第七章参数估计-第七章

合集下载

概率论与数理统计第7章参数估计PPT课件

概率论与数理统计第7章参数估计PPT课件
5
a1(1, ,k )=v1
1 f1(v1, ,vk )
假定方程组a2(1, ,k ) v2 ,则可求出2 f2(v1, ,vk )
ak (1, ,k ) vk
k fk (v1, ,vk )
则x1 xn为X的样本值时,可用样本值的j阶原点矩Aj估计vj,其中
Aj
1 n
n i1
xij ( j
L(x1, ,xn;ˆ)maxL(x1, ,xn;),则称ˆ(x1, ,xn)为
的一种参数估计方法 .
它首先是由德国数学家
高斯在1821年提出的 ,然而, 这个方法常归功于英国统
Gauss
计学家费歇(Fisher) . 费歇在1922年重新发现了
这一方法,并首先研究了这
种方法的一些性质 .
Fisher
10
极大似然估计是在已知总体分布形式的情形下的 点估计。
极大似然估计的基本思路:根据样本的具体情况
注:估计量为样本的函数,样本不同,估计量不 同。
常用估计量构造法:矩估计法、极大似然估计法。
4
7.1.1 矩估计法
矩估计法是通过参数与总体矩的关系,解出参数, 并用样本矩替代总体矩而得到的参数估计方法。 (由大数定理可知样本矩依概率收敛于总体矩, 且许多分布所含参数都是矩的函数)
下面我们考虑总体为连续型随机变量的情况:
n
它是的函数,记为L(x1, , xn; ) f (xi , ), i 1
并称其为似然函数,记为L( )。
注:似然函数的概念并不仅限于连续随机变量 ,
对于离散型随机变量,用 P {Xx}p(x,)
替代f ( x, )
即可。
14
设总体X的分布形式已知,且只含一个未知参数,

概率论 第七章 参数估计

概率论  第七章 参数估计

L( ) max L( )
称^为
的极大似然估计(MLE).
求极大似然估计(MLE)的一般步骤是:
(1) 由总体分布导出样本的联合概率分布 (或联合密度);
(2) 把样本联合概率分布(或联合密度)中自变 量看成已知常数,而把参数 看作自变量, 得到似然函数L( );
(3) 求似然函数L( ) 的最大值点(常常转化 为求ln L( )的最大值点) ,即 的MLE;
1. 将待估参数表示为总体矩的连续函数 2. 用样本矩替代总体矩,从而得到待估参
数的估计量。
四. 最大似然估计(极大似然法)
在总体分布类型已知条件下使用的一种 参数估计方法 .
首先由德国数学家高斯在1821年提出。 英国统计学家费歇1922年重新发现此
方法,并首先研究了此方法的一些性质 .
例:某位同学与一位猎人一起外出打猎.一只 野兔从前方窜过 . 一声枪响,野兔应声倒下 .
p值 P(Y=0) P(Y=1) P( Y=2) P(Y=3) 0.7 0.027 0.189 0.441 0.343 0.3 0.343 0.441 0.189 0.027
应如何估计p?
若:只知0<p<1, 实测记录是 Y=k
(0 ≤ k≤ n), 如何估计p 呢?
注意到
P(Y k) Cnk pk (1 p)nk = f (p)
第七章 参数估计
参数估计是利用从总体抽样得到的信息 估计总体的某些参数或参数的某些函数.
仅估 计一 个或 几个 参数.
估计新生儿的体重
估计废品率
估计降雨量
估计湖中鱼数


