第七章-参数估计-点估计_2

合集下载

概率论与数理统计第7章参数估计PPT课件

概率论与数理统计第7章参数估计PPT课件
5
a1(1, ,k )=v1
1 f1(v1, ,vk )
假定方程组a2(1, ,k ) v2 ,则可求出2 f2(v1, ,vk )
ak (1, ,k ) vk
k fk (v1, ,vk )
则x1 xn为X的样本值时,可用样本值的j阶原点矩Aj估计vj,其中
Aj
1 n
n i1
xij ( j
L(x1, ,xn;ˆ)maxL(x1, ,xn;),则称ˆ(x1, ,xn)为
的一种参数估计方法 .
它首先是由德国数学家
高斯在1821年提出的 ,然而, 这个方法常归功于英国统
Gauss
计学家费歇(Fisher) . 费歇在1922年重新发现了
这一方法,并首先研究了这
种方法的一些性质 .
Fisher
10
极大似然估计是在已知总体分布形式的情形下的 点估计。
极大似然估计的基本思路:根据样本的具体情况
注:估计量为样本的函数,样本不同,估计量不 同。
常用估计量构造法:矩估计法、极大似然估计法。
4
7.1.1 矩估计法
矩估计法是通过参数与总体矩的关系,解出参数, 并用样本矩替代总体矩而得到的参数估计方法。 (由大数定理可知样本矩依概率收敛于总体矩, 且许多分布所含参数都是矩的函数)
下面我们考虑总体为连续型随机变量的情况:
n
它是的函数,记为L(x1, , xn; ) f (xi , ), i 1
并称其为似然函数,记为L( )。
注:似然函数的概念并不仅限于连续随机变量 ,
对于离散型随机变量,用 P {Xx}p(x,)
替代f ( x, )
即可。
14
设总体X的分布形式已知,且只含一个未知参数,

第七章 参数估计

第七章 参数估计

第七章 参数估计
1、正态总体、方差已知或非正态总体,大样本 当总体服从正态分布且方差已知时,或者总体不是正态分布但是大样本时,样本 均值的抽样分布均为正态分布,其数学期望为总体均值u,方差为Ϭ2/n。而样本均 值经过标准化以后的随机变量则服从标准正态分布,即 Z=(x-u)/(Ϭ/n0.5)~N(0,1) 根据上式和正态分布的性质可以得出总体均值u在1-α置信水平下的置信区间为: xα+是(-)事Z(α先/2)所(Ϭ确/n定0.5的)。而其一中个,概x率+Z值(α/2,) (Ϭ也/n称0.为5)为风置险信值上,限是,总x体-Z均(α/2值) (Ϭ不/包n0.含5)为在置置信信下区限间,的 概是率估;计1总- 体α称均为值置时信的水估平计,误Z差(α/。2) 是标准正态分布右侧面积为α/2的z值;Z(α/2) (Ϭ/n0.5) 也即是说,总体均值的置信区间由两个部分构成:点估计值和描述估计量精度的 +(-)值,这个+(-)值称为估计误差。
第七章 参数估计
在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。
其中,区间的最小值称为置信下限,最大值称为置信上限。
由于统计学家在某种程度上确信这个区间会包含真正的总体参数,所以给它取名 为置信区间。原因是:如果抽取了许多不同的样本,比如说抽取100个样本,根据 每一个样本构造了一个置信区间,这样,由100个样本构造的总体参数的100个置 信区间中,有95%的区间包含了总体参数的真值,而5%则没有包含,则95%这个值 称为置信水平。一般,如果将构造置信区间的步骤重复多次,置信区间中包含总 体参数真值的次数所占的比例称为置信水平,也称为置信度或置信系数。
自然使用估计效果最好的那种估计量。什么样的估计量才算一个好的估计量呢? 统计学家给出了评价估计量的一些标准,主要包括以下几个:

