2014年福建省泉州市晋江市中考数学试卷

合集下载

福建省泉州市2014年初中学业质量检查数学试题(含答案)

福建省泉州市2014年初中学业质量检查数学试题(含答案)

AB C DE F (第20题图) 参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分. (二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步应得的累计分数. 一、选择题(每小题3分,共21分)1.D 2.B 3.A 4.C 5.C 6.A 7.D 二、填空题(每小题4分,共40分)8. 2 9.)3(+a a 10.61076⨯.11.1 12.4=x 13.12 14.60 15.25 16.3 17.(1) 10;(2) 2三、解答题(共89分)18.(本小题9分)解:原式3143+-+= ……………………………………………………………8分9= …………………………………………………………………………………… 9分 19.(本小题9分) 解:原式96422+-+-=x x x ……………………………………………………4分x 613-= ……………………………………………………………………6分当21-=x 时,原式)21(613-⨯-= …………………………………………………7分16= ………………………………………………………………………9分 20.(本小题9分) 证明:∵AC AB =,∴C B ∠=∠. ………………………………3分 ∵DE AB DF AC ⊥,⊥, ∴︒=∠=∠90CFD BED .…………………6分 ∵D 为BC 边的中点,∴CD BD =, ………………………………8分 ∴BED ∆≌CFD ∆. ………………………9分 21.(本小题9分)解:(1)60,补图如右;(填空3分,补图2分,共5分) (2)由图可得:第四组的件数是18件,第六组的件数是3件,组别 3 691215 1821一六 二 三 四 五 件数参赛作品件数条形统计图 (第21题图)故第四组的获奖率为:951810=,第六组的获奖率为:9632=,……………………8分 ∵9695<, ∴第六组获奖率较高. …………………………………………………………………9分 22.(本小题9分) 解:(1)P (e 队出场)=31; …………………………………………………………3分 (2)解法一: 画树状图…………………………………………………………………………………………6分由树状图可知,共有9种机会均等的情况,其中首场比赛出场的两个队都是县区学校队的有4种情况,P ∴(两队都是县区队)=94. …………………………………………………………9分 解法二:列表……………………………………………………………………………6分由树状图可知,共有9种机会均等的情况,其中首场比赛出场的两个队都是县区学校队的有4种情况, P ∴(两队都是县区队)=94. ………………………9分 23.(本小题9分)解:(1)如图所示: …………………………………3分点B 的对应点'B 的坐标为()6,0-; ………………6分 (2) 第四个顶点D 的坐标()3,7-、()3,3、()3,5--;Ae fB ()B A , ()B e , ()B f ,g ()g A , ()g e , ()g f , h()h A ,()h e ,()h f ,A efB g h B g h B g h甲组乙组甲组 乙组AyBC O xC 'B 'A '…………………………………………………………9分24.(本小题9分)解:(1)设甲种新款服装购进x 件,那么乙种新款服装购进)100(x -件,由题意可得 42000)100(500300=-+x x ,解得40=x . ………………………………2分 经检验,符合题意.当40=x 时,60100=-x (件).答:甲种新款服装购进40件,乙种新款服装购进60件.………………………………4分 (2)解法一:设甲种新款服装购进m 件,那么乙种新款服装购进)100(m -件,由题意可得m m 2100≤-,解得3133≥m .…………………………………………………………………6分∴m 的取值范围为1003133<≤m .500600300380-<-∴同样售出一件新款服装,甲的获利比乙少,∴只能取34=m ,此时获利为9320100668034=⨯+⨯(元).答:甲种新款服装购进34件,乙种新款服装购进66件,才能使专卖店在销售完这批服装时获利最多,最大利润为9320元. …………………………………………………9分 解法二:设该专卖店销售完这批服装可获利润w 元,甲种服装m 件.依题意可得, (380300)(600500)(100)w m m =-+--, 整理得1000020w m =-.∴w 是m 的一次函数,且200-<. ∴w 随m 的增大而减小.∵乙的数量不能超过甲的数量的2倍, ∴1002m m ≤﹣, 解得3133≥m , ………………………………………………………………………6分∴m 的取值范围为1003133<≤m .∵m 为整数,∴34=m 时,w 取得最大值,此时9320=w (元).答:该专卖店购进甲种服装67件,乙种服装33件,销售完这批服装时获利最多,此时利润为9320元.…………………………………………………………………………9分 25.(本小题13分) (1) ∵抛物线1C 的过点()1,0,∴()2301-=a ,解得:91=a . ∴设抛物线1C 的解析式为()2391-=x y . …………3分(2) ①∵点A 、C 关于y 轴对称,∴点K 为AC 的中点.若四边形APCG 是平行四边形,则必有点K 是PG 的中点. 过点G 作y GQ ⊥轴于点Q , 可得:GQK ∆≌POK ∆,∴3==PO GQ ,2m OK KQ ==, 22m OQ =. ∴点()22,3m G -. ………………………………………5分 ∵顶点G 在抛物线1C 上,∴()2233912--=m , 解得:2±=m ,又0>m ,∴2=m .∴当2=m 时,四边形APCG 是平行四边形. ……………………………………8分 ②在抛物线()2391-=x y 中,令2m y =,解得:m x 33±=,又0>m ,且点C 在点B 的右侧,∴()2,33m m C +,m KC 33+=. …………………………………………………9分∵点A 、C 关于y 轴对称, ∴()2,33m m A --.∵抛物线1C 向下平移()0>h h 个单位得到抛物线2C , ∴抛物线2C 的解析式为:()h x y --=2391. ∴()h m m ----=2233391,解得:44+=m h , ∴m PF 44+=.∴()()4314134433=++=++=m m m m PF KC .…………………………………………………………13分 26.(本小题13分)解:(1)点G 的坐标是(0,2);………………………3分 (2)解法一:①连结OP 、OB .AyB x(第25题图)OG PKCD E FlC 2C 1Q∵PB 切⊙O 于点B , ∴OB PB ⊥; 根据勾股定理得:222PB OP OB =﹣,∵1OB =不变,若BP 要最小,则只须OP 最小. 即当GF OP ⊥时,线段PO 最短,………………6分 在PFO Rt ∆中,2330OF GFO =∠=︒,, ∴=3OP ,∴22PB OP OB =-=22(3)1-=2.………………………………………………8分 解法二:设直线GF 解析式为)0(≠+=m n mx y . ∵直线GF 过点(0,2)、F (23,)0,∴⎩⎨⎧==+2,032n n m 解得:⎪⎩⎪⎨⎧=-=.2,33n m ∴233+-=x y .……………………………………………………………………………5分 设)233,(+-x x P . 过P 作x PH ⊥轴于点H ,连结OA 、OP ,在OHP Rt ∆中,433434)233(222222+-=+-+=+=x x x x PH OH OP . PA 与⊙O 相切,∴︒=∠90OAP ,1=OA .在PAO Rt ∆中, 222OA OP AP -=. ∵PA PB 、均与⊙O 相切, ∴143343422222-+-=-==x x OA OP AP PB 2)23(3433343422+-=+-=x x x . ∴当23=x ,22=PB 为最小, PB 最小,此时2=PB . ………………………8分 y BA F xOPG (P 1)P 2(第26题图)H②方法一:存在.∵PA PB 、均与⊙O 相切,∴OP 平分APB ∠.∵60APB ∠=︒,∴30OPB ∠=︒.∵1OB =,∴2OP =.∴点P 是以点O 为圆心,2为半径的圆与直线GF 的交点,即图中的12P P 、两点. ∵2OG =,∴点1P 与点(0,2)G 重合.………………………………………………10分在GOF Rt ∆中,30GFO ∠=︒,∴60OGF ∠=︒.∵2OP OG =,∴2GOP ∆是等边三角形,∴2 2G P OG ==.∵4GF =,∴22FP =,∴2P 为的中点GF , ∴2(31)P ,. 综上所述,满足条件的点P 坐标为(0,2) 或(31),.……………………………………13分 方法二:假设在直线GF 上存在点P ,使得60APB ∠=︒,则必须有︒=∠30APO . OA PA ⊥,︒=∠∴90OAP . ∴21sin ==∠OP OA APO , ∴22==OA OP . ……………………………………………………………………10分 由①解法二可知43343422+-=x x OP , ∴222433434=+-x x ,解得01=x ,32=x .满足条件的点P坐标为(0,2)或(31),. …………………………………13分。

2014年晋江市初中学业质检(第2次)数学试卷

2014年晋江市初中学业质检(第2次)数学试卷

2014年初中学业质量检查(二)数 学 试 题(试卷满分:150分;考试时间:120分钟) 友情提示:所有答案必须填写到答题卡相应的位置上.一、选择题(每小题3分,共21分)每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分. 1. 5-的相反数是( ).A. 5B. 5-C. 51D. 51- 2. 方程132=-x 的解是( ). A. 2=x B. 3=x C. 4=x D. 5=x3. 下面左图是由五个完全相同的正方体堆成的物体,则这一物体的俯视图是( ).4. 把不等式组⎩⎨⎧≥+<.03,102x x 的解集在数轴上表示出来,正确的是( ).5. 已知一组数据:15,13,15,16,17,16,14,15,则这组数据的众数是( ).A.B.C.D.A . B. C. D.(第3题图)A . B. C. D.C. α-︒90D. α290-︒二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答. 8. 计算:=-223a a .9. 211. 计算:=+++33m m . 12. 如图,已知CD AB //,E 是AB 上一点,DE 平分BEC ∠交CD于点D ,︒=∠100BEC ,则=∠D ︒. 13. 若n 边形的每一个外角均为︒30,则=n .14. 已知扇形的圆心角为︒240,半径是cm 3,则扇形的弧长是 cm . 15. 已知一次函数b kx y +=的图象交y 轴于正半轴,且y 随x 的增大而减小, 三、解答题(共89分)在答题卡上相应题目的答题区域内作答. 18.(9分)计算: 4)25(2421801-+--⨯+÷-.A BCD E (第12题图)(第17题图)(第7题图)19.(9分)先化简,再求值:2)2()1)(1(+++-x x x ,其中23-=x . 20.(9分)已知:如图,E 、F 是□ABCD 的对角线AC 上两点,BE DF //.求证:CF AE =.21.(9分)在一个不透明的布袋里,装有红色和黑色小球(除颜色外其余都相同)各2个,甲同学从中任意摸出一个球.(1)甲同学摸出红球的概率为 ;(2)甲乙两人约定如下:甲同学先随机摸出一个小球(不放回),乙同学再随机摸出一个小球,若颜色相同,则甲获胜;若颜色不同,则乙获胜.请你通过列表或画树状图的方法,说明这个游戏是否公平.22.(9分)学校举办一年一届的科技文化艺术节活动,需制作一块活动展板,请来两名工人.已知师傅单独完成需4天,徒弟单独完成需6天. (1)两人合作需要 天完成;(2)现由徒弟先做1天,再两人合作,问:还需几天可以完成这项工作?。