参数估计问题的一般提法:
设总体的分布函数为 F(x, ),其中为未 知参数 (可以是向量).从该总体抽样,得样本

第七章 参数估计

第七章 参数估计

第七章 参数估计
1、正态总体、方差已知或非正态总体,大样本 当总体服从正态分布且方差已知时,或者总体不是正态分布但是大样本时,样本 均值的抽样分布均为正态分布,其数学期望为总体均值u,方差为Ϭ2/n。而样本均 值经过标准化以后的随机变量则服从标准正态分布,即 Z=(x-u)/(Ϭ/n0.5)~N(0,1) 根据上式和正态分布的性质可以得出总体均值u在1-α置信水平下的置信区间为: xα+是(-)事Z(α先/2)所(Ϭ确/n定0.5的)。而其一中个,概x率+Z值(α/2,) (Ϭ也/n称0.为5)为风置险信值上,限是,总x体-Z均(α/2值) (Ϭ不/包n0.含5)为在置置信信下区限间,的 概是率估;计1总- 体α称均为值置时信的水估平计,误Z差(α/。2) 是标准正态分布右侧面积为α/2的z值;Z(α/2) (Ϭ/n0.5) 也即是说,总体均值的置信区间由两个部分构成:点估计值和描述估计量精度的 +(-)值,这个+(-)值称为估计误差。
第七章 参数估计
在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。
其中,区间的最小值称为置信下限,最大值称为置信上限。
由于统计学家在某种程度上确信这个区间会包含真正的总体参数,所以给它取名 为置信区间。原因是:如果抽取了许多不同的样本,比如说抽取100个样本,根据 每一个样本构造了一个置信区间,这样,由100个样本构造的总体参数的100个置 信区间中,有95%的区间包含了总体参数的真值,而5%则没有包含,则95%这个值 称为置信水平。一般,如果将构造置信区间的步骤重复多次,置信区间中包含总 体参数真值的次数所占的比例称为置信水平,也称为置信度或置信系数。
自然使用估计效果最好的那种估计量。什么样的估计量才算一个好的估计量呢? 统计学家给出了评价估计量的一些标准,主要包括以下几个:

第七章 参数估计-含答案

第七章 参数估计-含答案
D.对于一个参数只能有一个估计值
答案:B
3.假定抽样单位数为400,抽样平均数为300和30,相应的变异系数为50%和20%,试以0.9545的概率来确定估计精度为()。
A.15和0.6B.5%和2%
C.95%和98% D.2.5%和1
答案:C
4.根据10%抽样调查资料,甲企业工人生产定额完成百分比方差为25,乙企业为49。乙企业工人数四倍于甲企业,工人总体生产定额平均完成率的区间()。
C.总体参数取值的变动范围
D.抽样误差的最大可能范围
答案:A
11.无偏性是指( )。
A.抽样指标等于总体指标 B.样本平均数的平均数等于总体平均数
C.样本平均数等于总体平均数 D. 样本成数等于总体成数
答案:B
12.一致性是指当样本的单位数充分大时,抽样指标( )。
A.小于总体指标 B. 等于总体指标
答案:ABC
4.点估计( )。
A.考虑了抽样误差大小B.没有考虑抽样误差大小
C.能说明估计结果的把握程度D.是抽样估计的主要方法
E.不能说明估计结果的把握程度
答案:BE
5.在其它条件不变时,抽样推断的置信度1-α越大,则( )。
A.允许误差范围越大B.允许误差范围越小
C.抽样推断的精确度越高D.抽样推断的精确度越低
答案:D
18.设X~N(μ,σ2)σ为未知,从中抽取n=16的样本,其样本均值为 ,样本标准差为s,则总体均值的置信度为95%的置信区间为()。
答案:C
二、多项选择题
1.在区间估计中,如果其他条件保持不变,置信度与精确度之间存在下列关系( )。
A.前者愈低,后者也愈低B. 前者愈高,后者也愈高
C. 前者愈低,后者愈高D.前者愈高,后者愈低

概率论与数理统计-参数估计

概率论与数理统计-参数估计

第七章 参数估计
例:
引言
设总体 X 是服从参数为 的指数分布,其中参数
未 知 ,
0 .X1 ,,
X
是总体
n
X
的一个样本,
我们的任务是根据样本,来估计 的取值,从
而估计总体的分布.
这 是 一 个 参 数 估 计 问 题.
第七章 参数估计
§1 点估计 §2 估计量的评选标准 §3 区间估计
第七章 参数估计 §1 点估计
2

A1
A2
, (
2
1)
.
第七章 参数估计
例6(续)
解此方程组,得
§1 点估计
ˆ
A1 2 A2 A12
,
ˆ
A2
A1 A12
.
ˆ X 2 ,

