.解析:A【解析】【分析】平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动;旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的.然后根据平移与旋转定义判断即可.【详解】电梯的升降的运动属于平移,运动的刮雨器、摇动的绳子和吊扇在空中运动属于旋转;故选A.【点睛】此题考查了平移与旋转的意义及在实际当中的运用,关键是根据平移的定义解答.9.D解析:D【解析】【分析】根据平移是某图形沿某一直线方向移动一定的距离,平移不改变图形的形状和大小可对①②③进行判断;根据∠BAC=90°及平移的性质可对④进行判断,综上即可得答案.【详解】∵△ABC沿着直线BC的方向平移2.5cm后得到△DEF,∴AB//DE,AC//DF,AD//CF,CF=AD=2.5cm,故①②③正确.∵∠BAC=90°,∴AB⊥AC,∵AB//DE∴⊥,故④正确.DE AC综上所述:之前的结论有:①②③④,共4个,故选D.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.10.C解析:C【解析】A.不等式的两边都减2,不等号的方向不变,故A错误;B.不等式的两边都除以2,不等号的方向不变,故B错误;C.不等式的两边都乘以−2,不等号的方向改变,故C正确;D.不等式的两边都乘以−1,不等号的方向改变,故D错误.故选C.解析:C【解析】【分析】判断平行的条件有:同位角相等、内错角相等、同旁内角互补,依次判断各选项是否符合.【详解】①∠B+∠BCD=180°,则同旁内角互补,可判断AB∥CD;②∠1 = ∠2,内错角相等,可判断AD∥BC,不可判断AB∥CD;③∠3 =∠4,内错角相等,可判断AB∥CD;④∠B = ∠5,同位角相等,可判断AB∥CD故选:C【点睛】本题考查平行的证明,注意②中,∠1和∠2虽然是内错角关系,但对应的不是AB与CD 这两条直线,故是错误的.12.D解析:D【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】∵点P(1,-2),横坐标大于0,纵坐标小于0,∴点P(1,-2)在第三象限,故选D.【点睛】本题考查了象限内点的坐标特征,关键是熟记平面直角坐标系中各个象限内点的坐标符号.二、填空题13.①③④【解析】【分析】对于①可直接判断②⑤可用举反例法判断③④我们可以根据题意所述利用不等式判断【详解】∵1-<1493<1+∴故①正确当x=03时=12=0故②错误;∵∴4-≤x-1<4+解得:9解析:①③④【解析】【分析】对于①可直接判断,②、⑤可用举反例法判断,③、④我们可以根据题意所述利用不等式判断.【详解】∵1-12<1.493<1+12,∴1.4931=,故①正确, 当x=0.3时,2x =1,2x =0,故②错误;∵1142x -=, ∴4-12≤12x-1<4+12, 解得:9≤x <11,故③正确,∵当m 为非负整数时,不影响“四舍五入”,∴2018m x +=m+2018x ,故④正确,当x=1.4,y=1.3时,1.3 1.4+=3,1.3 1.4+=2,故⑤错误,综上所述:正确的结论为①③④,故答案为:①③④【点睛】本题考查了一元一次不等式组的应用和理解题意的能力,关键是看到所得值是个位数四舍五入后的值,问题可得解.14.45°60°105°135°【解析】分析:根据题意画出图形再由平行线的判定定理即可得出结论详解:如图当AC∥DE 时∠BAD=∠DAE=45°;当BC∥AD 时∠DAE=∠B=60°;当BC∥AE 时∵∠解析:45°,60°,105°,135°.【解析】分析:根据题意画出图形,再由平行线的判定定理即可得出结论.详解:如图,当AC ∥DE 时,∠BAD =∠DAE =45°;当BC ∥AD 时,∠DAE =∠B =60°;当BC ∥AE 时,∵∠EAB =∠B =60°,∴∠BAD =∠DAE +∠EAB =45°+60°=105°;当AB ∥DE 时,∵∠E =∠EAB =90°, ∴∠BAD =∠DAE +∠EAB =45°+90°=135°. 故答案为:45°,60°,105°,135°. 点睛:本题考查了平行线的判定与性质.要证明两直线平行,需使其所构成的同位角、内错角相等(或同旁内角是否互补).15.1【解析】【分析】两方程相加表示出根据方程组的解互为相反数得到即可求出的值【详解】解:①②得:即由题意得:即解得:故答案为:1【点睛】此题考查了二元一次方程组的解方程组的解即为能使方程组中两方程成立 解析:1【解析】【分析】两方程相加表示出x y +,根据方程组的解互为相反数,得到0x y +=,即可求出a 的值.【详解】解:2212x y a x y a +=⎧⎨+=-⎩①②, ①+②得:331x y a +=-,即x y +=13a -, 由题意得:0x y +=, 即103a -=, 解得:1a =.故答案为:1.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.16.3<m <5【解析】【分析】根据点所处的位置可以判定其横纵坐标的正负进而能得到关于m 的一元一次不等式组求解即可【详解】解:∵点P (m ﹣3m ﹣5)在第四象限∴解得:3<m <5故答案为3<m <5【点睛】本解析:3<m <5【解析】【分析】根据点所处的位置可以判定其横纵坐标的正负,进而能得到关于m 的一元一次不等式组,求解即可.【详解】解:∵点P (m ﹣3,m ﹣5)在第四象限,∴3050m m ->⎧⎨-<⎩解得:3<m <5.故答案为3<m <5.