2014年晋江初中质量检查数学试题及参考答案

2014年晋江初中质量检查数学试题及参考答案

C(第7题图)2014年晋江市初中学业质量检查数 学 试 题(试卷满分:150分;考试时间:120分钟)一、选择题(每小题3分,共21分.)每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分.1.51-的绝对值是( ). A .51 B .5- C .51- D .52.已知在ABC ∆中,B A C ∠+∠=∠,则ABC ∆的形状是( ).A .等边三角形B .锐角三角形C .直角三角形D .钝角三角形 3.如图,是由5个相同的小正方体搭成的几何体,那么这个几何体的俯视图是( ).4.若x y >,则下列式子错误..的是( ). A .1212x y ->- B .22x y +>+ C .22x y -<- D .22x y> 5. 已知⊙1O 与⊙2O 相切,它们的半径分别是4、r ,且圆心距=21O O 7,则r 可能是下列的( ).A .3B .11C .3或11D .3、-3或116.某班级第一小组7名同学积极捐出自己的零花钱支持地震灾区,他们捐款的数额分别是(单位:元)100,40,100,60,50,100,200,这组数据的众数和中位数分别是( ). A .100元,40元 B .100元,60元 C .200元,100元 D .100元,100元7.如图,点A 、O 、C 三点在同一条直线上,射线OB 在AOC ∠的内部,且射线OM 、射线ON 分别平分AOB ∠与BOC ∠,设y MOB =∠°,x BON =∠°,则y 与x 的函数关系的图象是((第3题图)A .C . B .D .A.B. C.D.(第16题图)(第12题图)二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答. 8.5的相反数是_______. 9.计算:._______222=--+-ya yy a a10.分解因式:._________91242=+-x x11.据报道,在2014年,晋江市教育总投入预计为2 796 000 0002 796 000 000元用科学记数法表示为___________元.12.如图,在等腰ABC ∆中,AC AB =,BC AD ⊥,若︒=∠20BAD 则______=∠BAC 度.13.正n 边形的每个外角都是︒45,则_____=n .14.菱形的两条对角线的长分别为cm 6与cm 8,则菱形的周长为cm ______. 15.如图,在边长为1的33⨯的方格中,点B 、O 都在格点上,则劣弧的长是________.16.如图,在四边形中,M 、N 、P 、Q 分别是AD 、AB 、BC 、CD 的中点,且对角线BD AC ⊥,3:4:=BD AC ,28=+BD AC ,则_______:=QP MQ ,则四边形MNPQ 的面积是 .17.如图,在等腰梯形ABCD 中,AD ∥BC ,DC AD AB ==,︒=∠60B ,BC MC NC 4121==,现有P 、Q 两个动点 分别从点A 、N 同时沿梯形的边开始移动,点P 依顺时针 方向环行,点Q 依逆时针方向环行,若点P 的速度与点Q 的速度之比为3:2,则点P 、点Q 第1次相遇的位置是_____点;第2014次相遇在_____点.BC ABCD (第15题图)O(第17题图)三、解答题(共89分)在答题卡上相应题目的答题区域内作答. 18.(9分)计算:()1335416327---+⨯-÷-.19.(9分)先化简,再求值:()()()2322---+a a a ,其中32-=a .20.(9分)如图,在□ABCD 中,点E 、点F 分别在AD 、CB 的延长线上,且BF DE =, 连结EF 分别交AB 、CD 于点H 、点G . 求证:EAH ∆≌FCG ∆.21.(9分)在一个不透明的布袋中,装有三个小球,小球上分别标有数字“1”、“2”和“3”,它们除了数字不同外,其余都相同.(1)随机地从布袋中摸出一个小球,则摸出的球为“3”的概率是多少?(2)若第一次从布袋中随机摸出一个小球,设记下的数字为x ,再将此球放回盒中,第二次再从布袋中随机抽取一张,设记下的数字为y ,请用画树状图或列表法表示出上述情况的所有等可能结果,并求出3>+y x 的概率.22.(9分)今年植树节,某校组织师生开展植树造林活动,为了了解全校1200名学生的植树情况,随机抽样调查部分学生的植树情况,制成如下统计表和条形统计图(均不完整).ABCDE GFH(1)将统计表和条形统计图补充完整; (2)求所抽样的学生植树数量的平均数;(3)若植树数量不少于5棵的记为“表现优秀”,试根据抽样数据,估计该校1200名学生“表现优秀”的人数.23.(9分)某水果店老板用400元购进一批葡萄,由于葡萄新鲜,很快售完,老板又用500元购进第二批葡萄,所购数量与第一批相同,但每千克比第一批多了2元. (1)求:第一批葡萄进价每千克多少元?(请列方程求解)(2)若水果店老板以每千克11元的价格将两批葡萄全部售出,可以盈利多少元?24.(9分)已知:直线243+=x y 与双曲线()0>=k xky 相交于点A 、B ,且点A 的纵坐标为1-.M(1)求双曲线的解析式;(2)设直线AB 与x 轴、y 轴分别相交于点D 、C ,过点B 作AB BP ⊥,交y 轴于点P ,求BPC ∠tan 的值.25. (13分)如图,已知抛物线c x x y ++-=22经过点()3,0C ,且与x 轴交于A 、B 两点(点A 在点B 的左侧),线段BC 与抛物线的对称轴相交于点P .M 、N 分别是线段OC 和x 轴上的动点,运动时保持︒=∠90MPN 不变. (1)求抛物线的解析式;(2)①试猜想PN 与PM ②在①的前提下,连结MN ,设m OM =MPN ∆的面积为S ,求S 的最大值.26. (13分)如图1,在平面直角坐标系中,等边OAB ∆的顶点)0,6(-A ,顶点B 在第二象限,顶点O 为坐标原点,过点B 作OA BC //交y 轴于点C . (1)填空:点B 的坐标是________;(2)若点Q 是线段OB 上的一点,且OB OQ 31=,过点Q 作直线l 分别与直线AO 、 直线BC 交于点H 、G ,以点O 为圆心,OH 的长为半径作⊙O .① 设点G 的横坐标为x ,当点G 在直线..BC 上移动,试探究:当x 为何值时,⊙O 与直线BC 、直线AB 都分别相切?② 过点G 作OC GD //,交x 轴于点D ,若线段..GD 与⊙O 有公共点P ,且点M (1,1),探求:PM PO +2的最小值.(图1)x(备用图)2014年初中学业质量检查数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分. (三)以下解答各行右端所注分数表示正确做完该步应得的累计分数.一、选择题(每小题3分,共21分)1. A ;2. C ;3. D ;4. A ;5. C ;6.D ;7. B ;二、填空题(每小题4分,共40分)8. 5-; 9. 1; 10. ()232-x ; 11. 910796.2⨯; 12. 40; 13. 8;14. 20; 15.22π; 16. 3:4 48; 17. D C . 三、解答题(共89分)18.(本小题9分)解:原式1543-+-=…………………………………………………………………………………………8分3= ……………………………………………………………………………………………………9分19.(本小题9分)解:原式=()96422+---a a a ………………………………………………………………………………4分= 96422-+--a a a ………………………………………………………………………………5分=136-a ………………………………………………………………………………………………6分当32-=a 时,原式=13326-⎪⎭⎫⎝⎛-⨯ 17-=…………………………………………………………………………………9分20.(本小题9分)(1)证明:∵四边形ABCD 是平行四边形,∴CB AD =,AD ∥CB ,C A ∠=∠………………………………………3分 ∴F E ∠=∠ …………………………………………………………………4分 ∵BF DE =,∴BF CB DE AD +=+, 即CF AE = …………………………………6分在EAH ∆和FCG ∆中,F E ∠=∠,CF AE =,C A ∠=∠,∴EAH ∆≌FCG ∆()ASA …………………………………………………9分ABCDE GFH21.(本小题9分) 解: (1)31;………………………………………………………………………………………………………………3分 (2)(解法一)列举所有等可能结果,画出树状图如下:………………………………………………………………………………………………………………………6分 由上图可知,共有9种等可能结果,其中3>+y x 的情况有6种.∴()32963==>+y x P …………………………………………………………………………………………………9分………………………………………………………………………………………………………………………6分 由上图可知,共有9种等可能结果,其中3>+y x 的情况有6种.∴()32963==>+y x P …………………………………………………………………………………………………9分 22.(本小题9分)(1)0.4 15 50; ……………………………………………………3分 补图如图所示 …………………………………………………………5分 (2)6.45061051542035=⨯+⨯+⨯+⨯(棵)……………………7分(3)由样本的数据知,“表现优秀”的百分率为5.02.03.0=+ 由此可以估计该校1200名学生“表现优秀”的人数:6005.01200=⨯(人)……………………………………………………………9分23(本小题9分)解:(1)设第一批葡萄进价每千克x 元,依题意得 ………………………………………………………1分1 2 3 数字x 数字y2 3 1 2 3 1 2 314005002x x =+ …………………………………………………………………………………3 解得:8x =,…………………………………………………………………………………5 经检验8x =是原方程的解,且符合题意答:第一批葡萄进价每千克8元. ………………………………………………………………6分 (2) 由(1)知508400=,20050040011250)=(+-⨯⨯ 答:可盈利200元 ……………………………………9分 24(本小题9分) 解:(1)把1-=y 代入243+=x y ,得:4-=x ∴点A 的坐标为()1,4--…………………………………………………………………………………………2分把()1,4--代入xk y =,得:41-=-k ,∴4=k∴双曲线的解析式为:xy 4= …………………………………………………………………………………………………………4分(2)∵AB BP ⊥,∴︒=∠90PBC ,∴︒=∠+∠90PCB BPC∵CO DO ⊥,∴︒=∠90DOC ,︒=∠+∠90DCO CDO ,又PCB DCO ∠=∠∴CDO BPC ∠=∠,CDO BPC ∠=∠tan tan …………………………………………………………………………………………5分在243+=x y 中,令0=x ,则2=y ,∴2=OC ,令0=y ,则38-=x ,∴38=DO ,……………………………………………………………………………7分在DOC Rt ∆中,43382tan tan ===∠=∠DOOC CDO BPC .………………………………………………9分 25.(本小题13分)解:(1)把点()3,0C 代入c x x y ++-=22得:3=c∴抛物线的解析式是322++-=x x y .…………………………………………………………………………3分 (2) ①猜想PM PN 2=,理由如下:……………………………………………………………………………4分令0=y ,则0322=++-x x ,解得:11-=x ,32=x∴()0,1-A ,()0,3B 设直线CB 的解析式为b kx y +=()0≠k ,∴⎩⎨⎧=+=03,3b k b ,解得:⎩⎨⎧=-=31b k ,∴直线CB 的解析式为3+-=x y抛物线322++-=x x y 的对称轴为直线1=x ,∴当1=x 时,231=+-=y ,∴()2,1P ,…………………………………………………………………………………7分 作y PE ⊥轴于点E ,如图1,设抛物线的对称轴与x 轴相交于点F ,则四边形PEOF 是矩形. ∴1=PE ,2=PF ∴︒=∠+∠90MPF EPM ∵︒=∠90MPN ,∴︒=∠+∠90FPN MPF ,∴FPN EPM ∠=∠ 又∵︒=∠=∠90PFN PEM ,∴PEM ∆∽PFN ∆ ∴PN PM PF PE =,∵()2,1P ,∴1=PE ,2=PF ,∴21=PN PM ,即PM PN 2=.……………………………………………………10分②∵m OM =,∴()m M ,0,∴m EM -=2,1=PE 在PEM Rt ∆中,由勾股定理得:()5421222+-=-+=m m m PM542212122+-==⋅=⋅==∆m m PM PM PM PN PM S S PMN ∴()122+-=m S ()30≤≤m当20≤≤m 时,S 随着m 的增大而减小,当0=m 时,S 有最大值,5=最大值S . 当32≤≤m 时,S 随着m 的增大而增大,当3=m 时,S 有最大值,2=最大值S综上,当30≤≤m 时,即0=m ,5=最大值S ………………………………………………………………………………………………13分 26.(本小题13分)解: (1)()33,3-B ……………………………………………………………………………………………3分 (2)解:①作AB OT ⊥于点T ,OC AO ⊥,OA BC // ∴OC BC ⊥OAB ∆是等边三角形, ∴︒=∠=∠60ABO BOA , OA BC //,∴CBO BOA ∠=∠,∴CBO ABO ∠=∠,即OB 平分ABC ∠∴OC OT =……………………………………………………………………………………………………4分 分两种情况讨论:(i)当点G 在点B 的右侧时,如图1所示 当OT OC OH ==时,⊙O 与直线BC 、直线AB 都分33==OC OH ,M数学试题参考答案及评分标准 第 1 页 共 5 页∴QBG ∆∽QOH ∆∴BQ OQ BG OH =,又OB OQ 31=,则21=BQ OQ∴2133==BQ OQ BG ,即36=BG ,…………………………………………6分 ∴336-=-=BC BG CG ,∴当336-=x 时,⊙O 与直线BC 、直线AB切. ……………………………………………………………7(ii)当点G 在点B 的左侧时,如图2所示 当OT OC OH ==时,⊙O 与直线BC 、直线AB 此时33==OC OH ,同①可得:36=BG ,∴336+=+=BC BG CG∴当336--=x 时,⊙O 与直线BC 、直线AB切. 综上,336-=x 或336--=x 时⊙O 与直线BC 、别相切.②解: 由①可得21=BG OH ,即21=BG OP PM BG PM OP +=+∴2 如图3所示,过点M 作直线y MN ⊥轴于点N ,交GD 于点K ,则四边形GCNK 为矩形 CG NK =∴KM BG PM BG PM PO +≥+=+∴2当点P 在y 轴的左侧且与点K 重合时,如图4,此时12=-=+=+=+∴B M x x KM BG PM BG PM PO ∴当点P 在y 轴的左侧且与点K 重合时,PM PO +2最小值为4. …………………………………………………………13分。

晋江初三数学中考试卷

晋江初三数学中考试卷

1. 下列数中,既是质数又是合数的是()A. 4B. 6C. 9D. 152. 下列图形中,既是轴对称图形又是中心对称图形的是()A. 矩形B. 正方形C. 圆D. 三角形3. 已知二次函数y=ax^2+bx+c(a≠0),若a>0,b=0,则该函数的图像()A. 开口向上,顶点在x轴上B. 开口向下,顶点在x轴上C. 开口向上,顶点在y轴上D. 开口向下,顶点在y轴上4. 在直角三角形ABC中,∠C=90°,AC=3,BC=4,则AB的长是()A. 5B. 6C. 7D. 85. 已知一元二次方程x^2-5x+6=0,则该方程的解是()A. x1=2,x2=3B. x1=3,x2=2C. x1=4,x2=1D. x1=1,x2=46. 在等差数列{an}中,若a1=3,d=2,则第10项an的值是()A. 21B. 22C. 23D. 247. 已知函数f(x)=x^2-4x+3,则f(-1)的值是()A. -2B. -3C. -4D. -58. 在平面直角坐标系中,点P(2,3)关于x轴的对称点是()A. (2,-3)B. (-2,3)C. (2,3)D. (-2,-3)9. 下列命题中,正确的是()A. 平行四边形对边平行B. 矩形对角线相等C. 菱形对角线互相垂直D. 等腰三角形底角相等10. 下列等式中,正确的是()A. (a+b)^2=a^2+2ab+b^2B. (a-b)^2=a^2-2ab+b^2C. (a+b)^2=a^2+2ab-b^2D. (a-b)^2=a^2-2ab-b^2二、填空题(每题5分,共30分)11. 在△ABC中,∠A=45°,∠B=60°,则∠C=________°。

12. 若x^2-5x+6=0,则x=________。

13. 已知等差数列{an}中,a1=3,d=2,则第n项an=________。

14. 在平面直角坐标系中,点P(2,3)关于y轴的对称点是________。

2014年晋江市初中学业质量检查数学试题(含答案)

2014年晋江市初中学业质量检查数学试题(含答案)