第七章-参数估计

第七章-参数估计
的标准 • 1.无偏性 • 无偏估计量:用多个样本的统计量作为总体参数 的估计值,其偏差的平均数为0。
X 0
• 2.有效性
• 当总体参数的无偏估计不止一个统计量时,无偏
估计变异小者有效性高,变异大者有效性低,即 方差越小越好。
9 0.286 9 0.286 2 23.6 1.73
0.11 2 1.49
• 【例7-7】
• n=31,sn-1=5问的0.95置信区间?
• 解:先求方差的置信区间,当df=30,查χ2表,
2 0.025 47
2 0.975 16.8
2 30 52 30 5 2 47 16.8
正态分布,即Z0.05/2=1.96。
5 0.635 2 31
• 0.95的置信区间为:
5 1.96 0.635 5 1.96 0.635
3.76 6.24
• 二、方差的区间估计
• 根据χ2分布:
2
X X


2
2
2 2 n 1 sn ns 1
第七章 参数估计
思 考
• 例8-1:从某市随机抽取小学三年级学生50名,测 得平均身高为 140cm ,标准差 4 。试问该市小学 三年级学生的平均身高大约是多少?

例8-2:某教师用韦氏成人智力量表测80 名高三学生,M=105。试估计该校高三 学生智商平均数大约为多少?
什么是参数估计
当在研究中从样本获得一组数据后,如何通过 这组数据信息,对总体特征进行估计,也就是 如何从局部结果推论总体的情况,称为总体参 数估计。 • 参数估计: 样本 统计量
• 【例7-2】
• 有一个49名学生的班级,某学科历年考试成绩的

概率论与数理统计-参数估计

概率论与数理统计-参数估计

第七章 参数估计
例:
引言
设总体 X 是服从参数为 的指数分布,其中参数
未 知 ,
0 .X1 ,,
X
是总体
n
X
的一个样本,
我们的任务是根据样本,来估计 的取值,从
而估计总体的分布.
这 是 一 个 参 数 估 计 问 题.
第七章 参数估计
§1 点估计 §2 估计量的评选标准 §3 区间估计
第七章 参数估计 §1 点估计
2

A1
A2
, (
2
1)
.
第七章 参数估计
例6(续)
解此方程组,得
§1 点估计
ˆ
A1 2 A2 A12
,
ˆ
A2
A1 A12
.
ˆ X 2 ,

B2
ˆ X .
B2
其中 B2
1 n
n i 1
Xi X
2 为样本的二阶中心矩.
第七章 参数估计(第二十二讲) 三、 极大似然法
§1 点估计
1
第七章 参数估计
例6(续)
EX 2 x 2 f
x dx x 2
x 1e x dx
0
§1 点估计
2 2 x ( e 2)1 x dx
2 0 2
2 2
1 2
1
2
因此有
EX
,
EX
2
1 .
⑵ 在不引起混淆的情况下,我们统称估计量
与估计值为未知参数 的估计.
第七章 参数估计
二、 矩估计法
§1 点估计
设X为连续型随机变量,其概率密度为
f ( x;1 ,, k ), X为离散型随机变量,其分布列为

第七章参数估计参考答案

第七章参数估计参考答案
1 2 n i 1
f ( xi ; )
.
定义: 设总体的分布类型已知,但含有未知参数θ. (1)设 ( x , x
1 2
, , x n )
为总体 X 的一个样本观察值,若似
1 2
然函数 L ( ) 在 ˆ ˆ ( x , x
, , xn )
处取到最大值,则称
ˆ ( x1 , x 2 , , x n ) 为θ的极大似然估计值.
f ( xi ; 1 , 2 , , k )
将其取对数,然后对 1 , 2 , , k 求偏导数,得
ln L ( 1 , 2 , , k ) 0 1 ln L ( 1 , 2 , , k ) 0 k
1 2 n i i 1
(2) 设连续型总体 X 的概率密度函数为 f ( x ; ) , 则样本
( X 1 , X 2 , , X n ) 的联合概率密度函数
f ( x1 ; ) f ( x 2 ; ) f ( x n ; )
n

i 1
f ( x i ; )
n
仍称为似然函数,并记之为 L ( ) L ( x , x , , x ; )
用上面的解来估计参数θi就是矩法估计.
例: 设总体 X 服从泊松分布 ( ) ,参数λ 未知,
( X 1 , X 2 , , X n ) 是来自总体的一个样本,求参数λ
的矩
估计量.
解 总体X的期望为 E ( X ) 从而得到方程