B2
ˆ X .
B2
其中 B2
1 n
n i 1
Xi X
2 为样本的二阶中心矩.
第七章 参数估计(第二十二讲) 三、 极大似然法
§1 点估计
1
第七章 参数估计
例6(续)
EX 2 x 2 f
x dx x 2
x 1e x dx
0
§1 点估计
2 2 x ( e 2)1 x dx
2 0 2
2 2
1 2
1
2
因此有
EX
,
EX
2
1 .
⑵ 在不引起混淆的情况下,我们统称估计量
与估计值为未知参数 的估计.
第七章 参数估计
二、 矩估计法
§1 点估计
设X为连续型随机变量,其概率密度为
f ( x;1 ,, k ), X为离散型随机变量,其分布列为

07心理统计学-第七章 参数估计

07心理统计学-第七章 参数估计

犯错误的概率,常用α(或p)表示。则1-α为置信 度。(显著性水平越高表示的是α值越小,即犯错误的可
能性越低) α为预先设定的临界点,常用的如.05、.01、.001;p 为检验计算所得的实际(犯错误)概率。
第一节 点估计、区间估计与标准误
三、区间估计与标准误
3、区间估计的原理与标准误
转换成比率为
p

n
p, SE p

n

pq n
同理可得公式7-17。自习[例7-12、例7-13]
1、从某地区抽样调查400人,得到每月人均文化消费为 160元。已知该地区文化消费的总体标准差为40元。试 问该地区的每月人均文化消费额。(α=.05,总体呈正态
分布)
2、上题中总体方差未知,已知Sn-1=44元。 3、已知某中学一次数学考试成绩的分布为正态分布,总 体标准差为5。从总体中随机抽取16名学生,计算得平 均数为81、标准差为Sn=6。试问该次考试中全体考生成 绩平均数的95%置信区间。 4、上题中总体方差未知,样本容量改为17人。 5、假定智商服从正态分布。随机抽取10名我班学生测 得智商分别为98、102、105、105、109、111、117、 123、124、126(可计算得M=112,Sn≈9.4),试以95% 的置信区间估计我班全体的智商平均数。 返回
值表,求tα /2(df)。
5、计算置信区间CI。
σ2已知,区间为M-Zα /2 SE <μ< M+Zα /2 SE;
σ2未知,区间为M-tα /2(df)SE <μ< M+tα /2(df)SE。
6、对置信区间进行解释。
二、σ2已知,对μ的区间估计(Z分布,例7-1 & 2) 三、σ2未知,对μ的区间估计(t分布,例7-3 & 4)

张厚粲 第七章 参数估计

张厚粲 第七章 参数估计

间。

解:12名学生阅读能力的得分假定是从正态总体
中抽出的随机样本,而总体标准差σ未知,样本的容量 较小(n=12<30),在此条件下,样本平均数与总体 平均数离差统计量服从呈t分布。

于是需用t分布来估计该校三年级学生阅读能力总
体平均数95%和99%的置信区间。
由原始数据计算出样本统计量为
X 29.917
性的指标。
平均数区间估计的基本原理
通过样本的平均数估计总体的平均数,首先假定该样本 是随机取自一个正态分布的母总体(或非正态总体中的n> 30的样本),而计算出来的实际平均数是无数容量为n的
样本平均数中的一个。
根据样本平均数的分布理论,可以对总体平均数进行估 计,并以概率说明其正确的可能性。
一.总体平均数区间估计的基本步骤 ①.根据样本的数据,计算样本的平均数和标准差; ②.计算平均数抽样分布的标准误;
例:已知某样本的分散程度
标准差与方差分别计算)。
解1(标准差):
,样本
容量40,问该样本之总体的分散程度如何。(用
,样本标准差的分布接近正态分布,用Z分布。
(1) 0.95或0.05
10-1.96×1.12<σ<10+1.96×1.12
7.8 <σ<12.2 (2)0.99或0.01 10-2.58×1.12<σ<10+2.58×1.12 7.11<σ<12.89
第二节 总体平均数的估计
平均数抽样分布的几个定理