(第16题图)C(第12题图)C(第7题图)2014年晋江市初中学业质量检查数 学 试 题(试卷满分:150分;考试时间:120分钟)一、选择题(每小题3分,共21分)1.51-的绝对值是( )A .51B .5-C .51-D .52.已知在ABC ∆中,B A C ∠+∠=∠,则ABC ∆的形状是( )A .等边三角形B .锐角三角形C .直角三角形D .钝角三角形3.如图,是由5个相同的小正方体搭成的几何体,那么这个几何体的俯视图是( )A .B .C .D . 4.若x y >,则下列式子错误..的是( ) A .1212x y ->- B .22x y +>+ C .22x y -<- D .22x y>5.已知⊙1O 与⊙2O 相切,它们的半径分别是4、r ,且圆心距=21O O 7,则r 可能是下列的( )A .3B .11C .3或11D .3、-3或116.某班级第一小组7名同学积极捐出自己的零花钱支持地震灾区,他们捐款的数额分别是 (单位:元)100,40,100,60,50,100,200,这组数据的众数和中位数分别是( ) A .100元,40元 B .100元,60元C .200元,100元D .100元,100元 7.如图,点A 、O 、C 三点在同一条直线上,射线OB 在∠AOC 的内部,且射线OM 、射线ON 分别平分∠AOC 与∠BOC ,设∠AOC = y °,∠BON= x °,则y 与x 的函 数关系的图象是( )二、填空题(每小题4分,共40分) 8的相反数是 .9.计算:222a ya y a y-+=-- .10.分解因式:24129x x -+= .11.据报道,在2014年,晋江市教育总投入预计为2 796 000 000元,则2 796 000 000元用科学记数法表示为 元.12.如图,在等腰△ABC 中,AB =AC ,AD ⊥BC ,若∠BAD =20°,则∠BAC = 度.13.正n 边形的每个外角都是45°,则n = .14.菱形的两条对角线的长分别为6cm 与8cm ,则菱形的周长为cm .15.如图,在边长为1的33⨯的方格中,点B 、O 都在格点上, 则劣弧BC 的长是 .16.如图,在四边形ABCD 中,M 、N 、P 、Q 分别是AD 、AB 、BC 、CD 的中点,且对角线AC ⊥BD ,:4:3AC BD =, AC+BD=28,则:MQ QP = ,则四边形MNPQ 的面积是 .17.如图,在等腰梯形ABCD 中,AD ∥BC ,AB AD DC ==,60B ∠=︒,1124NC MC BC ==,现有P 、Q 两个动点分别从点A 、N 同时沿梯形的边开始移动,点P 依顺时针方向环 行,点Q 依逆时针方向环行,若点P 的速度与点Q 的速度之 比为2:3,则点P 、点Q 第1次相遇的位置是点;第2014次相遇在点. 三、解答题(共89分)18.(9(0116453⨯+---.19.(9分)先化简,再求值:()()()2223aa a +---,其中23a =-.(第3题图)A .B .C .D .(第15题图)OC(第17题图)学校: 班级: 姓名: 座号: (密 封 线 内 请 不 要 答 题) …………⊙…………⊙……密………⊙………封……⊙………装……⊙………订……⊙………线……⊙……………⊙…………( 密 封 线 内 请 不 要 答 题 ) …………⊙…………密…………⊙…………封…………⊙…………装…………⊙…………订…………⊙…………线…………⊙………20.(9分)如图,在□ABCD 中,点E 、点F 分别在AD 、CB 的延长线上,且DE BF =,连结EF 分别交AB 、CD 于点H 、点G . 求证:△EAH ≌△FCG .21.(9分)在一个不透明的布袋中,装有三个小球,小球上分别标有数字“1”、“2”和“3”,它们除了数字不同外,其余都相同.(1)随机地从布袋中摸出一个小球,则摸出的球为“3”的概率是多少?(2)若第一次从布袋中随机摸出一个小球,设记下的数字为x ,再将此球放回盒中,第二次再从布袋中随机抽取一张,设记下的数字为y ,请用画树状图或列表法表示出上述情况的所有等可能结果,并求出3x y +>的概率. 22.(9分)今年植树节,某校组织师生开展植树造林活动,为了了解全校1200名学生的植树情况,随机抽样调查部分学生的植树情况,制成如下统计表和条形统计图(均不完整).(1)将统计表和条形统计图补充完整; (2)求所抽样的学生植树数量的平均数;(3)若植树数量不少于5棵的记为“表现优秀”,试根据抽样数据,估计该校1200名学生“表现优秀”的人数.23.(9分)某水果店老板用400元购进一批葡萄,由于葡萄新鲜,很快售完,老板又用500元购进第二批葡萄,所购数量与第一批相同,但每千克比第一批多了2元. (1)求:第一批葡萄进价每千克多少元?(请列方程求解)(2)若水果店老板以每千克11元的价格将两批葡萄全部售出,可以盈利多少元?24.(9分)已知:直线324y x =+与双曲线()0ky k x=>相交于点A 、B ,且点A 的纵坐标 为1-.(1)求双曲线的解析式;(2)设直线AB 与x 轴、y 轴分别相交于点D 、C ,过点B 作BP AB ⊥,交y 轴于点P ,求tan BPC ∠的值.A B CD E G F HM25.(13分)如图,已知抛物线22y x x c =-++经过点()0,3C ,且与x 轴交于A 、B 两点 (点A 在点B 的左侧),线段BC 与抛物线的对称轴相交于点P .M 、N 分别是线段OC和x 轴上的动点,运动时保持90MPN ∠=︒不变. (1)求抛物线的解析式;(2)①试猜想PN 与PM 的数量关系,并说明理由;②在①的前提下,连结MN ,设OM m =.△MPN 的面积为S ,求S 的最大值.26.(13分)如图1,在平面直角坐标系中,等边△OAB 的顶点(6,0)A -,顶点B 在第二象限,顶点O 为坐标原点,过点B 作//BC OA 交y 轴于点C . (1)填空:点B 的坐标是________;(2)若点Q 是线段OB 上的一点,且13OQ OB =,过点Q 作直线l 分别与直线AO 、直线BC 交于点H 、G ,以点O 为圆心,OH 的长为半径作⊙O . ①设点G 的横坐标为x ,当点G 在直线..BC 上移动,试探究:当x 为何值时,⊙O 与直线BC 、直线AB 都分别相切?②过点G 作GD ∥OC ,交x 轴于点D ,若线段..GD 与⊙O 有公共点P ,且点M (1,1),探求:2PO PM +的最小值.(图1)x(备用图)学校: 班级: 姓名: 座号: (密 封 线 内 请 不 要 答 题) …………⊙…………⊙……密………⊙………封……⊙………装……⊙………订……⊙………线……⊙……………⊙…………1 2 3 数字x 数字y2 3 1 2 3 1 2 3 1 ABCDE GFH 2014年初中学业质量检查数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分. (三)以下解答各行右端所注分数表示正确做完该步应得的累计分数.一、选择题(每小题3分,共21分)1.A ; 2.C ; 3.D ; 4.A ; 5.C ; 6.D ;7.B ;二、填空题(每小题4分,共40分)8.; 9.1; 10.()223x -; 11.92.79610⨯; 12.40; 13.8;14.20; 15 16.4:348;17.D ;C . 三、解答题(共89分)18.(本小题9分)解:原式3451=-+-………………………………………………………8分3= …………………………………………………………………9分19.(本小题9分) 解:原式=()22469a a a ---+ ………………………………………………4分= 22469a a a --+- ………………………………………………5分=613a - ………………………………………………………………6分当23a =-时,原式=26133⎛⎫⨯-- ⎪⎝⎭17=-…………………………………9分20.(本小题9分)证明:∵四边形ABCD 是平行四边形,∴AD CB =,AD ∥CB ,A C ∠=∠………3分∴E F ∠=∠……………………………………4分 ∵DE BF =,∴AD DE CB BF +=+,即AE CF =……6分 在△EAH 和△FCG 中,E F ∠=∠,AE CF =,A C ∠=∠,∴△EAH ≌△FCG ()ASA ………………9分21.(本小题9分) 解:(1)13;…………………………………………………………………………………3分(2)(解法一)列举所有等可能结果,画出树状图如下:…………………6分由上图可知,共有9种等可能结果,其中3>+y x 的情况有6种.∴()36293x y P +>==…………………………………………………………………9分(解法二)(1)列表如下由上图可知,共有9种等可能结果,其中3>+y x 的情况有6种. ∴()32963==>+y x P …………………………………………………9分 22.(本小题9分)(1)0.4 15 50;………………………3分补图如图所示………………………5分(2)532041551064.650⨯+⨯+⨯+⨯=(棵)…7分(3)由样本的数据知,“表现优秀”的百分率为0.30.20.5+=由此可以估计该校1200名学生“表现优秀”的人数:12000.5600⨯=(人)………………………………9分……………………6分M23(本小题9分) 解:(1)设第一批葡萄进价每千克x 元,依题意得 ……………………1分4005002x x =+…………………………………………………3 解得:8x =,……………………………………………………5 经检验8x =是原方程的解,且符合题意答:第一批葡萄进价每千克8元.……………………………………6分(2) 由(1)知400508,50211400500200⨯⨯-+()= 答:可盈利200元……………………………………………………9分 24(本小题9分)解:(1)把1y =-代入324y x =+,得:4x =-∴点A 的坐标为()4,1--……………………………………………………2分 把()4,1--代入k y x =,得:14k -=-, ∴4k =∴双曲线的解析式为:4y x=……………………………………………4分 (2)∵BP AB ⊥,∴90PBC ∠=︒,∴90BPC PCB ∠+∠=︒∵DO CO ⊥,∴90DOC ∠=︒,90CDO DCO ∠+∠=︒,又DCO PCB ∠=∠ ∴BPC CDO ∠=∠,tan tan BPC CDO ∠=∠…………………………5分在324y x =+中,令0x =,则2y =,∴2OC =,令0y =,则83x =-,∴83DO =,……………………………………7分在Rt DOC ∆中,23tan tan 843OC BPC CDO DO ∠=∠===.…………9分 25.(本小题13分)解:(1)把点()0,3C 代入22y x x c =-++得:3c =∴抛物线的解析式是223y x x =-++.………………………………3分 (2)①猜想2PN PM =,理由如下: ……………………………………4分令0y =,则2230x x -++=,解得:11x =-,23x = ∴()1,0A -,()3,0B设直线CB 的解析式为y kx b =+()0k ≠,∴3,30b k b =⎧⎨+=⎩,解得:13k b =-⎧⎨=⎩, ∴直线CB 的解析式为3y x =-+抛物线223y x x =-++的对称轴为直线1x =, ∴当1x =时,132y =-+=,∴()1,2P ,……………………………7分 作PE y ⊥轴于点E ,如图1,设抛物线的 对称轴与x 轴相交于点F ,则四边形是矩形.∴1PE =,2PF =∴90EPM MPF ∠+∠=︒ ∵90MPN ∠=︒,∴90MPF FPN ∠+∠=︒, ∴EPM FPN ∠=∠又∵90PEM PFN ∠=∠=︒, ∴PEM ∆∽PFN ∆ ∴PE PMPF PN=, ∵()1,2P ,∴1PE =,2PF =, ∴12PM PN =,即2PNPM =.………………………10分②∵OM m =,∴()0,M m ,∴2EM m =-,1PE =在Rt PEM ∆中,由勾股定理得:PM =221124522PMN S S PM PN PM PM PM m m ∆==⋅=⋅==-+∴()221S m =-+()03m ≤≤当02m ≤≤时,S 随着m 的增大而减小,当0m =时,S 有最大值,5S 最大值=. 当23m ≤≤时,S 随着m 的增大而增大,当3m =时,S 有最大值,2S 最大值= 综上,当03m ≤≤时,即0m =,5S 最大值=…………………………………13分26.(本小题13分)解:(1)(3,B-(2)解:①作OT AB⊥于点TAO OC⊥,//BC OAOAB∆是等边三角形,∴60BOA ABO∠=∠=︒,//BC OA,∴BOA∠=∴ABO CBO∠=∠,即OB∴OT OC=分两种情况讨论:(i)当点G在点B当OH OC OT==时,⊙此时OH OC==//BC OA∴QBG∆∽QOH∆∴OH OQBG BQ=,又13OQ=12OQBQ==,即BG∴CG BG BC=-=∴当3x=时,⊙O(ii)当点G在点B当OH OC OT==时,⊙此时OH OC==同①可得:BG=,∴CG BG BC=+=∴当3x=-时,⊙O直线AB都分别相切.综上,3x=或x=-。