1
X n
i 1
n
i
所以λ的矩估计量为
ˆ
得到含有未知参数(θ1,…,θk)的k个方程.解这k 个联立方程组就可以得到(θ1,…,θk)的一组解:

07心理统计学-第七章 参数估计

07心理统计学-第七章 参数估计

犯错误的概率,常用α(或p)表示。则1-α为置信 度。(显著性水平越高表示的是α值越小,即犯错误的可
能性越低) α为预先设定的临界点,常用的如.05、.01、.001;p 为检验计算所得的实际(犯错误)概率。
第一节 点估计、区间估计与标准误
三、区间估计与标准误
3、区间估计的原理与标准误
转换成比率为
p

n
p, SE p

n

pq n
同理可得公式7-17。自习[例7-12、例7-13]
1、从某地区抽样调查400人,得到每月人均文化消费为 160元。已知该地区文化消费的总体标准差为40元。试 问该地区的每月人均文化消费额。(α=.05,总体呈正态
分布)
2、上题中总体方差未知,已知Sn-1=44元。 3、已知某中学一次数学考试成绩的分布为正态分布,总 体标准差为5。从总体中随机抽取16名学生,计算得平 均数为81、标准差为Sn=6。试问该次考试中全体考生成 绩平均数的95%置信区间。 4、上题中总体方差未知,样本容量改为17人。 5、假定智商服从正态分布。随机抽取10名我班学生测 得智商分别为98、102、105、105、109、111、117、 123、124、126(可计算得M=112,Sn≈9.4),试以95% 的置信区间估计我班全体的智商平均数。 返回
值表,求tα /2(df)。
5、计算置信区间CI。
σ2已知,区间为M-Zα /2 SE <μ< M+Zα /2 SE;
σ2未知,区间为M-tα /2(df)SE <μ< M+tα /2(df)SE。
6、对置信区间进行解释。
二、σ2已知,对μ的区间估计(Z分布,例7-1 & 2) 三、σ2未知,对μ的区间估计(t分布,例7-3 & 4)

7第7章--参数估计(点估计与区间估计)---复习思想

(例题分析)
解:已知n=36, 1- = 90%,z/2=1.645。根据样本数 据计算得:x39.5,s7.77 总体均值在1- 置信水平下的置信区间为
x z 2
s 39.51.6457.77
n
36
39.5 2.13
37.37,41.63
投保人平均年龄的置信区间为37.37岁~41.63岁
2021/2/4
相应的 为0.01,0.05,0.10
2021/2/4
19
置信区间
(confidence interval)
1. 由样本统计量所构造的总体参数的估计区间称 为置信区间
2. 统计学家在某种程度上确信这个区间会包含真 正的总体参数,所以给它取名为置信区间
3. 用一个具体的样本所构造的区间是一个特定的 区间,我们无法知道这个样本所产生的区间是 否包含总体参数的真值
7第7章--参数估计(点估计与区间估计)--复习思想
学习目标
1. 估计量与估计值的概念 2. 点估计与区间估计的区别 3. 评价估计量优良性的标准 4. 一个总体参数的区间估计方法 5. 两个总体参数的区间估计方法 6. 样本容量的确定方法
2021/2/4
2
参数估计在统计方法中的地位
统计方法
描述统计
3. 2. 根据样本统计量的抽样分布能够对样本统计量与 总体参数的接近程度给出一个概率度量
比如,某班级平均分数在75~85之间,置信水平是95%
置信区间
样本统计量 (点估计)
2021/2/4
置信下限
置信上限
16
举例:总体均值的区间估计
(方差已知或大样本)
1. 假定条件
总体服从正态分布,且方差(2) 已知