【点睛】本题考查了点的坐标及一元一次不等式组的解法,解题的关键是根据点所处的位置得到有关m的一元一次不等式组.17.28【解析】【分析】首先根据题意得出AB+BC+AC=20再利用平移的性质得出AD=CF=4AC=BD由此得出AB+BC+DF=20据此进一步求取该四边形的周长即可【详解】∵△ABC的周长为20∴A解析:28【解析】【分析】首先根据题意得出AB+BC+AC=20,再利用平移的性质得出AD=CF=4,AC=BD,由此得出AB+BC+DF=20,据此进一步求取该四边形的周长即可.【详解】∵△ABC的周长为20,∴AB+BC+AC=20,又∵△ABC向右平移4个单位长度后可得△DEF,∴AD=CF=4,AC=DF,∴AB+BC+DF=20,∴四边形ABFE的周长=AB+BC+CF+DF+AD=28,故答案为:28.【点睛】本题主要考查了平移的性质,熟练掌握相关概念是解题关键.18.-00433【解析】【分析】三次根式变化规律为:三次根号内的式子扩大或缩小1000倍则得到的结果扩大或缩小10倍根据规律可得x的值【详解】从3512变为-03512缩小了100倍且添加了-∴根据规律解析:-0.0433【解析】【分析】三次根式变化规律为:三次根号内的式子扩大或缩小1000倍,则得到的结果扩大或缩小10倍,根据规律可得x的值.【详解】从35.12变为-0.3512,缩小了100倍,且添加了“-”∴根据规律,三次根式内的式子应该缩小1000000倍,且添加“-”故答案为:-0.0433【点睛】本题考查三次根式的规律,二次根式规律类似:二次根号内的式子扩大或缩小100倍,则得到的结果扩大或缩小10倍.19.>【解析】分析:先比较他们的绝对值根据两个负数绝对值大的反而小即可得出结论详解:即故答案为点睛:考查实数的大小比较两个负数绝对值大的反而小解析:>【解析】分析:先比较他们的绝对值,根据两个负数,绝对值大的反而小,即可得出结论.详解:-=-=<Q>即>故答案为.>点睛:考查实数的大小比较,两个负数,绝对值大的反而小,20.110°【解析】∵a ∥b ∴∠3=∠1=70°∵∠2+∠3=180°∴∠2=110°解析:110°【解析】∵a ∥b ,∴∠3=∠1=70°,∵∠2+∠3=180°,∴∠2=110°三、解答题21.(1)-34;(2)3【解析】【分析】(1)利用乘方、立方、二次根式、开立方等概念分别化简每项,再整理计算即可; (2)利用绝对值的意义化简每一项,再整理计算即可.【详解】解:(1)()2320181122⎛⎫-+- ⎪⎝⎭ ()()118444=-+-⨯+-⨯()1321=--+-=-34;(233=-+-+-3=【点睛】此题考查了有理数的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.22.(1)降价10%(2)会亏本【解析】【分析】(1)设该种商品降价的百分率为x ,根据该商品的原价及经过两次降价后的价格,即可得出关于x 的一元二次方程,求解即可得到答案;(2)根据第二次降价后为324元,并且按照之前的降价率再次降价,可以计算出第三次降价后的价格,把第三次降价后的价格与进价比较,即可得到答案.【详解】(1)设每次降价的百分率为x则()24001%324x ⨯-=,解得:110x =,2190x =(舍去)∴降价10%(2)∵第二次降价后为324元,若商店考虑继续按之前的降价率再次降价,则第三次降价后为:()324110%291.6⨯-=元,∴291.6300<故会亏本【点睛】本题考查了一元二次方程的应用,解题的关键是找准等量关系,正确列出一元二次方程,在解题时要注意降价率是否发生变化.23.(1)50、32;(2)16,10,15;(3)608人.【解析】【分析】(1)由5元的人数及其所占百分比可得总人数,用10元人数除以总人数可得m 的值; (2)根据统计图可以分别得到本次调查获取的样本数据的平均数、众数和中位数; (3)根据统计图中的数据可以估计该校本次活动捐款金额为10元的学生人数.【详解】解:(1)本次接受随机抽样调查的学生人数为48%50÷=人, Q 16100%32%50⨯=, 32m ∴=,故答案为:50、32;(2)15元的人数为5024%12⨯=,本次调查获取的样本数据的平均数是:1(45161012151020830)1650创+????(元),本次调查获取的样本数据的众数是:10元,本次调查获取的样本数据的中位数是:15元;(3)估计该校本次活动捐款金额为10元的学生人数为190032%608⨯=人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体、中位数、众数,解题的关键是明确题意,找出所求问题需要的条件.24. 2.5,0.5,5A B C ===-【解析】分析:根据方程组的解的定义得到关于A 、B 、C 的方程组,再进一步运用加减消元法求解.详解:把11x y =⎧⎨=-⎩代入原方程组,得25A B C -=⎧⎨=-⎩, 把26x y =⎧⎨=-⎩代入Ax+By=2,得:2A ﹣6B=2. 可组成方程组25262A B C A B -=⎧⎪=-⎨⎪-=⎩,解得 2.50.55A B C =⎧⎪=⎨⎪=-⎩.点睛:此题较简单,只要明白二元一次方程组的解的定义以及方程组的解法就可.25.11x y =⎧⎨=⎩【解析】【分析】方程组整理后,利用加减消元法求出解即可.【详解】解:方程组整理得:265x y x y +=⎧⎨-=⎩①②, ①+②得:77x =,解得:1x =,把1x =代入②,得1y =,则方程组的解为11x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.。