2014年福建省泉州市中考数学试卷

2014年福建省泉州市中考数学试卷

2014年福建省泉州市中考数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共7小题,共21.0分)1.2014的相反数是()A.2014B.-2014C.D.【答案】B【解析】解:2014的相反数是-2014.故选:B.根据只有符号不同的两个数互为相反数,可得一个数的相反数.本题考查了相反数的概念,在一个数的前面加上负号就是这个数的相反数.2.下列运算正确的是()A.a3+a3=a6B.2(a+1)=2a+1C.(ab)2=a2b2D.a6÷a3=a2【答案】C【解析】解:A、a3+a3=2a3,故A选项错误;B、2(a+1)=2a+2≠2a+1,故B选项错误;C、(ab)2=a2b2,故C选项正确;D、a6÷a3=a3≠a2,故D选项错误.故选:C.根据二次根式的运算法则,乘法分配律,幂的乘方及同底数幂的除法法则判断.本题主要考查了二次根式的运算法则,乘法分配律,幂的乘方及同底数幂的除法法则,解题的关键是熟记法则运算3.如图的立体图形的左视图可能是()A. B. C. D.【答案】A【解析】解:此立体图形的左视图是直角三角形,故选:A.左视图是从物体左面看,所得到的图形.本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.七边形外角和为()A.180°B.360°C.900°D.1260°【答案】B【解析】解:七边形的外角和为360°.故选:B.根据多边形的外角和等于360度即可求解.本题考查了多边形的内角和外角的知识,属于基础题,掌握多边形的外角和等于360°是解题的关键.5.正方形的对称轴的条数为()A.1B.2C.3D.4【答案】D【解析】解:正方形有4条对称轴.故选:D.根据正方形的对称性解答.本题考查了轴对称的性质,熟记正方形的对称性是解题的关键.6.分解因式x2y-y3结果正确的是()A.y(x+y)2B.y(x-y)2C.y(x2-y2)D.y(x+y)(x-y)【答案】D【解析】解:x2y-y3=y(x2-y2)=y(x+y)(x-y).故选:D.首先提取公因式y,进而利用平方差公式进行分解即可.此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题关键.7.在同一平面直角坐标系中,函数y=mx+m与y=(m≠0)的图象可能是()A. B. C. D.【答案】A【解析】解:A、由函数y=mx+m的图象可知m>0,由函数y=的图象可知m>0,故A选项正确;B、由函数y=mx+m的图象可知m<0,由函数y=的图象可知m>0,相矛盾,故B选项错误;C、由函数y=mx+m的图象y随x的增大而减小,则m<0,而该直线与y轴交于正半轴,则m>0,相矛盾,故C选项错误;D、由函数y=mx+m的图象y随x的增大而增大,则m>0,而该直线与y轴交于负半轴,则m<0,相矛盾,故D选项错误;故选:A.先根据一次函数的性质判断出m取值,再根据反比例函数的性质判断出m的取值,二者一致的即为正确答案.本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.二、填空题(本大题共10小题,共40.0分)8.2014年6月,阿里巴巴注资1200000000元入股广州恒大,将数据1200000000用科学记数法表示为______ .【答案】1.2×109【解析】解:将1200000000用科学记数法表示为:1.2×109.故答案为:1.2×109.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.如图,直线AB与CD相交于点O,∠AOD=50°,则∠BOC=______ °.【答案】50【解析】解;∵∠BOC与∠AOD是对顶角,∴∠BOC=∠AOD=50°,故答案为:50.根据对顶角相等,可得答案.本题考查了对顶角与邻补角,对顶角相等是解题关键.10.计算:+= ______ .【答案】1【解析】解:原式==1,故答案为:1.根据同分母分式相加,分母不变分子相加,可得答案.本题考查了分式的加减,同分母分式相加,分母不变分子相加.11.方程组的解是______ .【答案】【解析】解:,①+②得:3x=6,即x=2,将x=2代入①得:y=2,则方程组的解为.故答案为:.方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.12.在综合实践课上,六名同学的作品数量(单位:件)分别为:3、5、2、5、5、7,则这组数据的众数为______ 件.【答案】5【解析】解:∵5出现了3次,出现的次数最多,∴这组数据的众数为5;故答案为:5.根据众数的定义即一组数据中出现次数最多的数,即可得出答案.此题考查了众数,众数是一组数据中出现次数最多的数,注意众数不止一个.13.如图,直线a∥b,直线c与直线a,b都相交,∠1=65°,则∠2= ______ °.【答案】65【解析】解:∵直线a∥b,∴∠1=∠2,∵∠1=65°,∴∠2=65°,故答案为:65.根据平行线的性质得出∠1=∠2,代入求出即可.本题考查了平行线的性质的应用,注意:两直线平行,同位角相等.14.如图,R t△ABC中,∠ACB=90°,D为斜边AB的中点,AB=10cm,则CD的长为______ cm.【答案】5【解析】解:∵∠ACB=90°,D为斜边AB的中点,∴CD=AB=×10=5cm.故答案为:5.根据直角三角形斜边上的中线等于斜边的一半可得CD=AB.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.15.如图,在△ABC中,∠C=40°,CA=CB,则△ABC的外角∠ABD= ______ °.【答案】110【解析】解:∵CA=CB,∴∠A=∠ABC,∵∠C=40°,∴∠A=70°∴∠ABD=∠A+∠C=110°.故答案为:110.先根据等腰三角形的性质和三角形的内角和定理求出∠A,再根据三角形的外角等于等于与它不相邻的两个内角的和,进行计算即可.此题考查了等腰三角形的性质,用到的知识点是等腰三角形的性质、三角形的外角等于等于与它不相邻的两个内角的和.16.已知:m、n为两个连续的整数,且m<<n,则m+n= ______ .【答案】7【解析】解:∵9<11<16,∴3<<4,∴m=3,n=4,∴m+n=3+4=7.故答案为:7.先估算出的取值范围,得出m、n的值,进而可得出结论.本题考查的是估算无理数的大小,先根据题意算出的取值范围是解答此题的关键.17.如图,有一直径是米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,则:(1)AB的长为______ 米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为______ 米.【答案】1;【解析】解:(1)∵∠BAC=90°,∴BC为⊙O的直径,即BC=,∴AB=BC=1;(2)设所得圆锥的底面圆的半径为r,根据题意得2πr=,解得r=.故答案为:1,.(1)根据圆周角定理由∠BAC=90°得BC为⊙O的直径,即BC=,根据等腰直角三角形的性质得AB=1;(2)由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,则2πr=,然后解方程即可.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了圆周角定理.三、解答题(本大题共1小题,共9.0分)18.计算:(2-1)0+|-6|-8×4-1+.【答案】解:原式=1+6-8×+4=1+6-2+4=9.【解析】本题涉及零指数幂、绝对值、负指数幂、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、绝对值、负指数幂、二次根式化简等考点的运算.四、计算题(本大题共1小题,共9.0分)19.先化简,再求值:(a+2)2+a(a-4),其中a=.【答案】解:(a+2)2+a(a-4)=a2+4a+4+a2-4a=2a2+4,当a=时,原式=2×()2+4=10.【解析】首先利用完全平方公式和整式的乘法计算,再进一步合并得出结果,最后代入求得数值即可.此题考查整式的化简求值,注意先化简,再代入求值.五、解答题(本大题共7小题,共71.0分)20.已知:如图,在矩形ABCD中,点E,F分别在AB,CD边上,BE=DF,连接CE,AF.求证:AF=CE.【答案】证明:∵四边形ABCD是矩形,∴DC∥AB,DC=AB,∴CF∥AE,∵DF=BE,∴CF=AE,∴四边形AFCE是平行四边形,∴AF=CE.【解析】根据矩形的性质得出DC∥AB,DC=AB,求出CF=AE,CF∥AE,根据平行四边形的判定得出四边形AFCE是平行四边形,即可得出答案.本题考查了平行四边形的性质和判定,矩形的性质的应用,注意:矩形的对边相等且平行,平行四边形的对边相等.21.在一个不透明的箱子里,装有红、白、黑各一个球,它们除了颜色之外没有其他区别.(1)随机地从箱子里取出1个球,则取出红球的概率是多少?(2)随机地从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示所有等可能的结果,并求两次取出相同颜色球的概率.【答案】解:(1)∵在一个不透明的箱子里,装有红、白、黑各一个球,它们除了颜色之外没有其他区别,∴随机地从箱子里取出1个球,则取出红球的概率是:;(2)画树状图得:∵共有9种等可能的结果,两次取出相同颜色球的有3种情况,∴两次取出相同颜色球的概率为:=.【解析】(1)由在一个不透明的箱子里,装有红、白、黑各一个球,它们除了颜色之外没有其他区别,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次取出相同颜色球的情况,再利用概率公式即可求得答案.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.如图,已知二次函数y=a(x-h)2+的图象经过原点O(0,0),A(2,0).(1)写出该函数图象的对称轴;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?【答案】解:(1)∵二次函数y=a(x-h)2+的图象经过原点O(0,0),A(2,0).解得:h=1,a=-,∴抛物线的对称轴为直线x=1;(2)点A′是该函数图象的顶点.理由如下:如图,作A′B⊥x轴于点B,∵线段OA绕点O逆时针旋转60°到OA′,∴OA′=OA=2,∠A′OA=60°,在R t△A′OB中,∠OA′B=30°,∴OB=OA′=1,∴A′B=OB=,∴A′点的坐标为(1,),∴点A′为抛物线y=-(x-1)2+的顶点.【解析】(1)由于抛物线过点O(0,0),A(2,0),根据抛物线的对称性得到抛物线的对称轴为直线x=1;(2)作A′B⊥x轴于B,先根据旋转的性质得OA′=OA=2,∠A′OA=60°,再根据含30度的直角三角形三边的关系得OB=OA′=1,A′B=OB=,则A′点的坐标为(1,),根据抛物线的顶点式可判断点A′为抛物线y=-(x-1)2+的顶点.本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(-,),对称轴直线x=-,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<-时,y随x的增大而减小;x>-时,y 随x的增大而增大;x=-时,y取得最小值,即顶点是抛物线的最低点.②当a <0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<-时,y随x的增大而增大;x >-时,y随x的增大而减小;x=-时,y取得最大值,即顶点是抛物线的最高点.也考查了旋转的性质.23.课外阅读是提高学生素养的重要途径.某校为了了解学生课外阅读情况,随机抽查了50名学生,统计他们平均每天课外阅读时间(t小时).根据t的长短分为A,B,C,D四类,下面是根据所抽查的人数绘制的两幅不完整的统计图表.请根据图中提供的信息,解答下面的问题:50名学生平均每天课外阅读时间统计表(1)求表格中的的值,并在图中补全条形统计图;(2)该校现有1300名学生,请你估计该校共有多少名学生课外阅读时间不少于1小时?【答案】解:(1)50-10-20-15=5(名),故a的值为5,条形统计图如下:(2)1300×=520(名),答:估计该校共有520名学生课外阅读时间不少于1小时.【解析】(1)用抽查的学生的总人数减去A,B,C三类的人数即为D类的人数也就是a的值,并补全统计图;(2)先求出课外阅读时间不少于1小时的学生占的比例,再乘以1300即可.本题主要考查样本的条形图的知识和分析问题以及解决问题的能力.24.某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B两处出发,沿轨道到达C处,B在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2= ______ 米/分;(2)写出d1与t的函数关系式:(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?【答案】40【解析】解:(1)乙的速度v2=120÷3=40(米/分),故答案为:40;(2)v1=1.5v2=1.5×40=60(米/分),60÷60=1(分钟),a=1,d1=;(3)d2=40t,当0≤t<1时,d2+d1>10,即-60t+60+40t>10,解得0≤t<2.5,∵0≤t<1,∴当0≤t<1时,两遥控车的信号不会产生相互干扰;当1≤t≤3时,d2-d1>10,即40t-(60t-60)>10,当1≤<时,两遥控车的信号不会产生相互干扰综上所述:当0≤t<2.5时,两遥控车的信号不会产生相互干扰.(1)根据路程与时间的关系,可得答案;(2)根据甲的速度是乙的速度的1.5倍,可得甲的速度,根据路程与时间的关系,可得a的值,根据待定系数法,可得答案;(3)根据两车的距离,可得不等式,根据解不等式,可得答案.本题考查了一次函数的应用,(1)利用了路程速度时间三者的关系,(2)分段函数分别利用待定系数法求解,(3)当0≤t<1时,d2+d1>10;当1≤t≤3时,d2-d1>10,分类讨论是解题关键.25.如图,在锐角三角形纸片ABC中,AC>BC,点D,E,F分别在边AB,BC,CA上.(1)已知:DE∥AC,DF∥BC.①判断四边形DECF一定是什么形状?②裁剪当AC=24cm,BC=20cm,∠ACB=45°时,请你探索:如何剪四边形DECF,能使它的面积最大,并证明你的结论;(2)折叠请你只用两次折叠,确定四边形的顶点D,E,C,F,使它恰好为菱形,并说明你的折法和理由.【答案】解:(1)如图1,①∵DE∥AC,DF∥BC,∴四边形DECF是平行四边形.②作AG⊥BC,交BC于G,交DF于H,∵∠ACB=45°,AC=24cm∴AG==12cm,设DF=EC=x,平行四边形的高为h,则AH=12h,∵DF∥BC,∴△ADF∽△ABC,∴=,∵BC=20cm,即:=∴x=×20,∵S=xh=×20h=20h-h2.∴h=-=-=6,∵AG=12cm,∴AF=FC,∴在AC中点处剪四边形DECF,能使它的面积最大.(2)①BC边向AC边折叠,使BC与AC重合,得到折痕交AB于D(CD为∠ACB的角平分线);②C点向AB边折叠,使C点与D点重合,得到折痕交BC边于E,交AC边于F;通过上述两次折叠,得到点:DECF,组成的四边形为菱形.理由:∵CD和EF是四边形DECF对角线,而CD和EF互相垂直且平分,∴四边形DECF是菱形.(3)先折∠ACB的平分线(使CB落在CA上),折线与AB的交点为点D,再折DC的垂直平分线(使点C与点D重合),压平,折线与BC、CA的交点分别为E、F,展平后四边形DECF就是菱形.理由如下:由CB落在CA上,折现与AB的交点为点D,可得:∠ACD=∠BCD.由点C与点D重合,折线与BC、CA的交点分别为点E、F,可得:CF=DF=DE=CE,即四边形DECF为菱形.【解析】(1)①根据有两组对边互相平行的四边形是平行四边形即可求得,②根据△ADF∽△ABC推出对应边的相似比,然后进行转换,即可得出高h与x之间的函数关系式,根据平行四边形的面积公式,很容易得出面积S关于h的二次函数表达式,求出顶点坐标,就可得出面积s最大时h的值.(2)第一步BC边向AC边折叠,使BC与AC重合,得到折痕交AB于D(CD为∠ACB 对角线);第二步C点向AB边折叠,使C点与D点重合,得到折痕交BC边于E,交AC 边于F ;通过上述两次折叠,得到点:DECF ,组成的四边形为菱形.本题考查了相似三角形的判定及性质、菱形的判定、二次函数的最值.关键在于根据相似三角形及已知条件求出相关线段的表达式,求出二次函数表达式,即可求出结论.26.如图,直线y =-x +3与x ,y 轴分别交于点A ,B ,与反比例函数的图象交于点P (2,1).(1)求该反比例函数的关系式;(2)设PC ⊥y 轴于点C ,点A 关于y 轴的对称点为A ′;①求△A ′BC 的周长和sin ∠BA ′C 的值;②对大于1的常数m ,求x 轴上的点M 的坐标,使得sin ∠BMC= .【答案】解:(1)设反比例函数的关系式y = .∵点P (2,1)在反比例函数y = 的图象上,∴k =2×1=2.即反比例函数的关系式y =.(2)①过点C 作CD ⊥AB ,垂足为D ,如图1所示.当x =0时,y =0+3=3,则点B 的坐标为(0,3).OB=3.当y =0时,0=-x +3,解得x =3,则点A 的坐标为(3,0),OA=3.∵点A 关于y 轴的对称点为A ′,∴OA ′=OA=3.∵PC ⊥y 轴,点P (2,1),∴OC=1,PC=2.∴BC=2.∵∠AOB=90°,OA ′=OB=3,OC=1,∴A ′B=3 ,A ′C= .∴△A ′BC 的周长为3 + +2.∵S △A ′BC = BC •A ′O= A ′B •CD ,∴BC •A ′O=A ′B •CD .∴2×3=3 ×CD .∴CD= .∵CD ⊥A ′B ,∴sin ∠BA ′C= ′==.∴△A′BC的周长为3++2,sin∠BA′C的值为.②方法一:由(2)知,d=,设M(t,0),∴BC=2,OM=t,BM=,CM=,∴d=,∴sin∠BCM=,∴2tm=×,∴t4+(10-4m2)t2+9=0,t2=2m2-5±2,①t2=2m2-5+2,t2=(m2-1)+2+(m2-4),∴t2=(+)2∴t1=+,t2=--,②t2=2m2-5-2,t2=(m2-1)-2+(m2-4),∴t2=(-)2∴t1=-,t2=-+,综上所述:当1<m<2时,满足要求的点M不存在;当m≥2时,满足要求的点M的坐标为(-,0)、(+,0)、(-+,0)、(--,0).答题人:万老师方法二:当1<m<2时,作经过点B、C且半径为m的⊙E,连接CE并延长,交⊙E于点P,连接BP,过点E作EG⊥OB,垂足为G,过点E作EH⊥x轴,垂足为H,如图2①所示.∵CP是⊙E的直径,∴∠PBC=90°.∴sin∠BPC===.∵sin∠BMC=,∴∠BMC=∠BPC.∴点M在⊙E上.∵点M在x轴上∴点M是⊙E与x轴的交点.∵EG⊥BC,∴BG=GC=1.∴OG=2.∵∠EHO=∠GOH=∠OGE=90°,∴四边形OGEH是矩形.∴EH=OG=2,EG=OH.∵1<m<2,∴EH>EC.∴⊙E与x轴相离.∴x轴上不存在点M,使得sin∠BMC=.②当m=2时,EH=EC.∴⊙E与x轴相切.Ⅰ.切点在x轴的正半轴上时,如图2②所示.∴点M与点H重合.∵EG⊥OG,GC=1,EC=m,∴EG==.∴OM=OH=EG=.∴点M的坐标为(,0).Ⅱ.切点在x轴的负半轴上时,同理可得:点M的坐标为(-,0).③当m>2时,EH<EC.∴⊙E与x轴相交.Ⅰ.交点在x轴的正半轴上时,设交点为M、M′,连接EM,如图2③所示.∵∠EHM=90°,EM=m,EH=2,∴MH===.∵EH⊥MM′,∴MH=M′H.∴M′H═.∵∠EGC=90°,GC=1,EC=m,∴EG===.∴OH=EG=.∴OM=OH-MH=-,∴OM′=OH+HM′=+,∴M(-,0)、M′(+,0).Ⅱ.交点在x轴的负半轴上时,同理可得:M(-+,0)、M′(--,0).综上所述:当1<m<2时,满足要求的点M不存在;当m≥2时,满足要求的点M的坐标为(-,0)、(+,0)、(-+,0)、(--,0).【解析】(1)设反比例函数的关系式y=,然后把点P的坐标(2,1)代入即可.(2)①先求出直线y=-x+3与x、y轴交点坐标,然后运用勾股定理即可求出△A′BC的周长;过点C作CD⊥AB,垂足为D,运用面积法可以求出CD长,从而求出sin∠BA′C 的值.②由于BC=2,sin∠BMC=,因此点M在以BC为弦,半径为m的⊙E上,因而点M应是⊙E与x轴的交点.然后对⊙E与x轴的位置关系进行讨论,只需运用矩形的判定与性质、勾股定理等知识就可求出满足要求的点M的坐标.本题考查了用待定系数法求反比例函数的关系式、勾股定理、三角函数的定义、矩形的判定与性质、直线与圆的位置关系、垂径定理等知识,考查了用面积法求三角形的高,考查了通过构造辅助圆解决问题,综合性比较强,难度系数比较大.由BC=2,sin∠BMC=联想到点M在以BC为弦,半径为m的⊙E上是解决本题的关键.。

2014年晋江市初中数学学业质量检查一(含答案)

2014年初中学业质量检查数学试题(试卷满分:150分;考试时间:120分钟)、选择题(每小题3分,共21分.)每小题有四个答案,其中有且只有一个答案是正确的,3 •如图,是由5个相同的小正方体搭成的几何体,那么这个几何体的俯视图是().6 •某班级第一小组7名同学积极捐出自己的零花钱支持地震灾区,他们捐款的数额分别是(单位:元)100 ,40 , 100 , 60 , 50, 100 , 200,这组数据的众数和中位数分别是().A. 100 元,40 元C. 200 元,100 元 D . 100 元,100 元7 .如图,点A、0、C三点在同一条直线上,射线OB在.AOC的内部,且射线OM、射线ON分别平分• AOB与• BOC,设• MOB = y °, • BON二x。

,则y与x的函数关系的图象是().9 .计算:加+ -y 2a - y 2a - y2请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分. 1的绝对值是(5 ).B. -52 .已知在ABC中, ■ C =/A • . B,则=ABC的形状是().A .等边三角形B •锐角三角形C.直角三角形D. 5D .钝角三角形(第3题图)A . B.C .D .4.若x y,则下列式子错误. 的是().A . 1 -2x 1 -2yB.x 2y 2 C . - 2x ::- 2y D .x25.已知O O1与O O2相切,它们的半径分别是4、r,且圆心距O1O2=7,则r可能是下列的()A . 3B.11 C . 3 或11 D . 3、-3 或11A. B. C.B . 100 元,60 元8 .寸5的相反数是________210.分解因式:4x -12x 9二11 .据报道,在2014年,晋江市教育总投入预计为 2 796 000 000 元,则32 796 000 000 元用科学记数法表示为 _____________ 元.12 •如图,在等腰 ABC 中,AB =AC , AD_BC ,若.BAD = 20 ,13 .正n 边形的每个外角都是 45。

2014年泉州市初中学业质量检查数学试题含答案(word版)