心理及教育统计学第7章参数估计

第七章 参数估计
章节内容
第一节 点估计、区间估计及标准误 第二节 总体平均数的估计 第三节 标准差与方差的区间估计 第四节 相关系数的区间估计 第五节 比率及比率差异的区间估计
总体参数估计:在研究中从样本获得一组数 据后,通过这组信息,对总体特征进行估计, 即从局部结果推论总体的情况。
总体参数估计分点估计和区间估计两种。
7 8 2 . 2 6 2 2 . 6 7 7 8 2 . 2 6 2 2 . 6 7
71.9684.04
当n2=36时,df2=35,t0.05/2=2.042
7 9 2 . 0 4 2 1 . 5 2 7 9 2 . 0 4 2 1 . 5 2
75.982.1
【例7-4】
根据n2=36的样本估计总体参数μ:
0.95的置信区间 7 8 1 . 9 6 1 . 1 8 7 9 1 . 9 6 1 . 1 8
76.781.3
0.99的置信区间
7 9 2 . 5 8 1 . 1 8 7 9 2 . 5 8 1 . 1 8
75.782.04
83.686.4
总体方差σ2未知,对总体平均数的估计
总体方差未知,用样本的无偏方差(
s
2 n 1
)作为总体
方差的估计值,实现对总体平均数μ的估计。因为在总
体方差未知时,样本平均数的分布为t分布,故应查t值
表,确定t/2或t(1-)/2。
有两种情况:
(1)总体的分布为正态时,可不管n之大小。
(2)总体分布为非正态时,只有n>30,才能用概率对 其抽样分布进行解释,否则不能推论。
0.05水平和0.01水平是人们习惯上常用的两个显著性 水平。
区间估计的原理是抽样分布理论。在计算区间估计值, 解释估计的正确概率时,依据的是该样本统计量的分 布规律及抽样分布的标准误(SE)。

概率与统计第七章第二节极大似然估计


n
L( ) f ( xi , ) i 1
似然方程为
n xi e e n
i1 xi !
i1
n
xi !
i 1
log
L( )
n
1
n
xi
i 1
0
BJUT
第七章
参数估计
得解 :
*
1 n
n
xi
i 1
x
2
2
log
L( )
1
2
n
xi
i 1
0
* x
是logL()的最大值点. ∴ 的极大似然估计量是
第七章第二节 极大似然估计
BJUT
第七章 参数估计
极大似然法
是在总体类型已知条件下使用的一种 参数估计方法 .
它首先是由德国数学家 高斯在1821年提出的 , 然而,这个方法常归功于 英国统计学家费歇 .
Gauss
费歇在1922年重新发现了
这一方法,并首先研究了这
种方法的一些性质 .
Fisher
BJUT
n i1
1
e , ( xi )
xi
0,
其它
i=1,2,…,n
BJUT
第七章 参数估计
解:似然函数为
L(
,
)
i
n 1
1
e , ( xi )
xi
0,
其它
i=1,2,…,n
1
n
1
e ,
n i 1
(
xi
)
0,
对数似然函数为
min xi
其它
BJUT
ln
L( , )
n ln

概率论第7章第1-2节

i 1
n
ˆ 得 λ 的极大似然估计值为

i 1
n
xi
例5 设总体X服从正态分布 N , 2 , 其中μ及 σ 是未知参数。
如果取得样本观测值为 x1 , x2 ,, xn , 求参数μ及 σ 的极大似 然估计值。 解 似然函数为 L( , )
i 1 n
1 2
0 1
1
dx
1
,

1

X n
i 1
1
n
i
X
x 1 x
x2 (1 x ) 2
14
x ( 1)
得 θ 的矩估计值为: ˆ
(2) 似然函数为: L( ) x i 1 ( x1 x 2 x n )
极大似然估计值。
解 (1) E ( X ) , 令
X n
i 1
1
n
i
X,
ˆ 得 λ 的矩估计值为 x .
(2)由 P X x
x
x!
n
e ,
得似然函数 L
i 1
x
i
xi !
e



n i 1
xi
i 1
n
x !
解方程可得 ˆ ,
ˆ 就是参数θ的极大似然估计值。
10
例4 设总体X服从指数分布,概率密度为
e x , 当x 0; f x; 0, 当 x 0.
其中 λ 为未知参数。如果取得样本观测值为 x1 , x2 ,, xn , 求参数 λ 的矩估计值和极大似然值。 解 (1) E ( X )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i 1 i 1
n
i 1
n
(2)