⑴.从总体中随机抽出容量为n的一切可
能样本的平均数之平均数等于总体的平均数。
E( X )
⑵.容量为n的平均数在抽样分布上的标准差 (即平均数的标准误),等于总体标准差除以n的平 方根。

统计学 第七章 参数估计

统计学 第七章 参数估计

[
]
2 χα (n) (n)的α 分位数,记为k≜ n k≜
抽样分布
(3)性质 • 若X服从χ2 (n),则均值E(X)=n ,方差 D(X) =2n 。 • χ2分布具有可加性。若 X1,X2相互独立,
X1~ χ2(n1) ,X2~χ2(n2)
则(X1+X2)~χ2(n1+n2) • 当n→∞时,χ2分布渐进于正态分布
σ
2
~ χ (n −1)
2
第三节两个总体参数的区 间估计(112页)
• • • • • • • 一、两个总体均值之差的区间估计 (一)两个总体均值之差的估计:独立样本 大样本:近似于正态分布 小样本: (1)两个总体的方差均已知,近似于正态分布 (2)两个总体的方差均未知但相等,近似于t分布 (3)两个服从正态分布的总体的方差均未知且不等, 但样本容量相等,近似于t分布 • (4)两个总体的方差均未知且不等,样本容量也不 等,近似于t分布,自由度为V
• 解:求(3)的计算步骤: • ①求样本指标:
x =1000小时
σ=50 (小时)
µ x=
σ
n

50 100
=(小时) 5
• ②根据给定的F(t)=95%,查概率表得t=1.96。 • ③根据∆x=t×µx=1.96×5=9.8,计算总体平均耐 用时间的上、下限: x − ∆ x=1000-9.8=990.(小时) 2 • 下限 x +∆ x=1000+9.8=1009 .(小时) 8 • 上限 • 所以,以95%的概率保证程度估计该批产品的平均耐 用时间在990.2~1009.8小时之间。
f (x;θ ) 其中 θ
或概率密度为
是未知参数。 是未知参数。
如何求极大似然估 计量呢? 计量呢?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章
参数估计
一、抽样试验
从正态分布总体N(5.00,0.502)中,每次随机抽 取样本含量n=5,并计算其均数与标准差;重复抽取
1000次,获得1000份样本;计算1000份样本的均数与 标准差,并对1000份样本的均数作直方图。
按上述方法再做样本含量n=10、样本含量n=30
的抽样实验;比较计算结果。
=样本标准差/ 样本含=量 S n
计算(例7-1,例7-2)
从正态总体N(,s2)中抽取样本,获得均数的分
布仍近似呈正态分布N(,s2/n) 。
二、总体均数的估计
(一) 总体均数的点估计(point estimation)与区间估计
参数的估计
点估计:由样本统计量 X、S、p
直接估计 总体参数 、 s、
由于样本均数与相应的总体均数之间存在着 差异,由数理统计推理可知:从正态总体中 随机抽取样本含量为n的样本,每抽取一个 样本可计算一个样本均数,重复100次抽样可 得到100个样本均数。
这些样本均数服从均数为 ,方差为s
的正态分布.其中为样本均数的总体
标准差,计算公式为s:s / n
X
s
为了与反映个体差异的标准差(或 )相区别,样本均数的标准差s X 用 表示。