(第20题图)2014年福建省泉州市初中学业质量检查数 学 试 卷(试卷满分:150分;考试时间:120分钟) 友情提示:所有答案必须填写到答题卡相应的位置上.一、选择题(每小题3分,共21分)每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分. 1.计算:3×(-1)等于( ).A .0B .3C .3D . 3- 2.计算:23)(a 等于( ).A .5aB .6a C .32a D .a 63.如图,数轴上表示的是某不等式组的解集,则这个不等式组可以是( ).A .12x x ≥-⎧⎨<⎩B .12x x ≤-⎧⎨<⎩C .12x x >-⎧⎨≤⎩D .12x x ≥-⎧⎨>⎩4.在某次体育测试中,九年级某班7位同学的立定跳远成绩(单位:m )分别为:2.15,2.25,2.25,2.31,2.42,2.50,2.51,则这组数据的中位数是( ). A .2.15 B .2.25 C .2.31 D .2.42 5.若n 边形的内角和是1080︒,则n 的值是( ). A .6 B .7 C .8 D .96.如图是一个正方体被截去一角后得到的几何体,它的俯视图是( ).7.如图,在ABC Rt ∆中,90BAC ∠=︒, D 、E 分别是AB 、BC 的中点, F 在 CA 的延长线上,FDA B ∠=∠,AC=6,AB=8,则四边形AEDF 的周 长为( ).A .22 B.20 C.18 D.16二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答. 8.-2的相反数是 . 9.分解因式:23a a += .10.世界文化遗产长城总长约为6 700 000 m ,将6 700 000用科学记数法表示为 .11.计算:222a a a -=-- . 12.方程311x =-的解是 .13.在菱形ABCD 中,AB=3cm ,则菱形ABCD 的周长为 cm . 14.已知扇形的圆心角为120︒,弧长是4πcm ,则扇形的半径是 cm . 15.如图,点C 在直线MN 上,AC BC ⊥于点C ,165∠=°,则2∠= °. 16.如图,点A 在函数6y x=.(x >0)的图象上,过点A 作AH y ⊥轴,点P 是x 轴上的一个动点,连结P A 、PH ,则APH ∆的面积为 .17.如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,连结AB . (1)AB 的长为 ;(2)连结CD 与AB 相交于点P ,则APD ∠tan 的值是 .三、解答题(共89分)在答题卡上相应题目的答题区域内作答. 18.(91082(1)3π-⨯--+-.19.(9分)先化简,再求值:2(2)(2)(2)x x x +-+-,其中12x =-.20.(9分)已知:如图,在ABC ∆中,AB=AC ,D 为BC 的中点,过点D 作DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F .求证:BED ∆≌CFD ∆.(第6题图)(第3题图)A(第7题图)BCDEFBACMN12(第15题图)(第16题图)(第17题图)ABCDP21.(9分)某校举办“科技创新”作品评比,作品上交时限为3月1日至30日,组委会把同学们交来的作品按时间顺序每5天组成一组,共分成六组,现对每一组的件数进行统计,绘制成如图所示的不完全统计图.已知第二组与第四组的件数比为1∶2.请你回答 (1)本次活动共有 件作品参赛,并把条形统计图补充完整...........; (2)经评比,第四组和第六组分别有10件和2件作品获奖,那么你认为这两组哪个组获奖率较高?为什么?22.(9分)某市举办中学生足球赛,初中男子组共有市直学校的A 、B 两队和县区学校的e 、f 、g 、h 四队报名参赛,六支球队分成甲、乙两组,甲队由A 、e 、f 三队组成,乙组由B 、g 、h 三队组成,现要从甲、乙两组中各随机抽取一支球队进行首场比赛. (1)在甲组中,首场比赛抽e 队的概率是 ;(2)请你用画树状图或列表的方法,求首场比赛出场的两个队都是县区学校队的概率.23.(9分)如图,已知ABC ∆的三个顶点的坐标分别为A (-2,3)、B (-6,0)、C (-1,0). (1)请画出ABC ∆绕坐标原点O 逆时针...旋转90°后的A B C '''∆,并直接写出点B 的对应点B '的坐标;(2)请直接写出D 的坐标,使得以A 、B 、C 、D 为顶点的四边形是平行四边形.24.(9分)某服装专卖店计划购进甲、乙两种新款服装共100件,其进价与售价如表所示:(1)若该专卖店计划用42000元进货,则这两种新款服装各购进多少件?(2)若乙的数量不能超过甲的数量的2倍,试问:应怎样进货才能使专卖店在销售完这批服装时获利最多?并求出最大利润.25.(13分)已知顶点为P 的抛物线1C 的解析式是2(3)(0)y a x a =-≠,且经过点(0,1).(1)求a 的值;(2)如图,将抛物线1C 向下平移h (h >0)个单位得到抛物线2C ,过点K (0,2m )(m >0)作直线l 平行于x点关于y 轴对称.①点G 在抛物线1C 上,当m 为何值时,四 边形APCG 是平行四边形?②若抛物线1C 的对称轴与直线l 交于点E ,与抛物线2C 交于点F .试探究:在K 点 运动过程中,KCPF的值是否会改变?若会, 请说明理由;若不会,请求出这个值.26.(13分)在平面直角坐标系中,O 为坐标原点,已知点F (,0),直线GF 交y 轴正半轴于点G ,且.30GFO ∠=︒ (1)直接写出点G 的坐标;(2)若⊙O 的半径为1,点P 是直线GF 上的动点,直线P A 、PB 分别与⊙O 相切于点A 、B .①求切线长PB 的最小值;②问:在直线GF 上是否存在点P ,使得 60APB ∠=︒?若存在,请求出P 点的坐标;若不存在,请说明理由.参赛作品件数条形统计图(第21题图)(第23题图)(第25题图)(第26题图)(第20题图)2014年福建省泉州市初中学业质量检查数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分. (二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步应得的累计分数. 一、选择题(每小题3分,共21分)1.D 2.B 3.A 4.C 5.C 6.A 7.D 二、填空题(每小题4分,共40分)8.2 9.(3)a a + 10.66.710⨯ 11.1 12.4x = 13.12 14.60 15.25 16.3 17.(1);(2)2三、解答题(共89分) 18.(本小题9分) 解:原式3413=+-+ ……………………………………………………………8分 9= ……………………………………………………………………… 9分 19.(本小题9分) 解:原式22469x x x =-+-+ …………………………………………………4分136x =- ………………………………………………………………6分当12x =-时,原式1136()2=-⨯- ………………………………………7分16= …………………………………………………9分20.(本小题9分)证明:∵AB AC =, ∴B C ∠=∠……………3分∵DE AB DF AC ,⊥⊥,∴90BED CFD ∠=∠=︒.…………………6分 ∵D 为BC 边的中点, ∴BD CD =, ……8分∴BED ∆≌CFD ∆. ………………………9分21.(本小题9分)解:(1)60,补图如右;(填空3分,补图2分,共5分) (2)由图可得:第四组的件数是18件,第六组的件数是3件,故第四组的获奖率为:105189=, 第六组的获奖率为:2639=,……………………8分 ∵5699<, ∴第六组获奖率较高. …………………………………………………………………9分22.(本小题9分) 解:(1)P (e 队出场)=13; …………………………………………………………3分 (2)解法一: 画树状图……………………6分由树状图可知,共有9种机会均等的情况,其中首场比赛出场的两个队都是县区学校队 的有4种情况, P ∴(两队都是县区队)=49. ………………………………………9分…………………6分由树状图可知,共有9种机会均等的情况,其中首场比赛出场的两个队都是县区学校队的有4种情况,P ∴(两队都是县区队)=49. ………………………9分 23.(本小题9分)解:(1)如图所示: …………………………3分 点B 的对应点'B 的坐标为(0,-6); ……6分(2)第四个顶点D 的坐标()7,3-、()3,3、()5,3--; ……………………………………9分甲组 乙组 (第23题图)参赛作品件数条形统计图(第21题图)24.(本小题9分)解:(1)设甲种新款服装购进x 件,那么乙种新款服装购进(100)x -件,由题意可得 300500(100)42000x x +-=,解得40x =. ………………………………2分 经检验,符合题意.当40x =时,10060x -=(件).答:甲种新款服装购进40件,乙种新款服装购进60件.………………………………4分 (2)解法一:设甲种新款服装购进m 件,那么乙种新款服装购进(100)m -件,由题意可得1002m m -≤,解得1333m ≥.…………………………………………………………………6分∴m 的取值范围为1331003m ≤<.380300600500-<-∴同样售出一件新款服装,甲的获利比乙少,∴只能取34m =,此时获利为3480661009320⨯+⨯=(元).答:甲种新款服装购进34件,乙种新款服装购进66件,才能使专卖店在销售完这批服装时获 利最多,最大利润为9320元. …………………………………………………9分 解法二:设该专卖店销售完这批服装可获利润w 元,甲种服装m 件.依题意可得,(380300)(600500)(1w m m =-+--, 整理得1000020w m =-. ∴w 是m 的一次函数,且200-<. ∴w 随m 的增大而减小.∵乙的数量不能超过甲的数量的2倍, ∴1002m m ≤﹣, 解得1333m ≥, …………………………………………………………6分∴m 的取值范围为1331003m ≤<.∵m 为整数,∴34m =时,w 取得最大值,此时9320w =(元).答:该专卖店购进甲种服装34件,乙种服装66件,销售完这批服装时获利最多,此时利润为9320元.…………………………………………………………………………9分25.(本小题13分)解:(1)∵抛物线1C 的过点()0,1,∴()2103a =-,解得:19a =. ∴设抛物线1C 的解析式为()2139y x =-. …………3分(2) ①∵点A 、C 关于y 轴对称,∴点K 为AC 的中点.若四边形APCG 是平行四边形,则必有点K 是PG 的中点. 过点G 作GQ y ⊥轴于点Q , 可得:GQK ∆≌POK ∆,∴3GQ PO ==,2KQ OK m ==, 22OQ m =. ∴点()23,2G m -. ……………………………5分 ∵顶点G 在抛物线1C 上,∴()2212339m =--,解得:m =0m >,∴m =∴当m =APCG 是平行四边形. ……………………………………8分 ②在抛物线()2139y x =-中,令2y m =,解得:33x m =±,又0m >,且点C 在点B 的右侧,∴()233,C m m +,33KC m =+. …………………………………………………9分 ∵点A 、C 关于y 轴对称, ∴()233,A m m --.∵抛物线1C 向下平移()0h h >个单位得到抛物线2C , ∴抛物线2C 的解析式为:()2139y x h =--. ∴()2213339m m h =----,解得:44h m =+, ∴44PF m =+. ∴()()3133344414m KC m PF m m ++===++……………………13分(第25题图)26.(本小题13分) 解:(1)点G 的坐标是(0,2);………………………3分 (2)解法一:①连结OP 、OB . ∵PB 切⊙O 于点B , ∴OB PB ⊥;根据勾股定理得:222PB OP OB =﹣, ∵1OB =不变,若BP 要最小,则只须OP 最小.即当OP GF ⊥时,线段PO 最短,………………6分在Rt PFO ∆中,30OF GFO =∠=︒,∴OP∴PB =分 解法二:设直线GF 解析式为(0)y mx n m =+≠. ∵直线GF 过点(0,2)、F ()0,∴0,2n n ⎧+=⎪⎨=⎪⎩解得: 2.m n ⎧=⎪⎨⎪=⎩∴2y x =+.……………………………………………………………………………5分设(,2)P x +. 过P 作PH x ⊥轴于点H ,连结OA 、OP ,在Rt OHP ∆中,2222224(2)43OP OH PH x x =+=++=-+. PA 与⊙O 相切,∴90OAP ∠=︒,1OA =.在Rt PAO ∆中, 222AP OP OA =-. ∵PA PB 、均与⊙O 相切,∴222224413PB AP OP OA x ==-=+-22443(233x x =+=+. ∴当x =22PB =为最小, PB最小,此时PB = ………………………8分 ②方法一:存在.∵PA PB 、均与⊙O 相切, ∴OP 平分APB ∠. ∵60APB ∠=︒,∴30OPB ∠=︒. ∵1OB =, ∴2OP =.∴点P 是以点O 为圆心,2为半径的圆与直线GF 的交点,即图中的12P P 、两点. ∵2OG =,∴点1P 与点(0,2)G 重合.………………………………………………10分 在Rt GOF ∆中,30GFO ∠=︒,∴60OGF ∠=︒.∵2OG OP =,∴2GOP ∆是等边三角形, ∴2 2G P OG ==. ∵4GF =, ∴22FP =, ∴2P 为的中点GF ,∴2P . 综上所述,满足条件的点P 坐标为(0,2)或.……………………………………13分 方法二:假设在直线GF 上存在点P ,使得60APB ∠=︒,则必须有30APO ∠=︒. PA OA ⊥, 90OAP ∴∠=︒.∴1sin 2OA APO OP ∠==, ∴22OP OA ==. ……………………………………………………………………10分由①解法二可知22443OP x =+,∴224423x +=,解得10x =,2x . ∴满足条件的点P 坐标为(0,2)或. …………………………………13分(第26题图)。