ˆ1 ) ci2 D( X i ) 2 ci2 D(
i 1 iபைடு நூலகம்1
n 1 ci ci2 2 ci c j i 1 1i j n i 1 n 2
n
n
c
i 1 2 i
例1 设总体X 的 k 阶矩 k E ( X )存在 ( X 1 , X 2 , , X n ) 是总体X 的样本,
k
证明: 不论 X 服从什么分布(但期望存在), 1 n 则 Ak X ik 是 k 的无偏估计量. n i 1 证 由于 E ( X ik ) k i 1,2, , n 因而
n
1i j n
(c
2 i
c ) n c
2 j i 1
n
2 i
1 c n i 1
n 2 i
1 2 ˆ ) D( ˆ1 ) D( n
结论
算术均值比加权均值更有效.
例如 X ~ N( , 2 ) , ( X 1 ,X 2 ) 是一样本.
2 1 ˆ1 X 1 X 2 3 3 1 3 ˆ2 X1 X 2 4 4 1 1 ˆ3 X1 X 2 2 2
n 1 (1) 设常数 ci i 1,2,, n. ci 1. n i 1 n ˆ1 ci X i 是 的无偏估计量 证明
i 1
ˆ1 ci X i 更有效 ˆX 比 (2) 证明
n
证 (1) E ( ˆ1 ) ci E ( X i ) ci
1 1 k k E ( Ak ) E ( X i ) E ( X i ) n i 1 n i 1 1 n k k n
n
n
特别地 样本均值 X 是总体期望 E( X ) 的 无偏估计量
1 2 样本二阶原点矩 A2 X i 是总体 n i 1
n
二阶原点矩 2 E ( X ) 的无偏
1 2 故 (n n) p X i X m i 1
2 2
m
因此, p 2 的无偏估计量为
1 1 m 2 p 2 Xi X n n m i 1
1 X i ( X i 1) m i 1 n(n 1)
m
2
有效性
ˆ ( X , X ,, X ) 定义 设 1 1 1 2 n
2
估计量
由第六章知
E ( S ) D( X )
2 2
1 2 S ( X i X ) 是 D( X ) 的无偏估计. n 1 i 1
2
n
n 1 2 n 2 E (S ) n
2 n
n 1 2 2 S ( X i X ) 是 D( X )的渐进无偏估计. n i 1
都是 的无偏估计量
ˆ 3 最有效. 由例3(2) 知
定义
相合性 设 ˆ ˆ( X 1 , X 2 , , X n ) 是总体参数
的估计量. 若对于任意的 , 当n 时,
ˆ 依概率收敛于 , 即 0, ˆ ) ) 1 lim P(
ˆ ( X , X ,, X ) 2 2 1 2 n
都是总体参数 的无偏估计量, 且
ˆ1 ) D( ˆ2 ) D(
ˆ2更有效. 则称 ˆ1 比
例3 设总体 X,且 E( X )= , D( X )= 2
( X 1 , X 2 , , X n )为总体 X 的一个样本
例2 设 ( X 1 , X 2 , , X m ) 是总体 X 的一个样本 , X~B(n , p) n > 1 , 求 p 2 的无偏估计量.
解 由于样本矩是总体矩的无偏估计量 以及数学期望的线性性质, 只要将未知 参数表示成总体矩的线性函数, 然后用样 本矩作为总体矩的估计量, 这样得到的未 知参数的估计量即为无偏估计量. 令 X E ( X ) np m 1 2 2 2 X i E ( X ) (np) np(1 p) m i 1
§7.2 估计量的评选标准
对于同一个未知参数,不同的方法得 到的估计量可能不同,于是提出问题 应该选用哪一种估计量? 用何标准来评价一个估计量的好坏?
(1) 无偏性
常用 标准
(2) 有效性
(3) 相合性
无偏性
定义
ˆ) 若 E ( ˆ是 的无偏估计量. 则称
定义的合理性
我们不可能要求每一次由样本得到的 估计量与真值都相等,但可以要求这些估 计量的期望与真值相等.
n
ˆ 是总体参数 的相合估计量. 则称
相合性估计量仅在样本容量 n 足够大时,才显示其优越性.
评判标准与数字特征紧密相关
无偏性 有效性 相合性 数学期望 方 差
依概率收敛
相关文档
最新文档