(1 ) s 未 知 : 按 t 分 布 。 双 侧 1 可 信 区 间 则 为 :
X t S 2 , X < X t S 2 , X
( X t S 2 , X , X t S 2 , X )
单 侧 1 可 信 区 间 则 为 :
X t , S X 或
X t , S X
2)可信区间具有两个要素
(1)准确度(accuracy),即可信区间包含的概率 的大小,一般而言概率越大越好。 (2)精密度(precision),反映区间的长度,区间 的长度越窄,估计的精密度越好,反之越差。
3)可信区间的计算
(1)总体标准差 未知时 :
s
用样本标准差S 作为的估计值计
算标准误,按t分布原理。(例7-4
3个抽样实验结果图示
例7-1 假设正常男子红细胞计数服 从的正态分布总体,从该总体中重 复进行100次抽样,每个样本的含量 为10,结果见表7-1。(书本P105)
由表7-1可见,从同一总体中随机抽取样本 含量n=10的若干样本,各样本算得的样本 均数并不等于相应的总体均数,且各样本 均数也不完全相同。这种由于随机抽样而 造成的来自同一总体的样本均数之间及样 本均数与相应的总体均数之间的差异,称 之为均数的抽样误差。
1)可信区间的涵义 从总体中作随机抽样,对于含量为n的每个样本而言 ,都可以算得一个区间。以95%的可信区间为例,意 味着在同一总体中作100次重复抽样,可得100个可信 区间,平均有95个可信区间包含总体均数(估计正确 ),只有5个可信区间不包含总体均数(估计不正确 ),或对于某一个区间而言,它包含总体均数的可能 性为95%,而不包含总体均数的可能性仅为5%。因 此在实际应用中,以这种方法估计总体均数犯错误的 概率仅为5%。
0.2236 0.1581 0.0913
均数
450 400 350 300
n30 ;SX 0.0920220500 150 100 50 0
频数
3.71 3.92 4.12 4.33 4.54 4.74 4.95 5.15 5.36 5.57 5.77 5.98 6.19
均数
均数
3.71 3.92 4.12 4.33 4.54 4.74 4.95 5.15 5.36 5.57 5.77 5.98 6.19
2.当一定时,n越大,就越小;n越小,就越大。故影响 抽样误差大小的主要因素是样本含量。作为总体参数(常数) 通常是未知的,因而,在实际工作中常用样本标准差S来估计 。
抽样实验小结
均数的均数围绕总体均数上下波动。
s 均数的标准差即标准误
与总体标准差
sX
相差一个常数的倍数,即 s s/ n
X
样本均数的标准误(Standard Error)
抽样试验(n=5)
抽样试验(n=10)
抽样试验(n=30)
1000份样本抽样计算结果
总体的 总体标 均数的 均数 准差s 均数
n=5 5.00 0.50 4.99
n=10 5.00 0.50 5.00
n=30 5.00 0.50 5.00
均数标准差
Sn
0.2212
0.1580
0.0920
sn
统计上通常将统计量(如样本均数、 样本率p等)的标准差称为标准误 (standard error,SE)。所以,样本均
sX
数的标准差 又称为样本均数的标准 误,是反映样本均数抽样误差大小的指 标。
特点: 1.总体标准误的大小与总体标准差成正比,与样本含量
的平方根成反比。即当样本含量n一定时,标准差越大,即样 本的个体差异越大,标准误就越大,样本均数的抽样误差就越 大;标准差越小,标准误就越小,即样本均数抽样误差就越小 。
1.点估计 总体均数的点估计(point estimation)就是用样本均数来直接 地估计总体均数,这种方法比较简 单,由于没有考虑到抽样误差,只 适合大样本资料的统计推断。
ቤተ መጻሕፍቲ ባይዱ
2.区间估计 总体均数的区间估 计(interval estimation)是利用样 本信息给出一个区间,并同时给 出重复试验时该区间包含总体均 数的概率。
3.71 3.92 4.12 4.33 4.54 4.74 4.95 5.15 5.36 5.57 5.77 5.98 6.19
0
0
50
50
100
100
150
150
200
200
频数 频数
250
250
n10 ;SX0.1580
n5;SX 0.2212345000 300
400 350 300
450
450
区间估计:在一定可信度 (Confidence level) 下 ,同时考虑抽样误差
统计学中的统计推断包括两个重要的方面:一是利 用样本统计量的信息对相应总体参数值做出推断
,如用样本均数估计总体均数,用样本标准差S估
计总体标准差等,称之为点估计。另一个是利用 样本统计量来推断我们是否接受一个事先的假设 ,称之为假设检验。本章只讨论参数估计,假设 检验将在下一章中讨论。而参数估计又分为点估 计与区间估计。
相关文档
最新文档