【解析版】泉州市晋江市2014-2015年八年级上期末数学试卷

福建省泉州市晋江市2014-2015学年八年级上学期期末数学试卷一、选择题(每小题3分,共21分)1.(3分)计算的结果是()A.8B.﹣4 C.4D.±42.(3分)下列各等式正确的是()A.a3•a2=a6B.(x3)2=x6C.(mn)3=mn3D.b8÷b4=b23.(3分)如图是某国产品牌手机专卖店今年8﹣12月高清大屏手机销售额折线统计图.根据图中信息,可以判断相邻两个月高清大屏手机销售额变化最大的是()A.8﹣9月B.9﹣10月C.10﹣11月D.11﹣12月4.(3分)实数的绝对值是()A.B.C.D.15.(3分)如图,已知∠CAB=∠DAB,则下列不能判定△ABC≌△ABD的条件是()A.∠C=∠D B.A C=AD C.∠CBA=∠DBA D.BC=BD6.(3分)下列选项中,可以用来证明命题“若a2>1,则a>1”是假命题的反例是()A.a=﹣2 B.a=﹣1 C.a=1 D.a=27.(3分)若一个直角三角形的面积为6cm2,斜边长为5cm,则该直角三角形的周长是()A.7cm B.10cm C.cm D.12cm二、填空题(每小题4分,共40分)8.(4分)9的平方根是.9.(4分)如图,OP平分∠AOB,PE⊥AO于点E,PF⊥BO于点F,且PE=6cm,则点P 到OB的距离是cm.10.(4分)小明在纸上随手写下一串数字“1010010001”,则数字“1”出现的频率是.11.(4分)在实数、、中,无理数是.12.(4分)如图,△ACB≌△DCE,∠ACD=50°,则∠BCE的度数为.13.(4分)若△ABC的三边长分别为5、13、12,则△ABC的形状是.14.(4分)用4张全等的长方形拼成一个如图所示的正方形,利用面积的不同表示方法可以写出一个代数恒等式.若长方形的长和宽分别为a、b,则该图可表示的代数恒等式是.15.(4分)已知m2﹣n2=16,m+n=5,则m﹣n=.16.(4分)如图所示,把边长为1的正方形放在数轴上,以数1表示的点为圆心,正方形的对角线长为半径作弧,交数轴于点A,则点A表示的数是.17.(4分)如图所示的“贾宪三角”告诉了我们二项式乘方展开式的系数规律,如:第四行的四个数恰好对应着(a+b)3的展开式a3+3a2b+3a b2+b3的系数;第五行的五个数恰好对应着(a+b)4的展开式a4+4a3b+6a2b2+4ab3+b4的系数;根据数表中前五行的数字所反映的规律,回答:(1)图中第七行正中间的数字是;(2)(a+b)6的展开式是.三、解答题(共89分)18.(9分)计算:6a6b4÷3a3b4+a2•(﹣5a).19.(9分)计算:(x﹣2)(x+5)﹣x(x﹣2).20.(9分)因式分解:9a3+6a2b+ab2.21.(9分)先化简,再求值:(x﹣2y)2+(2x3﹣14x2y+8xy2)÷(﹣2x),其中x=﹣,y=5.22.(9分)如图,点C、B、E、F在同一直线上,CE=BF,AC∥DF,AC=DF.求证:△ABC≌△DEF.23.(9分)某校在2014-2015学年八年级(1)班学生中开展对于“我国国家公祭日”知晓情况的问卷调查.问卷调查的结果分为A、B、C、D四类,其中A类表示“非常了解”;B类表示“比较了解”;C类表示“基本了解”;D类表示“不太了解”;班长将本班同学的调查结果绘制成下列两幅不完整的统计图.请根据上述信息解答下列问题:(1)该班参与问卷调查的人数有人;补全条形统计图;(2)求出C类人数占总调查人数的百分比及扇形统计图中A类所对应扇形圆心角的度数.24.(9分)如图,在△ABC中,∠ACB=105°,AC边上的垂直平分线交AB边于点D,交AC边于点E,连结CD.(1)若AB=10,BC=6,求△BCD的周长;(2)若AD=BC,试求∠A的度数.25.(12分)请阅读下列材料:问题:如图(1),圆柱的底面半径为4cm,圆柱高AB为2c m,BC是底面直径,求一只蚂蚁从点A出发沿圆柱表面爬行到点C的最短路线,小明设计了两条路线:路线1:高线AB+底面直径BC,如图(1)所示.路线2:侧面展开图中的线段AC,如图(2)所示.设路线1的长度为l1,则l1=AB+BC=2+8=10;设路线2的长度为l2,则l2===;∵=102﹣(4+16π2)=96﹣16π2=16(6﹣π2)<0∴即l1<l2所以选择路线1较短.(1)小明对上述结论有些疑惑,于是他把条件改成:“圆柱的底面半径为2cm,高AB为4cm”继续按前面的路线进行计算.(结果保留π)①此时,路线1:l1=.路线2:l2=.②所以选择哪条路线较短?试说明理由.(2)请你帮小明继续研究:当圆柱的底面半径为2cm,高为hcm时,应如何选择上面的两条路线才能使蚂蚁从点A出发沿圆柱表面爬行到点C的路线最短.26.(14分)如图,在Rt△ABC中,∠ACB=90°,AC=BC,CD是∠ACB的角平分线,点E、F分别是边AC、BC上的动点.AB=,设AE=x,BF=y.(1)AC的长是;(2)若x+y=3,求四边形CEDF的面积;(3)当DE⊥DF时,试探索x、y的数量关系.福建省泉州市晋江市2014-2015学年八年级上学期期末数学试卷参考答案与试题解析一、选择题(每小题3分,共21分)1.(3分)计算的结果是()A.8B.﹣4 C.4D.±4考点:立方根.分析:根据立方根的定义,进行解答即可.解答:解:,故选C.点评:本题考查了立方根,解决本题的关键是熟记立方根的定义.2.(3分)下列各等式正确的是()A.a3•a2=a6B.(x3)2=x6C.(mn)3=mn3D.b8÷b4=b2考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘法,可判断A;根据幂的乘方,可判断B;根据积的乘方,可判断C;根据同底数幂的除法,可判断D.解答:解:A、同底数幂的乘法底数不变指数相加,故A错误;B、幂的乘方底数不变指数相乘,故B正确;C、积的乘方等于乘方的积,故C错误;D、同底数幂的除法底数不变指数相减,故D错误;故选:B.点评:本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.3.(3分)如图是某国产品牌手机专卖店今年8﹣12月高清大屏手机销售额折线统计图.根据图中信息,可以判断相邻两个月高清大屏手机销售额变化最大的是()A.8﹣9月B.9﹣10月C.10﹣11月D.11﹣12月考点:折线统计图.分析:根据折线图的数据,分别求出相邻两个月的高清大屏手机销售额的变化值,比较即可得解.解答:解:8﹣9月,30﹣23=7万元,9﹣10月,30﹣25=5万元,10﹣11月,25﹣15=10万元,11﹣12月,19﹣15=4万元,所以,相邻两个月中,高清大屏手机销售额变化最大的是10﹣11月.故选C.点评:本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,根据图中信息求出相邻两个月的高清大屏手机销售额变化量是解题的关键.4.(3分)实数的绝对值是()A.B.C.D.1考点:实数的性质.分析:根据差的绝对值是大数减小数,可得答案.解答:解:实数的绝对值是2﹣.故选:B.点评:本题考查了实数的性质,差的绝对值是大数减小数.5.(3分)如图,已知∠CAB=∠DAB,则下列不能判定△ABC≌△ABD的条件是()A.∠C=∠D B.A C=AD C.∠CBA=∠DBA D.BC=BD考点:全等三角形的判定.分析:根据全等三角形的判定定理(SAS,ASA,AAS,SSS)判断即可.解答:解:A、∵∠D=∠C,∠DAB=∠CAB,AB=AB,∴根据AAS能推出△ABC≌△ABD,故本选项错误;B、∵AD=AC,∠DAB=∠CAB,AB=AB,∴根据SAS能推出△ABC≌△ABD,故本选项错误;C、∵∠DAB=∠CAB,AB=AB,∠ABD=∠ABC,∴根据ASA能推出△ABC≌△ABD,故本选项错误;D、根据BD=BC,AB=AB,∠DAB=∠CAB不能推出△ABC≌△ABD,故本选项正确;故选D.点评:本题考查了全等三角形判定定理的应用,注意:全等三角形的判定定理有:SAS,ASA,AAS,SSS.6.(3分)下列选项中,可以用来证明命题“若a2>1,则a>1”是假命题的反例是()A.a=﹣2 B.a=﹣1 C.a=1 D.a=2考点:反证法.分析:根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.解答:解:用来证明命题“若a2>1,则a>1”是假命题的反例可以是:a=﹣2,∵(﹣2)2>1,但是a=﹣2<1,∴A正确;故选:A.点评:此题主要考查了利用举例法证明一个命题错误,要说明数学命题的错误,只需举出一个反例即可这是数学中常用的一种方法.7.(3分)若一个直角三角形的面积为6cm2,斜边长为5cm,则该直角三角形的周长是()A.7cm B.10cm C.cm D.12cm考点:勾股定理.分析:设直角三角形的两条直角边为a、b,由面积为6cm2,得出ab=6,进一步由勾股定理得出a2+b2=52,两个式子联立求得a+b即可算出结果.解答:解:设直角三角形的两条直角边为a、b,则ab=6,则2ab=24,又a2+b2=52,则(a+b)2=49,a+b=7,所以该直角三角形的周长是7+5=12cm.故选:D.点评:此题考查勾股定理的运用,三角形的面积计算方法,渗透整体思想.二、填空题(每小题4分,共40分)8.(4分)9的平方根是±3.考点:平方根.专题:计算题.分析:直接利用平方根的定义计算即可.解答:解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.点评:此题主要考查了平方根的定义,要注意:一个非负数的平方根有两个,互为相反数,正值为算术平方根.9.(4分)如图,OP平分∠AOB,PE⊥AO于点E,PF⊥BO于点F,且PE=6cm,则点P 到OB的距离是6cm.考点:角平分线的性质.分析:根据角平分线的性质,可得答案.解答:解:由OP平分∠AOB,PE⊥AO于点E,PF⊥BO于点F,且PE=6cm,则点P到OB的距离是6cm,故答案为:6.点评:本题考查了角平分线的性质,角平分线上的点到角两边的距离相等,熟记性质是解题关键.10.(4分)小明在纸上随手写下一串数字“1010010001”,则数字“1”出现的频率是40%.考点:频数与频率.分析:首先计算数字的总数,以及1出现的频数,根据频率公式:频率=即可求解.解答:解:数字的总数是10,有4个1,因而1出现的频率是:4÷10×100%=40%.故答案是:40%.点评:本题考查了频数的计算公式,理解公式是关键.11.(4分)在实数、、中,无理数是.考点:无理数.分析:根据无理数的三种形式求解.解答:解:=2,无理数有:.故答案为:.点评:本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.12.(4分)如图,△ACB≌△DCE,∠ACD=50°,则∠BCE的度数为50°.考点:全等三角形的性质.分析:根据全等三角形对应角相等可得∠ACB=∠DCE,再求出∠BCE=∠ACD.解答:解:∵△ACB≌△DCE,∴∠ACB=∠DCE,∴∠DCE+∠BCD=∠ACB+∠BCD,即∠BCE=∠ACD,∵∠ACD=50°,∴∠BCE=50°.故答案为:50°.点评:本题考查了全等三角形对应角相等的性质,熟记性质并准确识图是解题的关键.13.(4分)若△ABC的三边长分别为5、13、12,则△ABC的形状是直角三角形.考点:勾股定理的逆定理.分析:直接根据勾股定理的逆定理进行解答即可.解答:解:∵52+122=132,即a2+b2=c2,∴△ABC是直角三角形.故答案为:直角三角形.点评:本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.14.(4分)用4张全等的长方形拼成一个如图所示的正方形,利用面积的不同表示方法可以写出一个代数恒等式.若长方形的长和宽分别为a、b,则该图可表示的代数恒等式是4ab=(a+b)2﹣(a﹣b)2..考点:完全平方公式的几何背景.分析:根据图形的组成以及正方形和长方形的面积公式,知:大正方形的面积﹣小正方形的面积=4个矩形的面积.解答:解:∵大正方形的面积﹣小正方形的面积=4个矩形的面积,∴(a+b)2﹣(a﹣b)2=4ab,即4ab=(a+b)2﹣(a﹣b)2.故答案为:4ab=(a+b)2﹣(a﹣b)2.点评:考查了完全平方公式的几何背景,能够正确找到大正方形和小正方形的边长是难点.解决问题的关键是读懂题意,找到所求的量的等量关系.15.(4分)已知m2﹣n2=16,m+n=5,则m﹣n=.考点:平方差公式.分析:根据(m+n)(m﹣n)=m2﹣n2,再把m2﹣n2=16,m+n=5,代入求解.解答:解:∵m2﹣n2=16,m+n=5,∴(m+n)(m﹣n)=m2﹣n2,即5(m﹣n)=16.∴m﹣n=.故答案是:.点评:本题主要考查平方差公式的运用,熟练掌握公式是解题的关键.16.(4分)如图所示,把边长为1的正方形放在数轴上,以数1表示的点为圆心,正方形的对角线长为半径作弧,交数轴于点A,则点A表示的数是.考点:实数与数轴.分析:图中正方形的边长为1,则可根据勾股定理求出正方形对角线的长度.以对角线长度为半径作圆与x轴交于点A,则点A表示的数即为1加上对角线的长度.解答:解:应用勾股定理得,正方形的对角线的长度=,以正方形对角线长为半径画弧,交数轴正半轴于点A,所以数轴上的点A表示的数为:1+.故答案为:.点评:本题主要考查勾股定理的知识,还要了解数轴上的点表示数的方法.解题关键是利用勾股定理求出正方形的对角线长度,同时要掌握圆上各点到圆点的距离相等都为半径.17.(4分)如图所示的“贾宪三角”告诉了我们二项式乘方展开式的系数规律,如:第四行的四个数恰好对应着(a+b)3的展开式a3+3a2b+3ab2+b3的系数;第五行的五个数恰好对应着(a+b)4的展开式a4+4a3b+6a2b2+4ab3+b4的系数;根据数表中前五行的数字所反映的规律,回答:(1)图中第七行正中间的数字是20;(2)(a+b)6的展开式是a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6.考点:整式的混合运算;规律型:数字的变化类.分析:(1)观察图表寻找规律:三角形是一个由数字排列成的三角形数表,它的两条斜边都是数字1组成,而其余的数则是等于它“肩”上的两个数之和,进而得出答案;(2)利用(1)中所求即可得出答案.解答:解:(1)可以发现:(a+b)n的各项展开式的系数除首尾两项都是1外,其余各项系数都等于(a+b)n﹣1的相邻两个系数的和,则(a+b)4的各项系数依次为1、4、6、4、1;(a+b)5的各项系数依次为1、5、10、10、5、1;则(a+b)6的系数分别为1、6、15、20、15、6、1.故第七行正中间的数字是:20;故答案为:20;(2)由(1)得:(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6.故答案为:a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6.点评:本题考查了整式的混合运算,学生解决实际问题的能力和阅读理解能力,找出本题的数字规律是正确解题的关键.三、解答题(共89分)18.(9分)计算:6a6b4÷3a3b4+a2•(﹣5a).考点:整式的混合运算.专题:计算题.分析:原式利用单项式乘除单项式法则计算,合并即可得到结果.解答:解:原式=2a3﹣5a3=﹣3a3.点评:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.19.(9分)计算:(x﹣2)(x+5)﹣x(x﹣2).考点:多项式乘多项式;单项式乘多项式.分析:根据多项式的乘法进行计算解答即可,多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn.解答:解:原式=x2+5x﹣2x﹣10﹣x2+2x=5x﹣10.点评:此题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.20.(9分)因式分解:9a3+6a2b+ab2.考点:提公因式法与公式法的综合运用.分析:先提取公因式a,再对余下的多项式利用完全平方公式继续分解.解答:解:9a3+6a2b+ab2,=a(9a2+6ab+b2),=a(3a+b)2.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.21.(9分)先化简,再求值:(x﹣2y)2+(2x3﹣14x2y+8xy2)÷(﹣2x),其中x=﹣,y=5.考点:整式的混合运算—化简求值.分析:首先利用完全平方公式和整式的除法的计算方法计算,合并后进一步代入求得数值即可.解答:解:原式=x2﹣4xy+4y2﹣x2+7xy﹣4y2=3xy,当x=﹣,y=5时,原式=3×(﹣)×5=﹣10.点评:此题考查整式的化简求值,注意先化简,再求值,掌握计算公式和计算方法是解决问题的关键.22.(9分)如图,点C、B、E、F在同一直线上,CE=BF,AC∥DF,AC=DF.求证:△ABC≌△DEF.考点:全等三角形的判定.专题:证明题.分析:首先根据等式的性质可得CB=FE,再根据平行线的性质可得∠C=∠F,然后根据SAS定理可判定:△ABC≌△DEF.解答:证明:∵CE=BF,∴CE﹣BE=BF﹣BE,即CB=FE.∵AC∥DF,∴∠C=∠F.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.23.(9分)某校在2014-2015学年八年级(1)班学生中开展对于“我国国家公祭日”知晓情况的问卷调查.问卷调查的结果分为A、B、C、D四类,其中A类表示“非常了解”;B类表示“比较了解”;C类表示“基本了解”;D类表示“不太了解”;班长将本班同学的调查结果绘制成下列两幅不完整的统计图.请根据上述信息解答下列问题:(1)该班参与问卷调查的人数有50人;补全条形统计图;(2)求出C类人数占总调查人数的百分比及扇形统计图中A类所对应扇形圆心角的度数.考点:条形统计图;扇形统计图.分析:(1)用B类的人数除以其所占的百分比可得到样本容量;用样本容量减去A、B、D类的人数可求得C类的人数,进而补全条形统计图;(2)用C类人数除以总人数得到C类人数占总调查人数的百分比;用A类人数除以总人数得到A类所占的百分比,然后乘以360°,即可得出A类所对应扇形圆心角的度数.解答:解:(1)该班参与问卷调查的人数有:20÷40%=50(人),C类的人数为:50﹣15﹣20﹣5=10(人),条形统计图补充如下:(2)C类人数占总调查人数的百分比是:10÷50=20%,扇形统计图中A类所对应扇形圆心角的度数是:15÷50×360°=108°.故答案为50.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(9分)如图,在△ABC中,∠ACB=105°,AC边上的垂直平分线交AB边于点D,交AC边于点E,连结CD.(1)若AB=10,BC=6,求△BCD的周长;(2)若AD=BC,试求∠A的度数.考点:线段垂直平分线的性质.分析:(1)根据线段垂直平分线的性质,可得CD的长,根据三角形的周长公式,可得答案;(2)根据线段垂直平分线的性质,可得CD的长,根据等腰三角形的性质,可得∠B与∠CDB 的关系,根据三角形外角的性质,可得∠CDB与∠A的关系,根据三角形内角和定理,可得答案.解答:解:(1)∵DE是AC的垂直平分线,∴AD=CD.∵C△BCD=BC+BD+CD=BC+BD+AD=BC+AB,又∵AB=10,BC=6,∴C△BCD=16;(2)∵AD=CD∴∠A=∠ACD,设∠A=x,∵AD=CB,∴CD=CB,∴∠CDB=∠CBD.∵∠CDB是△ACD的外角,∴∠CDB=∠A+∠ACD=2x,∵∠A、∠B、∠ACB是三角形的内角,∵∠A+∠B+∠ACB=180°,∴x+2x+105°=180°,解得x=25°∴∠A=25°.点评:本题考查了线段垂直平分线的性质,(1)利用线段垂直平分线的性质得出DC与AD的关系,把三角形的周长转化成AB+BC是解题关键,(2)利用等腰三角形的性质,三角形外角的性质得出∠B与∠A的关系是解题关键.25.(12分)请阅读下列材料:问题:如图(1),圆柱的底面半径为4cm,圆柱高AB为2cm,BC是底面直径,求一只蚂蚁从点A出发沿圆柱表面爬行到点C的最短路线,小明设计了两条路线:路线1:高线AB+底面直径BC,如图(1)所示.路线2:侧面展开图中的线段AC,如图(2)所示.设路线1的长度为l1,则l1=AB+BC=2+8=10;设路线2的长度为l2,则l2===;∵=102﹣(4+16π2)=96﹣16π2=16(6﹣π2)<0∴即l1<l2所以选择路线1较短.(1)小明对上述结论有些疑惑,于是他把条件改成:“圆柱的底面半径为2cm,高AB为4cm”继续按前面的路线进行计算.(结果保留π)①此时,路线1:l1=8.路线2:l2=.②所以选择哪条路线较短?试说明理由.(2)请你帮小明继续研究:当圆柱的底面半径为2cm,高为hcm时,应如何选择上面的两条路线才能使蚂蚁从点A出发沿圆柱表面爬行到点C的路线最短.考点:平面展开-最短路径问题.分析:(1)①l1的长度等于AB的长度与BC的长度的和;l2的长度的平方等于AB的长度的平方与底面周长的一半的平方的和,据此求出l2的长度即可;②比较出、的大小关系,进而比较出l1、l2的大小关系,判断出选择哪条路线较短即可;(2)当圆柱的底面半径为2cm,高为hcm时,l1=4+h,l2=,据此求出的值是多少,然后分类讨论,根据h的值判断出l1、l2的大小关系,进而判断出选择哪条路线才能使蚂蚁从点A出发沿圆柱表面爬行到点C的路线最短即可.解答:解:(1)①l1=4+2×2=8,l2==;②∵=82﹣(16+4π2)=48﹣4π2=4(12﹣π2)>0,∴,即l1>l2,所以选择路线2较短.(2)当圆柱的底面半径为2cm,高为hcm时,路线1:l1=4+h,路线2:l2=,∵=(4+h)2﹣(h2+4π2)=16+8h+h2﹣h2﹣4π2=16+8h﹣4π2=4(2h+4﹣π2)∴当2h+4﹣π2=0时,即h=时,l1=l2,两条路线一样长,选择哪条路线都可以;当2h+4﹣π2>0时,即h>时,l1>l2,选择路线2较短;当2h+4﹣π2<0时,即h<时,l1<l2,选择路线1较短.故答案为:8、.点评:(1)此题主要考查了最短路径问题,以及圆柱体的侧面展开图,考查了分类讨论思想的应用.(2)此题还考查了通过比较两个数的平方的大小,判断两个数的大小的方法的应用,要熟练掌握.26.(14分)如图,在Rt△ABC中,∠ACB=90°,AC=BC,CD是∠ACB的角平分线,点E、F分别是边AC、BC上的动点.AB=,设AE=x,BF=y.(1)AC的长是4;(2)若x+y=3,求四边形CEDF的面积;(3)当DE⊥DF时,试探索x、y的数量关系.考点:全等三角形的判定与性质;角平分线的性质;等腰直角三角形.分析:(1)根据锐角三角函数得到AC的长;(2)如图,过点D作DG⊥AC于点G,DH⊥BC于点H,由∠ACB=90°,AC=BC,CD是∠ACB的角平分线得到∠A=∠B=∠ACD=∠BCD=45°,CD⊥AB,AD=CD=BD,在等腰直角三角形ACD中,DG⊥AC,∠A=45°求出DG=AG=AC=2,DH=2,求出四边形CEDF的面积;(3)当DE⊥DF时,∠EDF=90°,又因为CD⊥AB得到∠ADE+∠EDC=∠EDC+∠CDF=90°,证得△ADE≌△CDF,AE=CF,AE+BF=CF+BF=BC,即x+y=4.解答:解:(1)在Rt△ABC中,∠ACB=90°,AC=BC,∴AC=AB,∵AB=,∴AC=4;(2)如图,过点D作DG⊥AC于点G,DH⊥BC于点H∵∠ACB=90°,AC=BC,CD是∠ACB的角平分线∴∠A=∠B=∠ACD=∠BCD=45°,CD⊥AB∴AD=CD=BD∵在等腰直角三角形ACD中,DG⊥AC,∠A=45°∴DG=AG=AC=2同理DH=2∵S△CDE=CE•DG=4﹣x,S△CDF=CF•DH=4﹣y,∴S四边形CEDF=S△CDE+S△CDF=(4﹣x)(4﹣y)=8﹣(x+y)=5;(3)当DE⊥DF时,∠EDF=90°∵CD⊥AB∴∠ADE+∠EDC=∠EDC+∠CDF=90°∴∠ADE=∠CDF,又∵∠A=∠DCF=45°,AD=CD在△ADE与△CDF中,,∴△ADE≌△CDF∴AE=CF∴AE+BF=CF+BF=BC即x+y=4.点评:本题考查了等腰直角三角形的性质,三角形的面积公式,全等三角形的判定与性质,正确的作出辅助线是做题的关键.。

2014年福建省泉州市中考数学试卷附详细答案(原版+解析版)

2014年福建省泉州市中考数学试卷一、选择题(每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡题目区域内作答答对的得3分,答错或不答一律得0分.)1.(3分)(2014•泉州)2014的相反数是()2.(3分)(2014•泉州)下列运算正确的是()3.(3分)(2014•泉州)如图的立体图形的左视图可能是()A.B.C.D.4.(3分)(2014•泉州)七边形外角和为()5.(3分)(2014•泉州)正方形的对称轴的条数为()6.(3分)(2014•泉州)分解因式x2y﹣y3结果正确的是()7.(3分)(2014•泉州)在同一平面直角坐标系中,函数y=mx+m与y=(m≠0)的图象可能是()..二、填空题(每小题4分,共40分)8.(4分)(2014•泉州)2014年6月,阿里巴巴注资1200000000元入股广州恒大,将数据1200000000用科学记数法表示为.9.(4分)(2014•泉州)如图,直线AB与CD相交于点O,∠AOD=50°,则∠BOC=°.10.(4分)(2014•泉州)计算:+=.11.(4分)(2014•泉州)方程组的解是.12.(4分)(2014•泉州)在综合实践课上,六名同学的作品数量(单位:件)分别为:3、5、2、5、5、7,则这组数据的众数为件.13.(4分)(2014•泉州)如图,直线a∥b,直线c与直线a,b都相交,∠1=65°,则∠2= °.14.(4分)(2014•泉州)如图,Rt△ABC中,∠ACB=90°,D为斜边AB的中点,AB=10cm,则CD的长为cm.15.(4分)(2014•泉州)如图,在△ABC中,∠C=40°,CA=CB,则△ABC的外角∠ABD= °.16.(4分)(2014•泉州)已知:m、n为两个连续的整数,且m<<n,则m+n=.17.(4分)(2014•泉州)如图,有一直径是米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,则:(1)AB的长为米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为米.三、解答题(共89分)18.(9分)(2014•泉州)计算:(2﹣1)0+|﹣6|﹣8×4﹣1+.19.(9分)(2014•泉州)先化简,再求值:(a+2)2+a(a﹣4),其中a=.20.(9分)(2014•泉州)已知:如图,在矩形ABCD中,点E,F分别在AB,CD边上,BE=DF,连接CE,AF.求证:AF=CE.21.(9分)(2014•泉州)在一个不透明的箱子里,装有红、白、黑各一个球,它们除了颜色之外没有其他区别.(1)随机地从箱子里取出1个球,则取出红球的概率是多少?(2)随机地从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示所有等可能的结果,并求两次取出相同颜色球的概率.22.(9分)(2014•泉州)如图,已知二次函数y=a(x﹣h)2+的图象经过原点O(0,0),A(2,0).(1)写出该函数图象的对称轴;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?23.(9分)(2014•泉州)课外阅读是提高学生素养的重要途径.某校为了了解学生课外阅读情况,随机抽查了50名学生,统计他们平均每天课外阅读时间(t小时).根据t的长短分为A,B,C,D四类,下面是根据所抽查的人数绘制的两幅不完整的统计图表.请根据图中提供的信息,解答下面的问题:50名学生平均每天课外阅读时间统计表(1)求表格中的a的值,并在图中补全条形统计图;(2)该校现有1300名学生,请你估计该校共有多少名学生课外阅读时间不少于1小时?24.(9分)(2014•泉州)某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B出发,沿轨道到达C处,在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B 处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2=米/分;(2)写出d1与t的函数关系式;(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?25.(12分)(2014•泉州)如图,在锐角三角形纸片ABC中,AC>BC,点D,E,F分别在边AB,BC,CA上.(1)已知:DE∥AC,DF∥BC.①判断四边形DECF一定是什么形状?②裁剪当AC=24cm,BC=20cm,∠ACB=45°时,请你探索:如何剪四边形DECF,能使它的面积最大,并证明你的结论;(2)折叠请你只用两次折叠,确定四边形的顶点D,E,C,F,使它恰好为菱形,并说明你的折法和理由.26.(14分)(2014•泉州)如图,直线y=﹣x+3与x,y轴分别交于点A,B,与反比例函数的图象交于点P(2,1).(1)求该反比例函数的关系式;(2)设PC⊥y轴于点C,点A关于y轴的对称点为A′;①求△A′BC的周长和sin∠BA′C的值;②对大于1的常数m,求x轴上的点M的坐标,使得sin∠BMC=.2014年福建省泉州市中考数学试卷参考答案与试题解析一、选择题(每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡题目区域内作答答对的得3分,答错或不答一律得0分.)3.(3分)(2014•泉州)如图的立体图形的左视图可能是()..237.(3分)(2014•泉州)在同一平面直角坐标系中,函数y=mx+m与y=(m≠0)的图象可..的图象可知的图象可知二、填空题(每小题4分,共40分)8.(4分)(2014•泉州)2014年6月,阿里巴巴注资1200000000元入股广州恒大,将数据1200000000用科学记数法表示为 1.2×109.9.(4分)(2014•泉州)如图,直线AB与CD相交于点O,∠AOD=50°,则∠BOC=50°.10.(4分)(2014•泉州)计算:+=1.=111.(4分)(2014•泉州)方程组的解是.,则方程组的解为故答案为:12.(4分)(2014•泉州)在综合实践课上,六名同学的作品数量(单位:件)分别为:3、5、2、5、5、7,则这组数据的众数为5件.13.(4分)(2014•泉州)如图,直线a∥b,直线c与直线a,b都相交,∠1=65°,则∠2= 65°.14.(4分)(2014•泉州)如图,Rt△ABC中,∠ACB=90°,D为斜边AB的中点,AB=10cm,则CD的长为5cm.CD=CD=AB=15.(4分)(2014•泉州)如图,在△ABC中,∠C=40°,CA=CB,则△ABC的外角∠ABD= 110°.16.(4分)(2014•泉州)已知:m、n为两个连续的整数,且m<<n,则m+n=7.估算出<题考查的是估算无理数的大小,先根据题意算出的取值范围是解答此题的关17.(4分)(2014•泉州)如图,有一直径是米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,则:(1)AB的长为1米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为米.r=,然后解方程即可.AB=r=..三、解答题(共89分)18.(9分)(2014•泉州)计算:(2﹣1)0+|﹣6|﹣8×4﹣1+.×+419.(9分)(2014•泉州)先化简,再求值:(a+2)2+a(a﹣4),其中a=.时,)20.(9分)(2014•泉州)已知:如图,在矩形ABCD中,点E,F分别在AB,CD边上,BE=DF,连接CE,AF.求证:AF=CE.21.(9分)(2014•泉州)在一个不透明的箱子里,装有红、白、黑各一个球,它们除了颜色之外没有其他区别.(1)随机地从箱子里取出1个球,则取出红球的概率是多少?(2)随机地从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状图或列表的方法表示所有等可能的结果,并求两次取出相同颜色球的概率.个球,则取出红球的概率是:∴两次取出相同颜色球的概率为:=22.(9分)(2014•泉州)如图,已知二次函数y=a(x﹣h)2+的图象经过原点O(0,0),A(2,0).(1)写出该函数图象的对称轴;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?OA B=,则﹣++OB=B=OB=)()的顶点坐标为(﹣,﹣,<﹣时,>﹣时,﹣取得最小值时,时,﹣最大值23.(9分)(2014•泉州)课外阅读是提高学生素养的重要途径.某校为了了解学生课外阅读情况,随机抽查了50名学生,统计他们平均每天课外阅读时间(t小时).根据t的长短分为A,B,C,D四类,下面是根据所抽查的人数绘制的两幅不完整的统计图表.请根据图中提供的信息,解答下面的问题:(1)求表格中的a的值,并在图中补全条形统计图;(2)该校现有1300名学生,请你估计该校共有多少名学生课外阅读时间不少于1小时?×=52024.(9分)(2014•泉州)某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B出发,沿轨道到达C处,在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B 处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2=40米/分;(2)写出d1与t的函数关系式;(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?;时,两遥控车的信号不会产生相互干扰;时,两遥控车的信号不会产生相互干扰0时,两遥控车的信号不会产生相互干扰.25.(12分)(2014•泉州)如图,在锐角三角形纸片ABC中,AC>BC,点D,E,F分别在边AB,BC,CA上.(1)已知:DE∥AC,DF∥BC.①判断四边形DECF一定是什么形状?②裁剪当AC=24cm,BC=20cm,∠ACB=45°时,请你探索:如何剪四边形DECF,能使它的面积最大,并证明你的结论;(2)折叠请你只用两次折叠,确定四边形的顶点D,E,C,F,使它恰好为菱形,并说明你的折法和理由.AG==12AH=12==h=﹣AH=1226.(14分)(2014•泉州)如图,直线y=﹣x+3与x,y轴分别交于点A,B,与反比例函数的图象交于点P(2,1).(1)求该反比例函数的关系式;(2)设PC⊥y轴于点C,点A关于y轴的对称点为A′;①求△A′BC的周长和sin∠BA′C的值;②对大于1的常数m,求x轴上的点M的坐标,使得sin∠BMC=.y=,因此点y=的图象上,y=.B=3,C=3+2BC O=A3=3CD=.3+2的值为.==.BMC=,BMC=..的坐标为(的坐标为(﹣MH=═OH=EG=MH=﹣+(﹣(﹣的坐标为()和(﹣的坐标为((﹣(﹣联想到点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年福建省泉州市晋江市中考数学试卷一、选择题(每小题3分,共21分.)每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分.1.(3分)(2014•晋江市)有理数﹣的绝对值为()A.B.﹣5 C.﹣D.52.(3分)(2014•晋江市)已知在△ABC中,∠C=∠A+∠B,则△ABC的形状是()A.等边三角形B.锐角三角形C.直角三角形D.钝角三角形3.(3分)(2014•晋江市)如图,是由5个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.4.(3分)(2014•晋江市)若x>y,则下列式子错误的是()A.1﹣2x>1﹣2y B.x+2>y+2 C.﹣2x<﹣2y D.5.(3分)(2014•晋江市)已知⊙O1与⊙O2相切,它们的半径分别是4、r,且圆心距O1O2=7,则r可能是下列的()A.3 B.11 C.3或11 D.3、﹣3或116.(3分)(2014•晋江市)某班级第一小组7名同学积极捐出自己的零花钱支持地震灾区,他们捐款的数额分别是(单位:元)100,40,100,60,50,100,200,这组数据的众数和中位数分别是()A.100元,40元 B.100元,60元 C.200元,100元D.100元,100元7.(3分)(2014•晋江市)如图,点A、O、C三点在同一条直线上,射线OB在∠AOC的内部,且射线OM、射线ON分别平分∠AOB与∠BOC,设∠MOB=y°,∠BON=x°,则y 与x的函数关系的图象是()A.B.C.D.二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.(4分)(2014•晋江市)的相反数是.9.(4分)(2014•晋江市)计算:=.10.(4分)(2014•晋江市)分解因式:4x2﹣12x+9=.11.(4分)(2014•晋江市)据报道,在2014年,晋江市教育总投入预计为2 796 000 000元,则2 796 000 000元用科学记数法表示为元.12.(4分)(2014•晋江市)如图,在等腰△ABC中,AB=AC,AD⊥BC,若∠BAD=20°,则∠BAC=度.13.(4分)(2014•晋江市)n边形的每个外角都等于45°,则n=.14.(4分)(2014•晋江市)菱形的两条对角线分别为6cm、8cm,则该菱形的周长为.15.(4分)(2014•晋江市)在边长为1的3×3的方格中,点B、O都在格点上,则劣弧BC 的长是.16.(4分)(2014•晋江市)如图,在四边形ABCD中,M、N、P、Q分别是AD、AB、BC、CD的中点,且对角线AC⊥BD,AC:BD=4:3,AC+BD=28,则MQ:QP=,四边形MNPQ的面积是.17.(4分)(2014•晋江市)如图,在等腰梯形ABCD中,AD∥BC,AB=AD=DC,∠B=60°,NC=MC=BC,现有P、Q两个动点分别从点A、N同时沿梯形的边开始移动,点P依顺时针,方向环行,点Q依逆时针方向环行,若点P的速度与点Q的速度之比为2:3,则点P、点Q第1次相遇的位置是点;第2014次相遇在点.三、解答题(共89分)在答题卡上相应题目的答题区域内作答.18.(9分)(2014•晋江市)计算:÷﹣16×4﹣1+|﹣5|﹣(3﹣)0.19.(9分)(2014•晋江市)先化简,再求值:(a+2)(a﹣2)﹣(a﹣3)2,其中.20.(9分)(2014•晋江市)如图,在▱ABCD中,点E、点F分别在AD、CB的延长线上,且DE=BF,连结EF分别交AB、CD于点H、点G.求证:△EAH≌△FCG.21.(9分)(2014•晋江市)在一个不透明的布袋中,装有三个小球,小球上分别标有数字“1”、“2”和“3”,它们除了数字不同外,其余都相同.(1)随机地从布袋中摸出一个小球,则摸出的球为“3”的概率是多少?(2)若第一次从布袋中随机摸出一个小球,设记下的数字为x,再将此球放回盒中,第二次再从布袋中随机抽取一张,设记下的数字为y,请用画树状图或列表法表示出上述情况的所有等可能结果,并求出x+y>3的概率.22.(9分)(2014•晋江市)今年植树节,某校组织师生开展植树造林活动,为了了解全校1200名学生的植树情况,随机抽样调查部分学生的植树情况,制成如下统计表和条形统计图(均不完整).植树数量频数频率(棵)3 5 0.14 205 0.36 10 0.2合计 1(1)将统计表和条形统计图补充完整;(2)求所抽样的学生植树数量的平均数;(3)若植树数量不少于5棵的记为“表现优秀”,试根据抽样数据,估计该校1200名学生“表现优秀”的人数.23.(9分)(2014•晋江市)某水果店老板用400元购进一批葡萄,由于葡萄新鲜,很快售完,老板又用500元购进第二批葡萄,所购数量与第一批相同,但每千克比第一批多了2元.(1)求:第一批葡萄进价每千克多少元?(请列方程求解)(2)若水果店老板以每千克11元的价格将两批葡萄全部售出,可以盈利多少元?24.(9分)(2014•晋江市)已知:直线与双曲线相交于点A、B,且点A的纵坐标为﹣1.(1)求双曲线的解析式;(2)设直线AB与x轴、y轴分别相交于点D、C,过点B作BP⊥AB,交y轴于点P,求tan∠BPC的值.25.(13分)(2014•晋江市)如图,已知抛物线y=﹣x2+2x+c经过点C(0,3),且与x轴交于A、B两点(点A在点B的左侧),线段BC与抛物线的对称轴相交于点P.M、N分别是线段OC和x轴上的动点,运动时保持∠MPN=90°不变.(1)求抛物线的解析式;(2)①试猜想PN与PM的数量关系,并说明理由;②在①的前提下,连结MN,设OM=m.△MPN的面积为S,求S的最大值.26.(13分)(2014•晋江市)如图1,在平面直角坐标系中,等边△OAB的顶点A(﹣6,0),顶点B在第二象限,顶点O为坐标原点,过点B作BC∥OA交y轴于点C.(1)填空:点B的坐标是;(2)若点Q是线段OB上的一点,且,过点Q作直线l分别与直线AO、直线BC交于点H、G,以点O为圆心,OH的长为半径作⊙O.①设点G的横坐标为x,当点G在直线BC上移动,试探究:当x为何值时,⊙O与直线BC、直线AB都分别相切?②过点G作GD∥OC,交x轴于点D,若线段GD与⊙O有公共点P,且点M(1,1),探求:2PO+PM的最小值.2014年福建省泉州市晋江市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共21分.)每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分.1.(3分)(2014•晋江市)有理数﹣的绝对值为()A.B.﹣5 C.﹣D.5【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.2.(3分)(2014•晋江市)已知在△ABC中,∠C=∠A+∠B,则△ABC的形状是()A.等边三角形B.锐角三角形C.直角三角形D.钝角三角形【分析】根据在△ABC中,∠A+∠B=∠C,∠A+∠B+∠C=180°可求出∠C的度数,进而得出结论.3.(3分)(2014•晋江市)如图,是由5个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.【分析】根据俯视图是从上面看到的图形判定即可.4.(3分)(2014•晋江市)若x>y,则下列式子错误的是()A.1﹣2x>1﹣2y B.x+2>y+2 C.﹣2x<﹣2y D.【分析】根据不等式的性质3,不等式的性质1,可判断A,根据不等式的性质1,可判断B,根据不等式的性质3,可判断C,根据不等式的性质2,可判断D.5.(3分)(2014•晋江市)已知⊙O1与⊙O2相切,它们的半径分别是4、r,且圆心距O1O2=7,则r可能是下列的()A.3 B.11 C.3或11 D.3、﹣3或11【分析】根据两圆相切分为两圆内切和两圆外切两种情况分类讨论即可.6.(3分)(2014•晋江市)某班级第一小组7名同学积极捐出自己的零花钱支持地震灾区,他们捐款的数额分别是(单位:元)100,40,100,60,50,100,200,这组数据的众数和中位数分别是()A.100元,40元 B.100元,60元 C.200元,100元D.100元,100元【分析】根据众数和中位数的概念求解.7.(3分)(2014•晋江市)如图,点A、O、C三点在同一条直线上,射线OB在∠AOC的内部,且射线OM、射线ON分别平分∠AOB与∠BOC,设∠MOB=y°,∠BON=x°,则y 与x的函数关系的图象是()A.B.C.D.【分析】首先根据角平分线的性质和平角的定义确定两个变量之间的函数关系,然后确定其图象即可.二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.(4分)(2014•晋江市)的相反数是﹣.【分析】根据只有符号不同的两个数叫做互为相反数解答.9.(4分)(2014•晋江市)计算:=1.【分析】原式利用同分母分式的加法法则计算,约分即可得到结果.10.(4分)(2014•晋江市)分解因式:4x2﹣12x+9=(2x﹣3)2.【分析】直接利用完全平方公式分解因式得出即可.11.(4分)(2014•晋江市)据报道,在2014年,晋江市教育总投入预计为2 796 000 000元,则2 796 000 000元用科学记数法表示为 2.796×109元.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于2 796 000 000有10位,所以可以确定n=10﹣1=9.12.(4分)(2014•晋江市)如图,在等腰△ABC中,AB=AC,AD⊥BC,若∠BAD=20°,则∠BAC=40度.【分析】等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合,依此即可求解.13.(4分)(2014•晋江市)n边形的每个外角都等于45°,则n=8.【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.14.(4分)(2014•晋江市)菱形的两条对角线分别为6cm、8cm,则该菱形的周长为20cm.【分析】根据菱形的性质:对角线互相垂直,利用勾股定理可求得其边长,再根据周长为4条边之和即可求得其周长.15.(4分)(2014•晋江市)在边长为1的3×3的方格中,点B、O都在格点上,则劣弧BC的长是.【分析】根据网格得出BO的长,再利用弧长公式计算得出即可.16.(4分)(2014•晋江市)如图,在四边形ABCD中,M、N、P、Q分别是AD、AB、BC、CD的中点,且对角线AC⊥BD,AC:BD=4:3,AC+BD=28,则MQ:QP=4:3,四边形MNPQ的面积是48.【分析】由三角形中位线定理来求MQ:QP的值;有一个角是直角的平行四边形是矩形.利用中位线定理可得出四边形EFGH矩形,根据矩形的面积公式解答即可.17.(4分)(2014•晋江市)如图,在等腰梯形ABCD中,AD∥BC,AB=AD=DC,∠B=60°,NC=MC=BC,现有P、Q两个动点分别从点A、N同时沿梯形的边开始移动,点P依顺时针,方向环行,点Q依逆时针方向环行,若点P的速度与点Q的速度之比为2:3,则点P、点Q第1次相遇的位置是D点;第2014次相遇在B点.【分析】(1)用等腰梯形的性质求出BC=2AB=2AD=2DC,再利用走的路程来判定P、点Q 第1次相遇的位置,(2)运用规律第5次在出发点相遇,用2014次除以5来求解,注意按余数找点.三、解答题(共89分)在答题卡上相应题目的答题区域内作答.18.(9分)(2014•晋江市)计算:÷﹣16×4﹣1+|﹣5|﹣(3﹣)0.【分析】原式第一项利用二次根式的除法法则计算,第二项利用负指数幂法则及乘法法则计算,第三项利用绝对值的代数意义化简,最后一项利用零指数幂法则计算即可得到结果.19.(9分)(2014•晋江市)先化简,再求值:(a+2)(a﹣2)﹣(a﹣3)2,其中.【分析】先算乘法,再合并同类项,最后代入求出即可.20.(9分)(2014•晋江市)如图,在▱ABCD中,点E、点F分别在AD、CB的延长线上,且DE=BF,连结EF分别交AB、CD于点H、点G.求证:△EAH≌△FCG.【分析】利用平行四边形的性质得出AE=CF,进而利用全等三角形的判定得出即可.21.(9分)(2014•晋江市)在一个不透明的布袋中,装有三个小球,小球上分别标有数字“1”、“2”和“3”,它们除了数字不同外,其余都相同.(1)随机地从布袋中摸出一个小球,则摸出的球为“3”的概率是多少?(2)若第一次从布袋中随机摸出一个小球,设记下的数字为x,再将此球放回盒中,第二次再从布袋中随机抽取一张,设记下的数字为y,请用画树状图或列表法表示出上述情况的所有等可能结果,并求出x+y>3的概率.【分析】(1)直接利用概率公式求解即可;(2)用列表或树状图将所有等可能的结果列举出来即可利用概率公式直接求解.22.(9分)(2014•晋江市)今年植树节,某校组织师生开展植树造林活动,为了了解全校1200名学生的植树情况,随机抽样调查部分学生的植树情况,制成如下统计表和条形统计图(均不完整).植树数量频数频率(棵)3 5 0.14 205 0.36 10 0.2合计 1(1)将统计表和条形统计图补充完整;(2)求所抽样的学生植树数量的平均数;(3)若植树数量不少于5棵的记为“表现优秀”,试根据抽样数据,估计该校1200名学生“表现优秀”的人数.【分析】(1)用总人数减去其他小组的人数即可求得植树棵树为5的小组的频数,除以总人数即可得到该组的频率;(2)用加权平均数计算植树量的平均数即可;(3)用样本的平均数估计总体的平均数即可.23.(9分)(2014•晋江市)某水果店老板用400元购进一批葡萄,由于葡萄新鲜,很快售完,老板又用500元购进第二批葡萄,所购数量与第一批相同,但每千克比第一批多了2元.(1)求:第一批葡萄进价每千克多少元?(请列方程求解)(2)若水果店老板以每千克11元的价格将两批葡萄全部售出,可以盈利多少元?【分析】(1)设第一批葡萄进价每千克x元,则第二批葡萄的进价为(x+2)元,根据销售问题的数量关系建立方程求出其解即可;(2)由第一问的结论就可以求出第一批购买的数量,根据单价×数量=总价就有求出总售价,进而可以求出利润.24.(9分)(2014•晋江市)已知:直线与双曲线相交于点A、B,且点A的纵坐标为﹣1.(1)求双曲线的解析式;(2)设直线AB与x轴、y轴分别相交于点D、C,过点B作BP⊥AB,交y轴于点P,求tan∠BPC的值.【分析】(1)把A点的纵坐标代入直线解析式,即可求得A的坐标.再根据待定系数法即可求得反比例函数的解析式.(2)由∠DCO=∠PCB,∠PBC=∠DOC=90°可知∠BPC=∠CDO,根据直线y=x+2可求得与x轴、y轴的交点,从而求得OC、OD的长,求得tan∠BPC的值.25.(13分)(2014•晋江市)如图,已知抛物线y=﹣x2+2x+c经过点C(0,3),且与x轴交于A、B两点(点A在点B的左侧),线段BC与抛物线的对称轴相交于点P.M、N分别是线段OC和x轴上的动点,运动时保持∠MPN=90°不变.(1)求抛物线的解析式;(2)①试猜想PN与PM的数量关系,并说明理由;②在①的前提下,连结MN,设OM=m.△MPN的面积为S,求S的最大值.【分析】(1)直接利用待定系数法求二次函数解析式即可;(2)①首先利用待定系数法求一次函数解析式,得出抛物线y=﹣x2+2x+3的对称轴为直线x=1,即可得出P点坐标,再利用△PEM∽△PFN求出PN=2PM;②利用OM=m,则M(0,m),表示出△MPN的面积为S,进而利用二次函数最值求法得出即可.26.(13分)(2014•晋江市)如图1,在平面直角坐标系中,等边△OAB的顶点A(﹣6,0),顶点B在第二象限,顶点O为坐标原点,过点B作BC∥OA交y轴于点C.(1)填空:点B的坐标是(﹣3,3);(2)若点Q是线段OB上的一点,且,过点Q作直线l分别与直线AO、直线BC交于点H、G,以点O为圆心,OH的长为半径作⊙O.①设点G的横坐标为x,当点G在直线BC上移动,试探究:当x为何值时,⊙O与直线BC、直线AB都分别相切?②过点G作GD∥OC,交x轴于点D,若线段GD与⊙O有公共点P,且点M(1,1),探求:2PO+PM的最小值.【分析】(1)由△OAB为等边三角形,且OB=6,所以BC=3,CO=3,考虑象限中坐标的正负取值,结果易得.(2)①分别相切,我们就把这种情形画出来,此时H点已知,Q点已知,连接HQ并延长,其与直线BC的交点记为G,根据三角形相关性质,G点的横坐标不难求出.②2PO+PM,判定最值时我们一般首先把多倍的情况转化成某线段的长,因为这样比较起来更为直观,由上问可知,又OH=OP,则易得2PO+PM=BG+PM.移动中发现,BG为平行于x轴的线段,且B点固定,有BG为B点到GD的距离,而PM不平行于x轴,若作辅助线有PM≥M到GD的距离.PM何时等于M到GD的距离呢?当G在y轴左边,存在情形如图4,M到GD距离=PM,则2PO+PM=B点到GD的距离+M到GD的距离=B 点横坐标﹣M点横坐标.且B、M点固定,则最小距离易求.参与本试卷答题和审题的老师有:HLing;wdzyzlhx;caicl;2300680618;sjzx;星期八;sks;sd2011;hnaylzhyk;zhjh;gbl210;dbz1018;wkd;zjx111;hdq123;守拙;SPIDER(排名不分先后)菁优网2016年4月21日。

相关文档
最新文档